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Abstract

e study the quality of service (QoSYf failure detec-
tors. By QoS we mean a specification that quantifies (a)
how fast the failure detector detects actual failures, and (b)
how well it avoids false detections. We first propose a set
of QoSmetrics to specify failure detectors for systems with
probabilistic behaviors, i.e., for systems where message de-
lays and message |osses follow some probability distribu-
tions. We then give a new failure detector algorithm and
analyze its QoSin terms of the proposed metrics. e show
that, among a large class of failure detectors, the new algo-
rithmis optimal with respect to some of these QoS metrics.
Given a set of failure detector QoS requirements, we show
how to compute the parameters of our algorithm so that it
satisfies these requirements, and we show how this can be
done even if the probabilistic behavior of the system is not
known. Finally, we briefly explain how to make our failure
detector adaptive so that it automatically reconfigures itself
when there is a change in the probabilistic behavior of the
network.

1. Introduction

Fault-tolerant distributed systems are designed to pro-
vide reliable and continuous service despite the failures of
some of their components. A basic building block of such
systems is théailure detector. Failure detectors are used
in a wide variety of settings, such as network communi-
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cation protocols [8], computer cluster management [18],
group membership protocols [5, 7, 21, 17, 16], etc.

Roughly speaking, a failure detector provides some in-
formation on which processes have crashed. This informa-
tion, typically given in the form of a list o$uspects, is not
always up-to-date or correct: a failure detector may take a
long time to start suspecting a process that has crashed, and
it may erroneously suspect a process that has not crashed
(in practice this can be due to message losses and delays).

Chandra and Toueg [9] provide the first formal speci-
fication of unreliable failure detectors and show that they
can be used to solve some fundamental problems in dis-
tributed computing, namelyonsensus and atomic broad-
cast. This approach was later used and generalized in other
works, e.g., [15, 13, 1, 3, 2].

In all of the above works, failure detectors are speci-
fied in terms of theieventual behavior (e.g., a process that
crashes is eventually suspected). Such specifications are ap-
propriate for asynchronous systems, in which there is no
timing assumption whatsoeverMany applications, how-
ever, have some timing constraints, and for such applica-
tions, failure detectors with eventual guarantees are not suf-
ficient. For example, a failure detector that starts suspect-
ing a process one hour after it crashed can be used to solve
asynchronous consensus, but it is useless to an application
that needs to solve many instances of consensus per minute.
Applications that have timing constraints require failure de-
tectors that provide guality of service (QoS) with some
guantitative timeliness guarantees.

In this paper, we study the QoS of failure detectors in

1Even though théail-aware failure detector of [13] is implemented in
the “timed asynchronous” model, its specification is for the asynchronous
model.



systems where message delays and message losses follow up
some probability distributions. We first propose a set of p
metrics that can be used to specify the QoS of a failure de- down
tector; these QoS metrics quantify (a) hdéast it detects ‘
actual failures, and (b) howell it avoids false detections. !
We then give a new failure detector algorithm and analyze FD atq i suspect suspect
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its QoS in terms of the proposed metrics. We show that,

among a large class of failure detectors, the new algorithm T, i

is optimal with respect to some of these QoS metrics. Given - "

a set of failure detector QoS requirements, we show how to

compute the parameters of our algorithm so that it satisfies Figure 1. Detection time T},

these requirements, and we show how this can be done ever
if the probabilistic behavior of the system is not known. The

QqS spepn‘maﬂon and the analysis of our fa!lure detector al- accuracy of the failure detector@tsuppose that does not
gorithm is based on the theory of stochastic processes. Tq, oo,

the bes’;of Otf[r knc)tyvle?gg, th;st\r/]vork |$Sthef ff|r§|t con;p;ehten- Consider an application that querigs failure detector
sive and systematic study of the QoS of failure detectors 5 .n4om times. For such an application, a natural measure

using probability theory. of accuracy is the probdhy that, when queried at a ran-
domtime, the failure detector at indicates correctly that
is up. This QoS metric is thguery accuracy probability.

For example, in Fig. 2, the query accuracy prabgbof
We consider message-passing distributed systems inpp, atqis12/(12 + 4) = .75.

which processes may fail by crashing, and messages may
be delayed or dropped by communication ligka. failure
detector can bdow, i.e., it may take a long time to suspect p up

a process that has crashed, and it can nmalstakes, i.e.,

it may erroneously suspect some processes that are actually 12 12 12

up (such a mistake is not necessarily permanent: the failure FDy

detector may later stop suspecting this process). To be use- |_| I_I \_|

ful, a failure detector has to be reasonably fast and accurate. 3 3 3 4 4 4

In this paper, we propose a set of metrics for the QoS D2
specification of failure detectors. In general, these QoS met-
rics should be able to describe the failure detectspéed 11 1.

