Distrib. Comput. (2000) 13: 99-125 DISTRIBULTED
COMPRUMING,

© Springer-Verlag 2000

Failure detection and consensus in the crash-recovery model

Marcos Kawazoe Aguilera, Wei Cher?, Sam Toued

! Department of Computer Science, Cornell University, Ithaca, NY 14853-7501, USA (e{ewiliera,sarh@cs.cornell.edu)
2 QOracle Corporation, One Oracle Drive, Nashua, NH 03062, USA (e-mail: weichen@us.oracle.com)

Received: May 1998 / Accepted: November 1999

Summary. We study the problems of failure detection and e Stable StorageWhen a process crashes, it loses all its
consensus in asynchronous systems in which processes may local state. One way to deal with this problem is to as-
crash and recover, and links may lose messages. We first pro- sume that parts of the local state are recorded into stable
pose new failure detectors that are particularly suitable to the storage, and can be restored after each recovery. However,
crash-recovery model. We next determine under what con- stable storage operations are slow and expensive, and must
ditions stable storage is necessary to solve consensus in this be avoided as much as possible. Is stable storage always
model. Using the new failure detectors, we give two consen- necessary when solving consensus? If not, under which
sus algorithms that match these conditions: one requires stable condition(s) can it be completely avoided?

storage and the other does not. Both algorithms tolerate link ¢ Failure Detection:In the crash-recovery model, a process
failures and are particularly efficient in the runs that are most may keep on crashing and recovering indefinitely (such
likely in practice — those with no failures or failure detector a process is callednstablg. How should a failure detec-

mistakes. In such runs, consensus is achieved wihitime tor view unstable processes? Note that an unstable process
and withdn messages, whedds the maximum message delay may be as uselessto an application as one that permanently
andn is the number of processes in the system. crashes (and in fact it could be even more disruptive). For

example, an unstable process can be up justlong enough to
Key words: Fault tolerance — Failure detection — Consensus be considered operational by the failure detector, and then
— Process crash — Process recovery — Asynchronous systems crash before “helping” the application, and this could go
— Stable storage onrepeatedly. Thus, itis natural to require that a failure de-
tector satisfies the followingpmpletenegsroperty: Even-
tually every unstable process is permanently suspécted.
But implementing such a failure detector is inherently
problematiceven in a perfectly synchronous systém
) tuitively, this is because, at any given point in time, no
1 Introduction implementation can predict the future behavior of a pro-
cessp that has crashed in the past but is currently “up”.
The problem of solving consensus in asynchronous systems Will p continue to repeatedly crash and recover? Or will
with unreliable failure detectors (i.e., failure detectors that it stop crashing?
make mistakes) was first investigated in [3, 2]. But these works
only considered systems where process crashgeamanent
and links are reliable (i.e., they do not lose messages). Inreal N summary, our goal here is to solve consensus in the
systems, however, processes megoverafter crashing and crash-recovery model (with lossy links). As a crucial part of
links may lose messages. In this paper, we focus on SOlVin@iS prOblem, we first need to find reasonable failure detectors
consensus with failure detectors in such SystemS, a prob|erﬂ]at can be used for thlS task. We also need to determine if and
that was first considered in [4, 10, 7] (a brief comparison withwhen stable storage is necessary.
these works is in Sect. 1.3).
Solving consensus in a system where process may recover
after crashing raises two new problems; one regards the needy Fajlure detectors for the crash-recovery model
for stable storage and the other is about the failure detection
requirements:

We first focus on the problem of failure detection in the crash-

Research partially supported by NSF grant CCR-9402896 and CCRi€covery model. Previous solutions require unstable processes
9711403, by ARPA/ONR grant N00014-96-1-1014, and by an Olin
Fellowship. 1 In fact, this property is assumed in [10, 7].

100 M.K. Aguilera et al.

to be eventually suspected forever [10? ¥)le first prove that From the above it is clear that sometimes it is better to
this requirement has a serious drawback: it forces failure dehave a failure detector with:
tector implementations to have undesirable behaviors even
in perfectly synchronous systems. More precisely, consider
a synchronous round-based system with no message fosses,
where up ton, processes may be unstable. In this system,) _)
everyimplementation of a failure detector with the above re- ~ Such a failure detector is denoted,,. In this paper, we
quirement has runs with the following undesirable behavior:show how to transform anysS, into S, in an asynchronous
there is a round after which (a)l processes are permanently System provided that a majority of processes are good.
up, but (b) the failure detector incorrectly suspegiof them
forever (see Theorem 1). Note that these permanent mistak S5 On the necessity of stable storage in the crash-recover
arenotdue to the usual causes, namely, slow processes or mes: del y 9 y
sage delays. Instead, they are entirely due to the requirememO €
on unstable processes (which involves predicting the future) can consensus be solved in the crash-recovery muitredut

To avoid the above problem, we propaseew type of fail- — staple storageand if so, how? To answer this question, assume
ure detectorthat is well-suited to the crash-recovery model. that during each execution of consensus, at leagrocesses
This failure detector does not output lists of processes susyye guaranteed to remain up, and at mggirocesses are bad.
pected to be crashed or unstable. Instead, it outputs a list of Cjearly, ifn, < 1then consensus cannot be solved without
processes deemed to be currently up, with an asso@ptEth gtaple storage: itis possible thaitprocesses crash and recover
numberfor each such process. If a process is on this list Wegyring execution, and the entire state of the system (including

say itistrusted _ _ previous proposals and possible decisions) can be lost forever.

The epoch number of a process is a rough estimate of they, the other hand, i, > n/2, i.e., a majority of processes
number of times it crashed and recovered in the past. We disyre guaranteed to remain up, then solving consensus without
tinguish two types of processdsad ones are those that are gtaple storage is easy: If a process crashes we exclude it from
unstable or crash permanently, agmbdones are those that participating in the algorithm even if it recovers (except that
never crash or eventually remain up. We first propose a simplgye allow it to receive the decision value). This essentially
failure detector, denotedsS,, with the following two proper- requces the problem to the case where process crashes are
ties. Roughly speaking (precise definitions are in Sect. 3): permanent and a majority of processes do not crash (and then

 Completenesgor every bad processat every good pro- ~ @n algorithm such as the one in [3] can be used).
cess there is a time after which eitlids never trusted or Is it possible to solve consensus without stable storage if
the epoch number dfkeeps on increasing. 1 < nq <n/2? We show that:

e Accuracy:Some good process is eventually trusted for- o |f 5, < n, then consensusannot be solved without sta-

ever by all good processes, and its epoch number stops ple storageeven using:P (the eventually perfect failure
changing. detectordefined in Sect. 5).