(how fast. it detects crashes) and @uragy (how well it Figure 2. FD; and FD, have the same query
avoids mistakes). Notg that speed is W.Ith respect to pro- - gccuracy probability of .75, but the mistake
cesses that crash, while accuracy is with respect to pro-  4te of FD, is four times that of FD,

cesses that do not crash.

A failure detector’s speed is easy to measure: thisis sim-
ply the time that elapses from the moment when a progess
crashes to the time when the failure detector starts suspect- The query accuracy probdiby, however, is not suffi-
ing p permanently. This QoS metric, calledtection time, cient to fully describe the accuracy of a failure detector. To
is illustrated in Fig. 1. see this, we show in Fig. 2 two failure detectd?®, and

How do we measure a failure detector’s accuracy? It £'D2 such that (a) they have the same query accuracy prob-
turns out that determining a good setanturacy metricsis ~ ability, but (b) FD> makes mistakes more frequently than
a delicate task. To illustrate some of the subtleties involved, ¥D1.* In some applications, every mistake causes a costly
consider a system of two proceswndq connected by a interrupt, and for such applications thestake rate is an
lossy communication link, and suppose that the failure de- important accuracy metric.
tector atg monitors procesp. The output of the failure Note, however, that the mistake rate alone is not suffi-
detector aij is either “I suspect thab has crashed” or “|  cient to characterize accuracy: as shown in Fig. 3, two fail-
trust thatp is up”, and it may alternate between these two Ure detectors can have the same mistake rate, but different
outputs from time to time. For the purpose of measuring the query accuracy probéties.

1.1. On the QoS Specification of Failure Detectors

2We assume that process crashes are permanent, or, equivalently, thata 3The failure detectamakesa mistake each time its output changes from
process that recovers from a crash assumes a new identity. “trust” to “suspect” whilep is actually up.
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g may delay or drop messages. Message delays and mes-

p = sage losses follow some probabilistic distributions. Process
q has a failure detector that monitgreind outputs either “I
FD, 12 12 12 suspect thagt has crashed” or “I trust thatis up” (“suspect
u u p” and “trustp” in short, respectively).
4 4 4 A Common Failure Detection Algorithm and its Draw-
8 8 8 backs. A simple failure detection algorithm, commonly
FDo used in practice, works as follows: at regular time intervals,
| I_ proces® sends a heartbeat message;twheng receives a
8 8 8 heartbeat message, it trugtand starts a timer with a fixed
. . timeout valueT'O; if the timer expires before receives a
Figure 3. F'D, and FD have the same mistake newer heartbeat message frpntheng starts suspecting
rate 1/16, but the query accuracy probabilities This algorithm has two undesirable characteristics; one
of ¥Dy and FD» are .75 and .50, respectively regards its accuracy and the other its detection time, as we

now explain. Consider theth heartbeat message;. Intu-
itively, the probability of goremature timeout onm, should
depend solely om,;, and in particular omn;'s delay. With

Even when used together, the above two accuracy metthe simple algorithm, however, the probability of a prema-
rics are still not sufficient. In fact, it is easy to find two ture timeout onn; also depends on the heartbeat ; that
failure detectorg’D, and F'Ds, such that (af'D; is better precedesn;! In fact, the timer form; is started upon the
than F'D, in both measures (i.e., it has a higher query ac- receipt ofm;_1, and so ifm;_ is “fast”, the timer form;
curacy probabilityand a lower mistake rate), but (thD- starts early and this increases the probability of a prema-
is better thanF'D; in another respect: specifically, when- ture timeout onn;. This dependency on past heartbeats is
ever FD, makes a mistake, it corrects this mistake faster undesirable.

than FDy; in other words, thenistake durations in FD4 To see the second problem, supppsends a heartbeat
are smaller than iF'D;. Having small mistake durations justbefore it crashes, and i¢be the delay of this last heart-
may be important to some applications. beat. In the simple algorithm,would permanently suspect

As it can be seen from the above, there are several differ-p only d + TO time units afterp crashes. Thus, the worst-
ent aspects of accuracy that may be important to differentcase detection time for this algorithm is timeximum mes-
applications, and each aspect has a cpoedingaccuracy sage delay plug’O. This is impractical because in many
metric. systems the maximum message delay is orders of magni-

In this paper, we identify six accuracy metrics (since the tude larger than the average message delay.
behavior of a failure detector is probabilistic, most of these  The source of the above problems is that even though the
metrics are random variables). We then use the theory ofheartbeats are sent at regular intervals, the timers to “catch”
stochastic processes to quantify the relation between thes¢éhem expire at irregular times, namely the receipt times of
metrics. This analysis allows us to select two accuracy met-the heartbeats plus a fixefO. The algorithm that we pro-
rics as theprimary ones in the sense that: (a) they are not pose eliminates this problem. As a result, the probability
redundant (one cannot be derived from the other), and (b)of a premature timeout on heartbeat doesnot depend
together, they can be used to derive the other four accuracyon the behavior of the heartbeats that precedeand the
metrics. detection time doesot depend on the maximum message

In summary, we show that the QoS specification of fail- delay.
ure detectors can be given in terms of three basic metrics,a Nay Algorithm and its QoS Analysis. In the new al-
namgly, the dete'ctlon' yme and the two primary accuracy gorithm, procesg sends heartbeat messages, ms, . . .
metrics that we |dent|f|egl. Taken together, these metrlcsto q periodically everyy time units (just as in the simple
can be used to characterize and compare the QoS of fa"“r%llgorithm). To determine whether to suspecty uses a
detectors. sequencer;, 7, . . . of fixed time points, calledreshness

points, obtained by shifting the sending time of the heart-
1.2. The Design and Analysis of a New Failure  peat messages by a fixed parameter More precisely,
Detector Algorithm 7. = 0; + 6, whereo; is the time whenn; is sent. For
any timet, leti be so that € [r;, 7:+1); theng trusts p at

In this paper, we consider a simple system of two pro- timet if and only if ¢ has received heartbeat; or higher.
cessey andgq, connected through a communication link. Given the probabilistic behavior of the system (i.e., the
Proces® may fail by crashing, and the link betwegrand probability of message losses and the distribution of mes-

0-7695-0707-7/00 $10.00 ® 2000 IEEE



sage delays), and the parameterand¢ of the algorithm, specific and it cannot be used to compare failure detectors
we determine the QoS of the new algorithm using the the-that use timeouts in different ways.
ory of stochastic processes. Simulationresults givenin [10] In [19], Raynal and Tronel present an algorithm that de-
are consistent with our QoS analysis, and they show that thetects member failures in a group: if some process detects a
new algorithm performs better than the common one. failure in the group (perhaps a false detection), then all pro-

In contrast to the common algorithm, the new algorithm cesses report a group failure and the protocol terminates.
guarantees an upper bound on the detection time, and thiThe algorithm uses heartbeat-style protocol, and its time-
bound depends only on the parametgendd of the algo- out mechanism is the same as the simple algorithm that we
rithm — not on the probabilistic behavior of the heartbeats. described in Section 1.2.

Moreover, the new algorithm is optimal in the sense that  In [23], Verissimo and Raynal stud@oS failure detec-
it has the best possible query accuracy prdiglwvith re- tors— these are detectors that indicate when a service does
spect to any given bound on the detection time. More pre-not meet its quality-of-service requirements. In contrast,
cisely, we show that among all failure detectors that sendthis paper studies the Qaffailure detectors, i.e., how well
heartbeats at the same rate (they use the same network bané-failure detector works.
width) and satisfy the same upper bound on the detection  The probabilistic network model used in this paper is
time, the new algorithm has the best query accuracy probasimilar to the ones used in [11, 6] for probabilistic clock
bility. synchronization.

The algorithm that we give here assumes thaind ¢ All proofs and many technical details are omitted here,
have synchronized clocks. This assumption is not unrealis-gnd they can be found in [10].
tic, even in large networks. For example, GPS and Cesium

clocks are becoming accessible, and they can provide clocks . .
that are very closely synchronized (see, e.g., [23]). In [10], 2. On the QoS Specification of Failure

we show how to modify this algorithm so that it works even Detectors
when synchronized clocks are not available.
Configuring our Algorithmto Meet the Failure Detector We consider a system of two procesgeandgq. We

Requirements of an App“Ca“On Given a set of failure assume that the failure detECtor@monitorsp, and that
detector QoS requirements (provided by an application), weq does not crash. Henceforth, real time is continuous and
show how to compute the parameters of our algorithm to fanges front to oo.

achieve these requirements. We first do so assuming that

one knows the probabilistic behavior of the system (i.e., 2.1. The Failure Detector M odel

the probability distributions of message delays and message

losses). We then drop this assumption, and show how 10 1,5 t0ut of the failure detector atat timet is either
configure t'he fallure detector to meet the .Q.O.S requirementsg T, which means thaj suspects or trusts at timet,

of an application even when the probabilistic behavior of respectively. Atransition occurs when the output of the