Note that the completeness propertysst, does not re- o If n, > ny then consensusan be solved without stable

quire predicting the future (to determine if a process is unsta- ~ StorageusingoS. (which is weaker thanP).

ble), and so it does not force implementations to have anomarhis last result is somewhat surprising because wjth> n,

lous behaviors. To illustrate this, in Appendix B we give an a majority of processes may crash and completely lose their

implementation oS, for some models of partial synchrony: state (including the consensus values they may have previ-

this implementation ensures that if all processes are eventuallyusly proposed and/or decided). To illustrate this with a con-

up forever they will be eventually trusted forever. crete example, suppose= 10, n, = 3 andn; = 2. In this
Failure detectorS,, however, does not puny restric- case, up to 7 processes — more than half of the processes —

tion on how the bad processes view the system. In particulainay crash and lose their state, and yet consensus is solvable

the accuracy property allows unstable processes to repeatedfyith a failure detector that is weaker tha®. Prima facie

“suspect’all processe8.This is problematic because, in con- this seems to contradict the fact that if a majority of processes

trast to processes that permanently crash, unstable process@ay crash then consensus cannot be solved ever®ifB].

may continue to take steps, and so their incorrect suspicion$here is no contradiction, however, since [3] assumes that all

may prevent the progress of some algorithms. For exampleprocess crashes are permanent, while in our case some of the

in the rotating coordinator consensus algorithms of [3,4, 7] ifprocesses that crash do recover: even though they completely

a process kept suspecting all processes then consensus wouddt their state, they can still provide some help.

never be reached. What if stable storagis available? In this case, we show

2 In [4], crash-recovery is regarded as a special case of omissiof{1at consensus can be solved va8h),, provided that a major-
failures, and the algorithm is not designed to handle unstable prolty Of processes are good (this majority requirement is weaker
cesses that can send and receive messages to and from good pfBanna > ny). Note that if the good processes are not a ma-

e Strong AccuracySome good process is eventually trusted
forever by all goocand unstablgrocesses, and its epoch
number stops changing.

cesses. jority, then consensus cannot be solved even wikH3]J.
® In such a system, processes execute in synchronized rounds, and In addition to crashes and recoveries, the two consensus
all messages are received in the round they are sent. algorithms that we give (with and without stable storage) also

4 Intuitively, this is because an unstable process may fail to receivdoleratemessage lossggrovided that links are fair lossy, i.e.,
“l am alive” messages sent by other processes since all messages thtip sends messages to a good proegeisdinitely often, then
“arrive” at a process while it is down are lost. q receives messages frgmnfinitely often.

Failure detection and consensus in the crash-recovery model 101

1.3 Related work 2 Model

The problem of solving consensus with failure detectors inWWe consider asynchronous message-passing distributed sys-
systems where processes may recover from crashes was fitgims in which there are no timing assumptions. In particu-
addressed in [4] (with crash-recovery as a form of omissiornfar, we make no assumptions on the time it takes to deliver a
failures) and more recently studied in [10, 7]. message, or on relative process speeds. We assume that ev-
In [4,10, 7], the question of whether stable storage is al-€ry process is connected with every other process through a
ways necessary is not addressed, and all the algorithms us@mmunication link. Links can fail by intermittently dropping
stable storage: in [4,10], the entire state of the algorithm ismessages. A process can fail by crashing and it may subse-
recorded into stable storage at every state transition; in [7]duently recover. When a process crashes itloses all of its state.
only a small part of the state is recorded, and writing to stabld1owever, it may use local stable storage to save (and later re-
storage is done at most once per round. In this paper, we detelieve) parts of its state.
mine when stable storage is necessary, and give two matching We assume the existence of a discrete global clock — this
consensus algorithms — with and without stable storage. IS merely a fictional device to simplify the presentation and
the one that uses stable storage, only a small part of the staRfocesses do not have access to it. We take the rangehe
is recorded and this occurs twice per round. clock’s ticks to be the set of natural numbers.
The algorithms in [10, 7] use failure detectors that require
that unstable processes be eventually suspected forever. The)
algorithm in [4] is not designed to deal with unstable processe<-1 Processes and process failures

which may intermittently communicate with good ones. The system consists of a set ofprocesses/T — {1,2,

...,n}. Processes can crash and may subsequently recover.
A failure patternF' is a function from7 to 277, Intuitively,

F(t) denotes the set of processes that are not functioning at
. . .timet. We say procesgis up attimet (in F)if p ¢ F(t) and

We study the problems of failure detection and consensus in is down attime (in F)if p € F(¢). We say thap crashes at

asynchronous systems with process crashes and recoveri([%net if pis up at timef — 1 andp is down at time.5 We say

thatp recoversat timet > 1if p is down at timet — 1 andp

1. We show that the failure detectors that have been previlS UP at time/. A procesg can be classified (according £9

ously proposed for the crash-recovery model with unstam@salwa}/s-upeventually—upeventually—dowramdunstableas
processes have inherent drawbacks: Their completenes§''OWS:
requirement force implementations to have anomalous beajways-up: Procesg never crashes.

1.4 Summary of results

and lossy links.

haviors even in synchronous systems. . Eventually-up: Procegscrashes at least once, but there is a
2. We propose new failure detectors that avoid the above time after whichp is permanently up.
drawbacks. Eventually-down: There is a time after which procesis

3. We determine under what cpnditions stable storage isnec- permanently down.
essary to solve consensus in the crash-recovery model. ynstable: Procesp crashes and recovers infinitely many
4. We give two consensus algorithms that match these con- times.
ditions, one uses stable storage and the other does not.)] S
Both algorithms tolerate message losses, and are particu- A Process iggood (inF) if it is either always-up or even-
larly efficient in the runs that are most likely in practice tually-up. A process isad (in F') if it is not good (it is either
— those with no failures or failure detector mistakes. In €ventually-down or unstable). We denotejoyd (), bad (F)
such runs, consensus is achieved withirtime and with ~ @ndunstable(F") the set of good, bad and unstable processesin
4n messages, whetds the maximum message delay and F., respectively. Henceforth, we consider only failure patterns
n is the number of processes in the system. with at least one good process.

1.5 Roadmap 2.2 Failure detectors

h . ved foll del is ai ._Each process has access to a local failure detector module
The paper is organized as follows. Our model is given iny,4¢ hrovides (possibly incorrect) information about the failure
Sect. 2. In Sect. 3 we show that. existing failure dete_ctors fOhattern that occurs in an execution. A process can query its
the crash-recovery model have limitations, and then introducg, .o failure detector module at any time.failure detector

our new failure detectors, namebfS. andoS,. We define pisiory 7 with rangeR is a function fromiZ x T toR. H (p, ¢)

the Consensus problem in Sect. 4. In Sect. 5, we determing ihe output value of the failure detector module of progess
under yvhat condltlon_s CONSENSUS requires stable storage. Wene s A failure detecto is a function that maps each failure
then give two matching consensus algorithms: one does NQf,emp 10 a set of failure detector histories with range
require stable storage (Sect. 6), and the other uses stable st lihereR » denotes the range of the failure detector output of

age (Sect. 7). In Sect. 8, we briefly consider the performanceyy 1) denotes the set of possible failure detector histories
of these algorithms. The issue of repeated consensus is d'ﬁ'ermitted byD for the failure patterrF'.

cussed in Sect. 9. In Sect. 10, we show how to transfa$m
into ¢S,,. 5 We say thap crashes at time = 0 if p is down at timeD.

102 M.K. Aguilera et al.

2.3 Stable storage e No Creation If ¢ receives a message from p at timet,
thenp sentm to ¢ before timet.

When a process crashes, it loses all its volatile state, but wee Finite Duplication If p sends a message to ¢ only a

assume that when it recovers, it knows that it is recovering finite number of times, then receivesm from p only a

from a crash. Moreover, a process may use a stable storage finite number of times.

device to store and retrieve a set of variables. These two stable

storage operations cannot be executed atomically with certain Links may intermittently drop messages, but they must

other actions. For example, a process cannot store a variabftisfy the following fairness property:

in stable storage and then send a message or issue an external

output, in a single atomic step. The actions that a process can”

execute in an atomic step are detailed in the next section.

Fair Loss If p sends messages to a good procgss
infinite number of times, thepreceives messages frgm
an infinite number of times.

2.4 Runs of algorithms . _
2.6 Environments and problem solving

An algorithm A is a collection ofn. deterministic automata,

one for each process in the system. Computation proceeds ihhe correctness of an algorithm may depend on certain as-
atomicstepsof A. There are two types of stepsceash step ~ sumptions on the “environment”, e.g., the maximum number
and anormal step In acrash stepthe state of a process is 0f processes that may be bad. For example, a consensus algo-
changed to a specially designated state calledthsh state rithm may need the assumption that a majority of processes is
(thus the process “loses its state”). In@mal stepa process: good. Formally, anvironment is a set of failure patterns.

.) ,)) A problem P is defined by properties that sets of runs
1. Firstexecutesneofthe following actions, accordingtoits ., st satisfy. An algorithm! solves problenP using a fail-
state: (a) store a set of variables into local stable storagg, e getector in environmente if the set of all runsk —
(b) retrieve a set of variables from local stable storage,(F Hp,1,S,T) of A usingD where F' € ¢ satisfies the
(c) send amessage to some process, or (d) issue an eXte”ﬁﬁ‘Bper{ieé réquired byp.

6 . .
output:) LetC be aclass of failure detectors. An algoritbhsolves
2. Then it attempts to execuéach oneof the following ac- 4 problemP usingC in environment€ if for all D € C, A

tions: (a) receive a message from a process, (b) get afy|esp usingD in £. An algorithm implementg in envi-
external input, and (c) query its failure detector; ronments if it implements somé € C in &.
3. Finally, it changes state.

Aninitial configuration of algorithmA consists of the ini-
tial state of the automaton for each proceseuof algorithm 3 Failure detectors for the crash-recovery model
A using failure detectoD is a tupleR = (F, Hp, I, S,T)
whereF is a failure patternifp, € D(F) is a history of failure In this section, we first consider the failure detectors that
detectorD for failure patternF, I is an initial configuration of ~ were previously proposed for solving consensus in the crash-
A, S'is an infinite sequence of stepsAfandT is an infinite ~ recovery model, and then propose a new type of failure detec-
list of non-decreasing time values indicating when each stegor for this model.
in S occurs.
A run must satisfy the following properties: (1) a process
takes at most one step at each timé2) a process takes a 3.1 Limitations of existing failure detectors
normal step at timeonly if it is up att; (3) a process takes a
crash step at timeif and only if it crashes at, (4) agood pro- To solve consensus in the crash-recovery model, Oliediaa
cess takes an infinite number of normal steps; (5) if a procesELO] and Hurfinet al. [7] assume that processes have failure
p takes a step at timeand queries its failure detector, then it detectors that output lists of processes suspected to be bad,
obtainsHp(p,) as a response; (6) when a process retrieveg@ind that these failure detectors satisfy the following property:
a variable from stable storage, it obtains the last value that it .
stored for that variable (af if it never stored the variable). ~ ® Strong CompletenesBventually every bad process is per-
Note that if a processrecovers from a crash, its firststep ~ manently suspected by all good processes.
is from the special crash state. Since this state is differentfrom gince bad processes include unstable ones, enforcing this

all other stategy “knows” that it is recovering from a crash. requirement is problematic even siynchronousystems, as
we now explain. Consider a systefvin which processes take
steps at perfectly synchronized rounds. In each round, a pro-
cess is either up, in which case it sends a message to every
We consider links that do not create messages, or duplicatgrocess’ or down, in which case it does_ nothing in the round.
messages infinitely often. More precisely, each Rig- (F, In S at mostn, processes are unstablg, i.e., alternate between
Hp, I, S, T) must satisfy the following “link properties”. For being up and down infinitely then. Links do not lose mes-
all processes andg: sages, and all messages sentina rour_1d are recelved_at the end
of that round. In systerf, it is trivial to implement a failure