the system is not known. failure detector ay changes: ArS-transition occurs when
the output afy changes froni’ to S; a T-transition occurs
1.3. Related Work when the output aj changes frons to 7. We assume that
there are only a finite number of transitions during any finite
In [14], Gouda and McGuire measure the performance time interval.
of some failure detector protocols under the assumptionthat ~ Since the behavior of the system is probabilistic, the pre-
the protocol stops as soon as some process is suspected tse definition of our model and of our QoS metrics uses
have crashed (even if this suspicion is a mistake). This classthe theory of stochastic processes. In particular, most of the
of failure detectors is less general than the one that we studmetrics we proposed are random variables. To keep our pre-
ied here: in our work, a failure detector can alternate be- sentation at an intuitive level, we omit the technical details
tween suspicion and trust many times. related to this theory (they can be found in [10]).
In [22], van Renesset. al. propose a scalable gossip-
style randomized failure detector protocol. They measure 5 5 Primary Metrics
the accuracy of this protocol in terms of thebability of
premature timeouts.* The probability of premature time-
outs, however, is not an appropriate metric for the specifi-
cation of failure detectors in general: it is implementation-

We propose three primary metrics for the QoS specifica-
tion of failure detectors. The first one measures the speed
of a failure detector. It is defined with respect to the runs in
4This is called “the probability of mistakes” in [22]. whichp crashes.
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to long-lived applications whereach failure detector mis-

P = take (each S-trait#on) results in a costly interrupt. This
is the case for applications such as group membership and
trust cluster management.

FD atq suspect suspect Query accuracy probability (P,): this is the probability
T, | T T that the failure detector’s output is correct at a random time.
! Ty ! This metric is important to applications that interact with
-~ the failure detector by querying it at random times.

Figure 4. Mistake duration T,,, good period Many applications can make progress only durjogd

periods — periods in which the failure detector makes no

mistakes. This observation leads to the following two met-

rics.

Good period duration (7,): this measures the length of

a good period. More precisely,, is a random variable

representing the time that elapses from a T-transition to the

next S-transition (Fig. 4).

For short-lived applications, however, a closely related
metric may be more relevant. Suppose that an application is
started at a random time in a good period. If theaining
part of the good period is long enough, the short-lived ap-
plication will be able to complete its task. The metric that
measures the remaining part of the good period is:

Forward good period duration (7,.): this is a random
variable representing the time that elapses from a random
time at whichy trustsp, to the time of the next S-transition.

Atfirst sight, it may seem that, on the averagg, is just
half of T, (the length of a good period). But this is incor-
rect, and in Section 2.4 we give the actual relation between
mTFG andTy.

duration T, and mistake recurrence time T,

MR

Detection time (7',): Informally, T, is the time that
elapses fromp’s crash to the time when starts suspect-
ing p permanently. More precisel§f), is a random vari-
able representing the time that elapses from the timepthat
crashes to the time when the final S-transition (of the failure
detector ay) occurs and there are no transitions afterwards
(Fig. 1)

We next define some metrics that are used to specify the
accuracy of a failure-detector. Tdughout the paper, all ac-
curacy metrics are defined with respecftaibure-free runs,
i.e., runs in whichp does not crash.There are two primary
accuracy metrics:

Mistake recurrence time (7,,,): this measures the time
between two consecutive mistakes. More precisEly, is

a random variable representing the time that elapses fro
an S-transition to the next one (Fig. 4).

Mistakeduration (7',,): this measures the time it takes the .
failure detector to correct a mistake. More precisgly, is 2.4. Howthe Accuracy Metrics are Related

a random variable representing the time that elapses from

an S-transition to the next T-transition (Fig. 4). Theorem 1 below explains how our six accuracy metrics
are related. We then use this theorem to justify our choice
of the primary accuracy metrics. Henceforit;(A) de-
notes the probability of event; E(X), E(X*), and V(X)

four other accuracy metrics in the next section. We selecteddenote the expected value (or mean), tis moment, and
T,,, andT,, as the primary metrics because given these two, t€ variance of random variablg, respectively.

one can compute the other four (this will be shown in Sec-  Parts (2) and (3) of Theorem 1 assume that in failure-
tion 2.4). free runs, the probabilistic distribution of failure detector

histories isergodic. Roughly speaking, this means that in
failure-free runs, the failure detector slowly “forgets” its
past history: from any given time on, its future behavior
may depend only on its recent behavior. We call failure
We propose four additionakccuracy metrics: detectors satisfying this ergodicity conditiergodic fail-
Averagemistakerate ()\,,): thismeasures the rate at which ure detectors. Ergodicity is a basic concept in the theory of
a failure detector make mistakes, i.e., it is the average num-stochastic processes [20], but the technical details are sub-
ber of S-transitions per time unit. This metric is important stantial and outside the scope of this paper.