® Note that a process cannot both access the stable storage afiétector that is almost perfect: by suspecting every process

send a message (or issue an external output) in the same atomic stépom which no message was received in the current round,

2.5 Link properties

Failure detection and consensus in the crash-recovery model 103

each process suspects exactly every process that was downah length 0. GivenP;, by assumption we can find@-crash
this round. extensionF; in which all processes i crash and recover

Now suppose we want to implement$ha failure detec- at least one more time, such that in rR(F;) there is some
tor that satisfies Strong Completeness (and possitllythis procesy; € II \ G that trusts some procegse G infinitely
property). In Theorem 1, we show that any such implemen-often. Lett; be the length oF; and lett; . ; > ¢; be some time
tation has undesirable behaviors: in some executions whersuch that between timeésandt; ., in R(F;): (1) each process
all processes are good, some of them will eventually be susin G crashes and recovers at least once ang(®ustsp; at
pected forever. Note that these mistakes are entirely due to tHeast once. We defing . ; to be the prefix of; of lengtht; , ;.
above requirement oanstableprocesses, not to the lack of Define P := lim;_,», P;. Then in R(P), every process
synchrony. in G crashes an infinite number of times, no proces# il

G crashes, and some process/in\ G trusts some process

Theorem 1. LetZ be any implementation of a failure detec- in G an infinite number of times. This violates the Strong
tor that satisfies Strong CompletenessSinFor every set of Completeness property @t
processesr of size at most,,, there is a run ofZ in S such
that (a) all processes are good, but (b) eventually all processes

in G are permanently suspected by all processed iR G. 3.2 Failure detectors with epoch numbers

Intuitively, the main idea of the proof is as follows. Sup- Theorem 1 shows that if we require Strong Completeness then
pose a process crashes for a long time. Then at some time jncorrect suspicions are inevitable even in synchronous sys-
¢, to satisfy Strong Completeness, the implementafios tems. Although many algorithms are designed to tolerate such
forced to suspect (because no implementation can predict t5jjyre detector mistakes, the erroneous suspicions of some
whetheru will recover in the future). Suppose thatecovers 4o processes may hurt the performance of these algorithms.
after timet and stays up. I keeps suspectingforever, then £ example, the erroneous suspicions of good coordinators
this is a run in which a good process, namelys suspected cap, delay the termination of the consensus algorithms in [3, 4,
forever (as we want to show in the theorem). Suppose, instead 7] Thus, requiring Strong Completeness should be avoided
thatZ trustsu again at some later point. In this case, we can;s possible.
crashu again for a long time. By Strong Completenesss In this section, we propose a new type of failure detectors
again forced to suspeat Now u recovers again and stays Up, that are well-suited to the crash-recovery model: Although
and eithetZ keeps suspectingforever (this is aruninwhich ey do not require unstable processes to be eventually sus-
a good process is suspected forever), or it trusisagain. hacted forever, they do provide enough information to cope
We can repeat the above argument ad infinitum to obtain &itn unstable processes.
run in which (a)u crashes an_d recovers infinitely_ often (it is At each process, the output of such a failure detector
unstable) and (bY trustu an infinite number of times — & ¢onsists of two items, trustlist, epoch), wheretrustlistis a
violation of Strong Completeness. , set of processes amghochis a vector of integers indexed by

The proof of Theorem 1 follows immediately fromLemma the elements afustlist Intuitively, ¢ € trustlist if p believes
1 below. Not_e .that in the round—model of execution, the °”|ythatq is currently up, anckpochlq] is p's rough estimate of
“non-determinism” is due to possible process failures and thg, o\ many timeg crashed and recovered so far (it is called the
times at which they occur. Thus, for each fa|lure patterh epoch number of at p). Let H(p, t) denote the output of's
there is onlyonerun of Z in S, and we denote it bY2(F). fajlyre detector module at timelf ¢ € H (p, t). trustlist, we
A G-crash failure patterns a failure pattern in which only say thap trustsq at timet, otherwise we say thatsuspects
processes id- crash. q attimet.

We definecS, to be the class of failure detectafsthat

Lemma 1. For every setG of size at most,,, there is aG- satisfy the following properties:

crash failure pattern prefix° such that the following holds.
For everyG-crash extensiorf” of P in which all processes ¢ Monotonicity Atevery good process, eventually the epoch

in G crash and recover at least one more time, in R(F") numbers are nondecreasinylore precisely:
eventually all processes i@ are permanently suspected by
all processes if7 \ G. VE,YH € D(F),Vg € good(F),Vp € II,IT € T,

Vt,t' > T :[p e H(g,t).trustlist A
Proof. Let G be any set of sizg7| < n,,. Assume by contra- / , /
S)= ; € H(g,t').trustlist Nt < t'] =
diction that for everyG-crash failure pattern prefi®, there P (g, #).trustlis ,]
exists aGG-crash extensiod’ of P in which all processes in H(g,t).epochlp] < H(g,t’).epoch[p]

G crash and recover at least one more time, such that in fung Comp|etenes§or every bad procemnd for every good
R(F)thereis some proceps:= 11\ G thattrusts some process processy, either eventuallyy permanently suspectsor

p’ € G infinitely often. _ _ _ b's epoch number af is unbounded. More precisely:
We now constructinductively an increasing sequeiigeé
of failure pattern prefixes. Le®, be the failure pattern prefix VF,YH € D(F),Vb € bad(F),Vg € good(F) :

3T € T,Vt >T,b¢ H(g,t).trustlist] v
" In the round-modeb, a failure pattern indicates for each round

which processes are up and which ones are down; a process crashe& We require the monotonicity of epoch numbers to hold ewign-

in roundk, if itis up in roundk — 1 and down in round:; a process tually and only atgood processes so that the failure detector can be

recovers in round, if it is down in roundk — 1 and up in roundk. implementedvithout stable storage.

104 M.K. Aguilera et al.

VM € N,3t € T,b € H(g,t).trustlist A The above specification allows a process to decide more
H(g,t).epoch[b] > M] than once. However, with Agreement, a good process cannot
decide two different values. Similarly, with Uniform Agree-
e Accuracy For some good proceds and for every good ment, no process (whether good or bad) can decide two dif-
processg, eventuallyg permanently trustdC and K's ferent values.
epoch number af stops changing. More precisely: The algorithms that we provide solve uniform consensus,
VF,VH € D(F),3K € good(F),Yg € good(F), andvt/hhe lower boundshthat we provcta hotldb?ver][for consensus.
] o en processes have access to stable storage, a process
M eN,IT € TVt >T: K € H(g, 1) trustlist \ proposes, or decides, by writing v into corresponding local
H(g,t).epoch[K] = M stable storage locations. By checking these locations, a process

Asimple implementation afS, for some models of partial that recovers from a crash can determine whether it previously

synchrony is given in Appendix B. This implementation doesproposed (or decided) a value.

not have the limitations associated with Strong Completeness, When gr(cj)ceijses do not have access t?'stable s(tjorage, pro-
Moreover, it does not use stable storage. posing and deciding occur via an external input and output

Note thabS. imposes requirements only on the failure de- ﬁﬂEteawkne%ﬁ’e???hzz,wrr]s;oauglr OC?ES ;gggvgrrzgcciggggt ngfg
tector modules of good processes. In particular, the accura p Y prop '

property ofoS, allowsunstableprocesses to suspect all goodc¥hus it is clear that if stable storage is not available athd

L . cesses may crash and recover, consensus cannot be solved.
processes. This is problematic because unstable processes 1R Y

. S - . 1N many systems, however, it is reasonable to assume that
continue to take steps, and their incorrect suspicions may hin- . . o

P . P y In each execution of consensus there is a minimum number
der the progress of some algorithms. Thus, we extend the ac-,

curacy property so that it also applies to unstable processegf Iprotﬁessgs that dgant crash. In s.lécz systems, cgnssnsus
as follows: Sblvable without stable storage provided certain conditions are

met, as we will see next.
e Strong AccuracyFor some good procegs: (a) for every
good procesg, eventuallyy permanently trust& andK’'s
epoch number atstops changing; and (b) for every unsta- 5 On the necessity of stable storage for consensus

ble process;, eventually whenever is up,u trustsK and)) . N
K's epoch number at stops changing. More precisely: In this section, we determine some necessary conditions for

solving consensus without stable storage. Consider a system

VF,VH € D(F),3K € good(F) : [Vp € good(F), in which at leasty,, processes are always-up and at mast
dM e N,3T € T,Vt > T, € H(p,t).trustlist A are bad. Our first result is thatif, < n, thenitis impossible
H(p,t).epoch[K] = M] A Vu € unstable(F), to solve consensus without stable storage, even in systems

where there are no unstable processes, links are reliable, and

M EN,IT €T, vt > T u g F(t) = processes can use axentually perfect failure detectefP.

K € H(u,t).trustlist A H(u, t).epoch[K] = M] Informally, for the crash-recovery modeiP outputs a tag
The class of failure detectors that satisfy Monotonicity, € {AU, EU, UN, ED} for each process such that:
Completeness, and Strong Accuracy is denotggd For con- e There is a time after which at each process the tag of ev-
venience, we sometimes us8, or oS, to refer to an arbitrary ery process is AU, EU, UN, or ED iff p is always-up,
member of the corresponding class. eventually-up, unstable, or eventually-down, respectively.

oS, andoS,, are closely related: In Sect. 10 we show that
one can transformsS, into ¢S, provided that a majority of Note that-P is stronger than the other failure detectors in this
processes are good (this transformation does not require stabp@per and in [10, 7].

storage).)
ge) Theorem 2. If n, < n; consensus cannot be solved without

stable storage even in systems where there are no unstable
processes, links do not lose messages, and processes can use
oP.

With consensus, each process proposes a value and procesgess result is tight in the sense thatif, > n; then wecan

must reach a unanimous decision on one of the proposed vakyye consensus without stable storage using a failure detector
ues. The following properties must be satisfied: that is weaker thanP (see Sect. 6).

¢ Uniform Validity: If a process decidasthen some process The impossibility result of Theorem 2 assumes that pro-
previously proposed. cesses do not use any stable storage at all. Thus, if a process

o AgreementGood processes do not decide different values crashes it cannot “remember” its previous proposal and/or de-

o Termination If all good processes propose a value, thenCi?’ion value. Suppose s_tab_le storage is avail_able, but_to mini-
they all eventually decide. mize the cost of accessing it, we want to usaniy for storing

(and retrieving) the proposed and decision values, Is- n,
A stronger version of consensus, callatform consensy9], still necessary to solve consensus? It turns out that if 2,
requires: the answer is yes:

4 Consensus with crash-recovery

e Uniform AgreementProcesses do not decide different val- Theorem 3. Suppose that each process can use stable stor-
ues. age only for storing and retrieving its proposed and decision

Failure detection and consensus in the crash-recovery model 105

decide v’

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr ‘ ’—>
no steps taken : [
[f t
: making progress :
77777777777777777777777777777777777 ! !

b ! -

| | T \
| |
|| |
L) I
making progress | \

R R R R R LR —
: no steps taken :

G ST T
|

0 @ oo -
decide v: :

t t+'+1

Legend: 77777777
processis down

Fig. 1. A run constructed to prove Theorem 3

values. Ifn, < n;, andn, > 2 then consensus cannot be assignment of proposed values to processes, and-saiwl
solved even in systems where there are no unstable process&s, such that # v’ (this lemma uses the fact thag > 2).
links do not lose messages, and processes canfse We now prove Theorem 3 in detail.