As we discussed in the introduction, there are many as-
pects of failure detector accuracy that may be important to
applications. Thus, in addition @5,,, andT’,,, we propose

IR

2.3. Derived Metrics

51f there is no such final S-transition, théfy, = oo; if such an S- Theorem 1 For any ergodic failure detector, the following

transition occurs beforg crashes, theff’, = 0. We henceforth omit the . _ _
boundary cases of other metrics since they can be similarly defined. resultshold: (1) Ty = T, — T, (9110 < E(T)) < 00,

6As explained in [10], these metrics are also meaningful for runs in then /\M = 1/E(TMR)' and P, = E(TG)/E(TMR)' (3) If
whichp crashes. 0< E(T,,) <candE(T,) =0,thenT,,, isawaysO.

MR
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Ti Ti+1 Ti Ti+1
trust trust
FD atq —_—
suspect suspect
(@) (b) (©)
Figure 5. Three scenarios of the failure detector output in one interval [7;, 7;41)

Ifo < E(T,,) < o and E(T,) # 0, then (3a) for all drop messages. Procesgeandq have access to synchro-
x € [0,00), Pr(T,, < x) = for Pr(T, > y)dy/E(T,), nized clocks (the case where synchronized clocks are not
(3b) E(TF,) = E(TEY)/[(k + 1)E(T,)]. In particular, available is treated in [10]).
() E(T,,) = [1+ V(T,)/E(T,)*|E(T,)/2. We assume that the message loss and message delay be-

o ) havior of any message sent through the link is probabilistic,
The fact thatl;, = T,,, — T), holds is immediate by  4nq s characterized by the following two parameters: (a)
definition. The proofs of parts (2) and (3) use the theory message |oss probability p, , which is the probability that
of stochastic processes.  Part (2) is intuitive, while part 5 message is dropped by the link; and f(iessage delay
(3), which relatesl; andT),;, is more complex. In par-  p \hich is a random variable with range, oc) represent-
ticular, part (3c) is counter-intuitive: one may think that ing the delay from the time a message is sent to the time
E(T,;) = E(T)/2, but part (3c) says tha(T,) is in it is received,under the condition that the message is not
general larger thai/(T,)/2 (this is a version of the "wait-  gropned by the link. We assume that the expected value
ing time paradox” in the theory of stochastic processes [4]). E(D) and the variancé/( D) of D are finite. Note that our

We now explain how Theorem 1 guided our selection ,54el does not assume that the message delay/firu-

of the primary accuracy metrics. Parts (2) and (3) show |5 any particular distribution, and thus it is applicable to
that\,,, P, andT,, can be derived frorff,,,, 7', and7,. many practical systems.

This suggests that the primary metrics should be selected o simplicity we assume that the probabilistic behavior
amongT,,, T, andT. Moreover, sincel;; = T\, —  of the network does not change over time. In Section 6,
T, itis clear that given the joint distribution of any two ;¢ explain how to modify the algorithm so that it dynami-

of them, one can derive the remaining one. Thus, two 0f o5y adapts to changes in the probabilistic behavior of the
T, T, andT, should be selected as the primary metrics, system.

MR’
but which two? By choosingd’,,, andT’,, as our primary

metrics, we get the following convenient property that helps 3.2. The Algorithm
to compare failure detectors: HD; is better than#D- in
terms of bothE(T,,,) and E(T,,) (the expected values of
the primary metrics) then we can be sure tha,; is also
better thanF'D5 in terms of E(T,) (the expected values of
the other metric). We would not get this useful property if
T, were selected as one of the primary metrics.

The new algorithm works as follows. The mon-
itored processp periodically sends heartbeat messages
my,mo, ms, ... 10 g everyn time units, wherey is a pa-
rameter of the algorithm. Every heartbeat messagés
tagged with its sequence number Henceforth,o; de-

. i notes the sending time of messagg. The monitoring
3. The Design and QoS Analysis of a New processy shifts theo;’s forward by — the other param-

Failure Detector Algorithm eter of the algorithm — to obtain the sequence of times
< T <13 <..,wherer; = o; + 9. Procesy
3.1. The Probabilistic Network M odel uses ther;'s and the times it receives heartbeat messages,

to determine whether to trust or suspgcés follows. Con-
We assume that procesgesndq are connected by alink  sider time periodr;, 7;11). Attime 7;, ¢ checks whether it
that does not create or duplicate messages, but may delay dnas received some messagg with j > i. If so, ¢ trusts

0-7695-0707-7/00 $10.00 ® 2000 IEEE



Lemma?2 For all i > 0 andall timet € 4, 7i4+1), ¢ trusts

Procesy: p attime ¢ if and only if ¢ has received some message m
1 foralli > 1, attimeo; = i - n, send heartbeat; to ¢ with j > 4 by time <.
Process;: The following definitions are for runs whegedoes not
2 Initialization: output = S, {suspecp initially } cra.sh.e.s.

Definition 1

s foralli > 1, attimer; = o; + 6:
4 if did not receivemn; with j > i then output «— S,
{suspecp if no fresh message is received

(1) For any ¢ > 1, let k be the smallest integer such that
forall j > i+ k, m; issent at or after time ;.

(2) Forany: > 1, let p;(x) be the probability that ¢ does
not receive message m;4; by time ; + x, for every
j > 0andevery x > 0; let pg = po(0).

(3) For any i > 2, let g be the probability that ¢ receives

Fi.gure 6. Failure detector algorithm NFD-S message m;_ beforetime 7;.

with parameters 7 and o (4) For any i > 1, let u(x) be the probability that ¢ sus-
pectsp attimer; + x, for every = € [0, ).

(5) For any i > 2, let p, be the probability that an S
transition occurs at time 7.

s upon eceive message; at timet € [7;, T41):
6 if j > ithen output «— T
{trustp when some fresh message is recejved

p during the entire periodlr;, 7,41) (Fig. 5 (a)). If not,q
starts suspecting. If at some time before; ., q receives The above definitions are given in termsiph positive
some message:; with j > i theng starts trusting from integer. Proposition 3, however, shows that they are actually
that time untilr; ;. (Fig. 5 (b)). If by timer;;1, ¢ has not independent of.

received any message; with j > i, thenq suspectp dur- . )
ing the entire periodjn,JnH) (Fig. 5 (). This procedure  Froposition3 (1) k = [d/n]. (2) For all j > 0 and for

is repeated for every time period. The detailed algorithm &! # = 0. pi(x) = p, + (1 =p)Pr(D >+ —jn).

with parameters) ands is denoted by NFD-S, and is given (3) 40 = (]1 —p)Pr(D < 5+n). (4 Foralz e [0,m),

in Fig. 6. u(z) = [[;—o pj(z). (5) ps = qo - u(0).

Note that from timer; to 7541, only messages:; with . By definition, if po = 0 then for everyi > 1, the prob-
j>i can.affect the output of the failure Qetector. For this ability thatq receivesm; by timer; is 1. Thus, if po = 0
reasony; is called afreshness point: from time7; 0 7.1, then, with probability oneg trustsp forever after timer; .
messagesn; with j > 7 arestill fresh (useful). With this Similarly, it is easy to see that if, — 0 then, with prob-
algorithm, ¢ trustsp at timet if and only if ¢ received a ability one, ¢ suspects forever. Sopy = 0 andgy = 0
message that s still fresh at time are degenerated cases of no interest. We henceforth assume

] ) thatp, > 0 andgy > 0.
3.3. The QoS Analysis of the Algorithm The following theorem summarizes our QoS analysis of
the new failure detector algorithm.

We now give the QoS of the algorithm (for a detailed
analysis see [10]). We assume that the link froto ¢ sat-
isfies the followingmessage independence property: (a) the
message loss and message delay behavior of any messa
sent byp is independent of whether or whercrashes; and

; ties.
(b) the behaviors of any two heartbeat messages sept by PropPer o
o 1) Th tion t ded:
are independerft.Henceforth, letr def, andr; = o; +6 (1) The detection timeis boun

fori > 1 (as in line 3 of the algorithm). T, <d6+n. (3.1)
We first formalize the intuition behind freshness points
and fresh messages:

Theorem 4 Consider a system with synchronized clocks,
where the probability of messagelossesisp, , and the distri-
tion of message delaysis P(D < x). Thefailure detector
FD-Sof Fig. 6 with parameters  and § has the following

(2) The average mistake recurrence timeis:

"This version of the algorithm is convenient for illustrating the main E(TMR) - i (3-2)
idea and for performing the analysis. We have omitted sobwéous opti- Ps
mizations. _ _ _ (3) The average mistake durationis:

8In practice, this holds only if consecutive heartbeats are sent more than
someA time units apart, wheré depends on the system. So assuming f” u(z) da
that the behavior of heartbeats are independent is equivalent to assuming E(T,,) = 2%—"—. (3.3)
thatn > A. Py
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FromE(T,,,) and E(T,,) given in the theorem above, we

can easily derive the other accuracy measures using Theo

rem 1. For example, we can get the query accuracy proba- Probabilistic Behavior
bility P, =1 — E(T,,)/E(T,,) =1—1/n- [ u(z) dz. of Heartbeats
Theorem 4 (1) shows an important property of the algo- lpL lp(D <x)
rithm: the detection time is bounded, and the bound does QoS
not depend on the behavior of message delays and losses. Requirements Configurator
—
In Section 4, we show how to use Theorem 4 to compute Ty, The T
the failure detector parameters, so that the failure detector n 5
satisfies some QoS requirements (given by an application). v v