Theorems 2 and 3 have similar proofs, and so we only,_, Consider a system with, < ny, n, > 2, and such that

give a detailed proof of Theorem 3 here. The main idea of thiinks QO not lose messages. Assume for a contradiction that
proof is as follows. For a contradiction, assume that there is here is a consensus a'_gof'thmthat (1) uses stable storage
consensus algorithm that does not use stable storage (exce?ﬂly_ for storing and retrieving its proposed and quISlon val-
for saving the proposed and decision values) and works fol'®S: and (2) uses fallure detectgP. Henceforth, in all runs .
ne < my andn, > 2. Let G be a subset of, processes. of A that we cor_15|(_jer, processes always propose a value in
Consider a run in which initially processesGhare very slow, 10,1} atthe beginning of the run.
i.e., they do not take steps for a while (see Fig. 1). From the
point of view of the other processes, all the processes in Definition 1. Let R be a set of runs afd. By the properties
could be bad, so eventually some proces®t in G decides ~ 0f consensus, in every run i, all good processes eventually
some valuev. Let ¢t be the time wherp decidesv, and let ~ decide the same value. We say tifais 0-valent (resp. 1-
G’ be a subset ofy, processes that contaipsand is disjoint ~ valen) ifin every runinR, the good processes decidgesp.
from G. Attimet, every process thatis not@or G’ crashes 1). We say thatr? is bivalentif 1 is neither0-valent nor1-
and recovers (i.e., it loses its intermediate state and restartglent, i.e.,R has a run in which the good processes decide
in a recovery state; at this point it “remembers” only its own and a run in which the good processes dedide
proposed value). Note that at timgrocesses not i’ do not
know about the decision valug(and processes ifi have not In the next definitions, let” be an assignment of proposed
taken any step yet). From timeall messages still in transitat values, one for each process, afigh, and Gyqq be disjoint
timet are delayed, and all the processe&irstop taking steps subsets of size,, of processes.
for a long time. From the point of view of processes natin
it could be that: (1) all the, processes iy’ are bad, (2) all the
processes not it or G’ are eventually up, and (3) all thg,
processes i are always up (this scenario is consistent with
the assumption that, < n;). Thus, the processes not
must decide without input fror6”, and in particular without
the knowledge that has decided. Let v’ be the decision of i i)
the processes not @' Note that in any run irR(V, Gpaq), processes ifiiy,q are

It remains to show that could be different from/ (a bad, and the other processes are always-up.
contradiction). Proving this is not simple because: (1) the pro-
cesses not ir; or G’ participate in the decision of both Definition 3. R(V, Gau, Gpaa) is defined to be the set of runs
andv’, (2) for both decisions, they propose the same value®f A such that (1) the value proposed by each process is given
(each process stores its proposed value in stable storage, ahgV'; (2) processes iid-;,,4 crash at the beginning and never
so when it recovers it proposes the same value), and (3) theecover; (3) processes i@, never crash; and (4) processes
processes not id' or G’ could be a (large) majority of the notinG,, U Gy.q crash at the beginning, recover right after-
processes. By Lemma 2, however, we can indeed find someards, and never crash again.

Definition 2. R(V, Gpaq) is defined to be the set of runs of
A such that (1) the value proposed by each process is given
by V; (2) processes itir,,4 Crash at the beginning and never
recover; and (3) processes notd#,,; never crash.

106

Note thatin any runiR(V, Gau, Gpad), Processes itv,,

are always-ug,processes i, are bad, and the other pro-

cesses are eventually-up.

M.K. Aguilera et al.

(2) all messages ever sent are received, (3) the failure detector
behaves perfectly, i.e., at every process the tag of processes in
G U G’ is AU and the tag of processes notGhu G’ is EU.

Note that-” is a run of A in which all processes are good.

Lemma 2. There existd” and d|S]0|nt subsets of processes Moreover,p decides andp/ decides)’ # v. This violates the

G and G’ of sizen, such that (1) in some run € R(V,G),
the first good process to decide is @f; (2) in some run

agreement property of consensusl
We now briefly outline the proof of Theorem 2. Let <

r'" € R(V,G, ("), the decision value of the good processesy, |f n, = 0 thenn, = 0 and it is easy to see that there can
is different from the decision value of the good processes in pe no consensus algorithm (since all processes may lose their

Proof. There aretwo cases. For thefirstcase, assume thatthe

isV and a set: of sizen,, such that?(V, G) is bivalent. Then,
for i = 0,1 we can find a rum; in R(V,G) in which good

roposed values by crashing at the beginning). Sajet 0.
sume for a contradiction that there is a consensus algorithm
A that does not use stable storage (and u$8s

processes decideletp; be the first good process to decide in Lemma 3. There exist§” and disjoint subsets of proces<gs

r; and letG’ be any subset of sizg, that is disjoint fromG and
containspy andp; . Letr’ be any run inR(V, G, G"). If good
processes im’ decide0, letr := ry; else letr := ry. Then
clearlyr andr’ satisfy conditions (1) and (2) of the lemma.
For the other case, assume that for everand every
setG of sizeny,, R(V,G) is either0-valent orl-valent. Let
G={n—-npy+1,...,n}.Fori =0,1,...,n, letV; be the

andG’ of sizen;, such that the decision value of good processes
in some runv € R(V, G) is different from the decision value
of good processes in some rine R(V, G, G").

Proof. The proof is similar to the proof of Lemma 2.

The rest of the proof of Theorem 2 uses Lemma 3 and other-
wise is similar to the proof of Theorem 3.

assignment of proposed values such that the proposed value

for processes, 2, ...,iis 1, and for processést 1, ..., n,
it is 0. Then clearlyR(Vp, G) is 0-valent. Moreover, for any

run in R(V,,_,,,G), all processes that ever take any steps

propose 1, s®k(V,_,,,G) is 1-valent. Therefore, for some
j €40,...,n—n, — 1} we have thai?(V}, G) is 0-valent
andR(Vj41,G) is 1-valent.

Letry € R(V;,G) andr; € R(V;11,G). Note that good
processes in, decide), and inr; good processes decitig-or
i = 0,1, letp; be the first good process to decide-jrand let
G’ be any subset of size, that is disjoint from& and contains
po, p1 andj + 1 (here we are using the fact that > 2). Note
that the only difference betwedr) andV_, is the proposed
value of procesg + 1. Moreover,j + 1 € G’, so that process
j + 1 never takes any steps in any runsi(V;, G, G’) or in
R(Vj41,G,G"). ThereforeR(V;,G,G') = R(V41,G, G").
Letr’" € R(V;,G,G"). If good processes i decide0, let
r:=r; andV := V,,4; otherwise, let := ro andV := V.
Then clearlyr andr’ satisfy conditions (1) and (2) of the
lemma.

Proof of Theorem 3 (Sketch)et V, G, G’, r andr’ be as in
Lemma2. Lep (respp’) be the first good process to decide in

6 Solving consensus without stable storage

It turns out that ifn, > ng, consensus can be solved without
stable storage usingS.. This is somewhat surprising since
n, > ny allows a majority of processes to crash (and thus
lose all their states). Note that the requirementgf> n,

is “tight”: in the previous section, we proved thatif < n,
consensus cannot be solved without stable storage even with
P, afailure detector that is stronger thasi..

The consensus algorithm that useS. is given in Ap-
pendix A. In this section, we present a more efficient algorithm
that uses a minor variant o8, denoteaS. . The only differ-
ence betweenS, andsS! is that while the accuracy property
of ¢S, requires thaf{ be agoodprocess (see Sect. 3.2), the
accuracy property oS, additionally requires thak’ be an
always-upprocess if such a process exists. It is worth noting
thatthe implementation efS. in Appendix B also implements
oS!

The consensus algorithm that we give here always satisfies
the Uniform Agreement and Validity properties of uniform
consensus for any choice of andn;, and ifn, > n; then it

(resps”), lett (respi’) be the time when this decision happens zlso satisfies the Termination property.

and letv (resp.v’) be the decision value. Than# +' and
p € G'. We now construct a new rutt of A as follows. The
proposed value of processes is giverihynitially processes
in G do not take any steps and processeq inG behave asin
runr. This goes on until timeé (whenp decidesy). Messages
sent and not received by timeare delayed until after time
t+t + 1. Attimet + 1, all processes i+’ stop taking steps,
and processes not i U G’ crash. At timet + 2, processes
notin G U G’ recover. Note that at time+ 2, the state of all
processes not i’ are as in runr’ at time 1 (this is because

This algorithm, shown in Fig. 2, is based on the rotat-
ing coordinator paradigm [3] and useS,. It must deal with
unstable processes and link failures. More importantly, since
more than half of the processes may crash and completely lose
their states, and then recover, it must use new mechanisms to
ensure the “locking” of the decision value (so that successive
coordinators do not decide differentB)We first explain how
the algorithm deals with unstable processes and link failures,
and then describe the algorithm and the new mechanisms for
locking the decision value.

processes could not use stable Storage to keep intermediate How does a rotating coordinator a|gorithm cope with an

states of the computation). From tirhe- 2 to timet +¢' + 1,
processes not i:’ behave as in rum’ from time 1 to ¢'.
Thus, at timet + ¢’ + 1, procesg’ decidesy’. After time

unstable coordinator? In [10, 7] the burden is entirely on the

10 The standard technique for locking a value is to ensure that a

t+t +1, (1) all processes take steps in a round-robin fashionmajority of processes “adopt” that value. This will not work here: a

® This is possible becaus€'u.| = ny > na.

majority of processes may crash and recover, aradl$be processes
that adopted a value may later forget the value they adopted.

Failure detection and consensus in the crash-recovery model

F

1
2

64
65
66
67
68
69
70
71
72

73
74
75

F

Or every process:
Initialization :

Ry, < 0; decisionvalue, < L;forall ¢ € IT \ {p} do amitmsg|q] < L

To s-send m to ¢:

if ¢ # p then zmitmsg[q] < m; sendm to ¢ elsesimulatereceivem from p

Task retransmit
repeat forever

forall g € IT \ {p} do if zmitmsg[q] # L then sendzmitmsg[q] to ¢

upon receivern from ¢ do
if m = RECOVERED then R, < R, U {¢}

if m = (decisionvalue, DECIDE) and decisionvalue, = L then
decisionvaluep, < decisionvalue; decide(decisionvalue,)
terminate task {skip.round 4phasesparticipant, coordinator, retransmit
if m # (—, DECIDE) and decisionvalue, # L then send(decisionvalue,, DECIDE) t0 ¢

{p proposes,, via an external input containing, }

upon propose(vp):

(rp, estimate,, tsp) < (1,vp,0); fork task {4phasesretransmit;

Task 4phases

¢p + (rp mod n) + 1; fork task {skip_round participant}

if p = ¢, then fork task coordinator

19 Task coordinator.
20 {Stage 1: PhaseEWROUND}

21 c-seq, < 0
22 repeat
23 PrevRy, < Rp; c_seq, < c-seq, + 1
2 s-send (rp, c_seq,,, NEWROUND) to all
2 wait until [received(ry, c_seq,,, estimate,,
2 tsq, ESTIMATE) from
27 max(ny + 1,n —ny, — |Rp|) processes |
28 until R, = PrevR,
29 t < largestts, such thap received
30 (7p, c-seq,, estimateq, tsq, ESTIMATE)
31 estimate, < select onesstimate, such that
32 p received(ry, c_seq,, estimatey, t, ESTIMATE)
33 tsp < 1p
. {Stage 2: PhaseEWESTIMATE}
35 c-seq, < 0
36 repeat
37 PrevRy < Rp; c_seq, < c-seq, + 1
38 s-send (7, c_seq,,, estimate,,
39 NEWESTIMATE) to all
40 wait until [received(rp, c_seq,,, ACK) from
a max(ny + 1,n —ny, — |Rp|) processes |
o until R, = PrevR,
a3 s-send (estimate,, DECIDE) to all