Failure Detector
NFD_S

3.4. An Optimality Result

Figure 7. Meeting QoS requirements with
NFD-S. The probabilistic behavior of heart-
beats is given

Among all failure detectors that send heartbeats at the
same rate and satisfy the same upper bound on the detec-
tion time, the new algorithm provides the best query accu-
racy probability. More precisely, I€tbe the class of failure
detector algorithms! such that in every run ofl, process
p sends heartbeats tpeveryn time units andA satisfies
T, < TV for some constarif”. Let A* be the instance of
the new failure detector algorithm NFD-S with parameters T, <TY, B(T,,)>TF, B(T,)<TV. (4.4)
nands = TV — . By part (1) of Theorem 4, we know that = b M M M
A* € C. We can show that Our goal, illustrated in Fig. 7, is to find a configuration
procedure that takes as inputs (a) the QoS requirements,
namelyT”, Tt . TU, and (b) the probabilistic behavior of
the heartbeat messages, namelyand Pr(D < z), and
outputs the failure detector parametgrand § so that the
failure detector satisfies the QoS requirements in (4.4). Fur-
thermore, to minimize the network bandwidth taken by the
. ) ) . failure detector, we want a configuration procedure that
4. Configuring the Failure Detector to Satisfy finds the largest intersending intervalthat satisfy these

QoS Requirements QoS requirements.
Using Theorem 4, our goal can be stated as a mathemat-
ical programming problem:

Suppose we are given a set of failure detector QoS re-

requirements are that:

Theorem 5 For any A € C, let P, be the query accuracy
probability of A. Let P be the query accuracy probability
of A*. Then P > P,.

quirements (the QoS requirements could be given by the maximize 17

application that uses this failure detector). We now show subject to  d+n < Tg (4.5)
how to compute the parameterandd of our failure detec- n . (4.6)
tor algorithm, so that these requirements are satisfied. We pg MR '
assume that (a) the local clocks of processes are synchro- fn u(z) dz

nized, and (b) one knows the probabilistic behavior of the 20— <7V 4.7)

messages, i.e., the message loss probabilitgnd the dis- Ps

tribution of message delaydr(D < z). In Section 5, we  \yhere the values of(z) andp, are given by Proposition 3.
consider the case when (b) does not hold, and in [10] we gqying this problemis hard, so instead we show how to find
treat the case when both () and (b) do not hold. somer ands that satisfy (4.5)-(4.7) (but thethat we find
We assume that the QoS requirements are expressed usnay not be the largest possible). To do so, we replace (4.7)
ing the primary metrics. More precisely, a set of QoS re- with a simpler and stronger constraint, and then compute
; i U pL U U .
quirements is a tupler, ’.TMR.’ TML)' WhereTD 'S an up 9Note that the bounds on the primary metri€$7,,,) and E(T,,)
per bound on t_he detection tm@mg IS a |OW§I’ bound on also impose bounds on the derived metrics, accordingto Theorem 1. More
the average mistake recurrence time, ﬁ?ﬂd IS an upper  precisely, we hava,, < 1/TL . p, > (TL —TY)/TL  E(T,) >

MR MR MR’

bound on the average mistake duration. In other words, therl, — TV, andE(T,,) > (TL —TY)/2.

MR MR
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the optimal solution of this modified problem (see [10] for Computing Failure Detector Parameters n and 6 Using
more details). We obtain the following procedure to find  p,, E(D) and V(D). With E(D) and V(D), we can
ando: boundPr(D > t) using the followingOne-Sded | nequality
of probability theory (e.g., see [4], p.79): For any random
e Step 1: Computegy = (1 —p, )Pr(D < TY), and let  variableD with a finite expected value and a finite variance,
Tmax = Q(/)ng

V(D)
Pr(D >t) < 5, forallt > E(D).
o Sep2: Let f(n) = V(D) + (t — E(D)) 59)
n With this, we can derive the following bounds on the
[T /n]—1 : QoS metrics of algorithm NFD-S.

a0 11,5 [p, + (1 —p,)Pr(D>TY — jn)]
(4.8)  Theorem 7 Consider a system with synchronized clocks
Find the largest) < nuax such thatf(n) > T . To  and assume § > E(D). For algorithm NFD-S, we have
find such am, we can use a simple numerical method, E(T,.) > n/3, E(T,,) < n/v, P, > 1— 3, E(T.) >
such as binary search (this works because whea- (1 — 3)y/3, and E(T,.) > (1 — B)n/(23), where
creasesy(n) increases exponentially fast).

; 5= T] AL+, (0~ B(D) —jn)’
o Sep3: Setd =T, — 1. o V(D

)+ (6= ED) —jn)*

Theorem 6 Consider a system with synchronized clocks. ko =[(0 — E(D))/n] — 1,
With the parameters n and ¢ obtained by the above proce- and
dure, the failure detector algorithmNFD-Sof Fig. 6 satisfies (1-p,)( —E(D)+n)?
the QoSrequirements given in (4.4). v= V(D) + (6 — E(D) + )2
As an example of the configuration procedure of the fail-  Theorem 7 can be used to compute the parametarsi

ure detector, suppose we have the following QoS require-5 of t'he failure Qetegtor NFD-S, so thgt it sgtisfies the QO.S
ments: (a) a crash failure is detected within 30 seconds,®duirements given in (4.4). The configuration procedure is
i.e., TV = 30s; (b) on average, the failure detector makes 9'VeN below. This procedure assumes tigt > E(D),

at most one mistake per month, i-%& = 30days = i.e., the required detection time is gregter than the average
2592000 s; (C) on average, the failure detector corrects its Message delay (a reasonable assumption).

mistakes within one minute, i.é.FAU = 60s. Assume that
the message loss probabilityps = 0.01, the distribution
of message delay is exponential, and the average mes-
sage delayF(D) is 0.02s. By inputting these numbers

e Sep 1. Compute o/ = (1 — pL)(T,E,’ _
E(D))?/(V(D) + (TY — E(D))?) and letnuax =
min(y' TY, TY — E(D)).

M

into the configuration procedure, we get= 20.03 s and o Sep2: Let f(n) =

n = 9.97 s. With these parameters, our failure detector sat-

isfies the given QoS requirements. [(TU—E(D))/n]-1 V(D) + (TV — E(D) — jn)’
o _ " 1} V(D) +p, (TY — E(D) — jn)*’

5. Dealing with Unknown M essage Behavior ! (5.10)

Find the largesty < nmax such thatf(n) > T%

MR

In Section 4, our procedure to compute the parameters
andJ of NFD-S to meet some QoS requirements assumed

that one knows the probability, of message loss and the  Notice that the above procedure does not use the distribu-
distribution Pr(D < x) of message delays. This assump- jon Pr(D < z) of message delays; it only uses, E(D)
tion is not unrealistic, but in some systems the probabilistic 5 V(D)

behavior of messages may not be known. In that case, itis

still possible to computg andd, as we now explain. We  Theorem 8 Consider a system with synchronized clocks.
proceed in two steps: (1) we first show how to compyte  With parameters n and § computed by the above proce-
and¢ using onlyp,, E(D) and V(D) (recall thatE(D) dure, the failure detector algorithm NFD-S of Fig. 6 sat-
andV (D) are the expected value and variance of messageisfies the QoS requirements given in (4.4), provided that
delays, respectively); (2) we then show how to estimate 7Y > E(D).

E(D) and V(D).

e Sep3: Sets =TV — 1.
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Estimating p,, E(D) and V(D). Itis easy to estimate
p,, E(D) and V(D) using heartbeat messages. For exam-
ple, to estimate, , one can use the sequence numbers of the
heartbeat messages to count the number of “missing” heart- [
beats, and then divide this count by the highest sequence
number received so far. To estimai# D) and V(D), we

use the synchronized clocks as follows: Whesends a
heartbeatn, p timestampsn with the sending time, and
when q receivesm, q records the receipt timd. In this
way, A — S is the delay oin. We then compute the average
and variance ofl — S for multiple past heartbeat messages,
and thus obtain accurate estimatesfgD) and V(D).

[4]

(6]

[7]

6. Concluding Remarks

An AdaptiveFailureDetector. Inthis paper, we assumed 8]
that the probabilistic behavior of heartbeat messages does [g]
not change. In some networks, this may not be the case.
For instance, a corporate network may have one behavior
during working hours (when the message traffic is high), [10]
and a completely different behavior during lunch time or at
night (when the system is mostly idle): During peak hours, [11]
the heartbeat messages may have a higher loss rate, a highey,
expected delay, and a higher variance of delay, than during[13]
off-peak hours. Such networks require a failure detector
thatadapts to the changing conditions, i.e., it dynamically
reconfigures itself to meet some given QoS requirements.

It turns out that we can use the configuration procedure
given in Section 5 to make our failure detector adaptive.
The idea is to periodically estimate tloarrent values of
p,,E(D) and V(D) using then most recent heartbeats.
These estimates are then fed into the configuration proce-
dure to recompute new failure detector parameteardo.

The above adaptive algorithm forms the core of a failure
detection service that is currently being implemented and [17]
evaluated [12]. This service is intended to be shared among
many different concurrent applications, each with a differ-
ent set of QoS requirements. The failure detector in this
architecture dynamically adapts itself not only to changes
in the network condition, but also to changes in the current
set of QoS demands (as new applications are started and ol
ones terminate).

[14]

[15]

[16]

(18]

19]

[20]
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