Task skip_round

d+ D,

if ¢, € d.trustlist \ R, then
repeatd’ + D,

42 Task participant

45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63

{Stage 1: PhasesTIMATE}
s-send (r,, WAKEUP) t0 ¢,
maz-seq, < 0
repeat
if received(r,, seq, NEWROUND) from ¢,,
for someseq > maz-seq,, then
s-send (rp, seq, estimatey, tsp, ESTIMATE) tO ¢,
mazx_seq, < seq
until [received(ry, seq, estimate.,, NEWESTIMATE)
from ¢, for someseq |
if p # ¢, then
(estimatey, tsp) < (estimatec,, rp)

{Stage 2: Phaseck}
maz_seq, < 0
repeat forever
if received(ry, seq, estimate.,, NEWESTIMATE)
from ¢, for someseq > maz_seq,, then
s-send (rp, seq, ACK) t0 ¢,
mar_seq, < seq

until [¢, & d'.trustlist \ Ry or d.epoch|cp] < d'.epoch|cy] Or received some message . . .) such that > r;,)]
{abort current roungl

terminate task {4phasesparticipant coordinator
repeatd < D, until d.trustlist \ R, # 0

rp < the smallest > r, such thaf(r mod n) + 1] € d.trustlist \ R, andr > max{r’| p received(r’,...)}
{go to a higher rounf

fork task 4phases
upon recovery.

decisionvalue, < L; forall g € IT \ {p} do zmitmsg[q] < L, fork task retransmit

s-send RECOVERED to all

ig. 2. Solving Consensus without Stable Storage usifify

{queryoS_}

{queryoS_}

{queryoSi}

107

108 M.K. Aguilera et al.

failure detector: it is postulated that every unstable procession, the coordinator of round can skip phas&EWROUND

is eventually suspected forever. In our algorithm, the failureand simply set its estimate to its own proposed value. We omit
detector is not required to suspect unstable processes: they ctnis optimization from the code.

be trusted as long as their epoch number increases from time The correctness of the algorithm relies on the following
to time — a requirement that is easy to enforce. If the epockcrucial property: if the coordinator sends a decision«fon
number of the current coordinator increases at a process, thsme round, then valuehas previously been “locked”, i.e.,
process simply abandons this coordinator and goes to anothér any later round, a coordinator can only choos#s its new
one. estimate. This property is ensured by two mechanisms: (1) the

To deal with the message loss problem, each prqekas coordinator usemax(n, + 1,n — ny — | R,|) as a threshold
ataskretransmitthat periodically retransmits the last messageto collect estimates andcks, and (2) the coordinator restarts
sent to each process (only the last message really matters, juie collection of estimates amadtks from scratch if it detects
asin [4,6,7]). This task is terminated onzéecides. a new recoveryR. # PrevR.).

We now describe the algorithm in more detail. When a The importance of mechanism (2) is illustrated in Fig. 3: it
process recovers from a crash, it stops participating in the alshows a bad scenario (a violation of the crucial property above)
gorithm, except that it periodically broadcastsmcOVERED that could occur if this mechanism is omitted. The system
message until it receives the decision value. When a processnsists of four processés, p,p’, ¢'}. Assume thaty, = 1
p receives ®&ECOVERED message fromg, it addsq to a set and there are at least, = 2 processes that are always up. At

R, of processes known to have recovered. point A, the coordinatoe of roundr sends its estimateto all,
Processes proceed in asynchronous rounds, each one camd atB, it receivesacks from itself andy. At F', p’ recovers
sisting of two stages. In the first stage, processes senaka- from a crash and sendk&@COVERED message to all. A%, ¢

UP message to the coordinatoso thatc can start the current has received oneECOVERED message fromp’ (so|R.| = 1)
round (if it has not done so yet). The coordinatbroadcastsa and twoAcCKs. Sincemax(n, + 1,n — np — |Re|]) = 2, ¢
NEWROUND message to announce a new round, and each prazompletes its collection ofcks (this is the maximum number
cess sends its current estimate of the decision value —togethef Acks thatc can wait for without fear of blocking), and
with a timestamp indicating in which round it was obtained — sends a decision fdr to all in roundr. Meanwhile, atC, p
toc. Thencwaits for estimates fromax (n,+1, n—np—| Re|) recovers from a crash and sendg=rovVERED message to all,
processes — this is the maximum number of estimates:that and¢’ receives this message befdbe At D, ¢’ becomes the
can wait for without fear of blocking forever, because more coordinator of round’ > r and sends BEEWROUND message
thann, processes are always-up and respond, and at mosb all. At F, ¢’ has received two estimates figrone from itself
ny + | R.| processes have crashed and do not respond. Theand one fronp'. Since it has also received ORECOVERED

¢ checks whether during the collection of estimates it de-message from, ¢’ completes its collection of estimates, and
tected the recovery of a process that never recovered beforghoosesl as its new estimate for round — even thoughe
(R. # PrevR.). If so, c restarts the first stage from scraféh. sends a decision fd@rin an earlier round.

Otherwise¢ chooses the estimate with the largest timestamp The proof of the algorithm shows that mechanism (2) pre-
as its new estimate and proceeds to the second stage. vents this and other similar bad scenarios. In this example, if
In the second stage,broadcasts its new estimate; when ¢ had used mechanism (2), thenGait would have restarted
a process receives this estimate, it changes its own estimatbe collection ofacks from scratch becaus@revR,. = () #

and sends anck to c. Process waits forack messages from {p'} = R..1?

1,n—ny—|R.|) processes. As beforerestarts this . ' . .
max(ny+1,n =5 —|Re|) P : Theorem 4. The algorithm of Fig. 2 satisfies the Uniform Va-

stage from scratch if during the collectionafks it detected ' . . ;
the recovery of a process that never recovered befre4 lidity and Uniform Agreement properties of uniform consen-
sus. If at mosty, processes are bad, and more thappro-

PrevR.). Finallyc broadcasts its estimate as the decision valu . - L
and decides accordingly. Once a process decides, it entersc§SSes are always up, then it also satisfies the Termination

passive state in which, upon receipt of a message, the proceBEPEmY.
responds with the decision value. The proof follows.
A roundr can be interrupted by taskip.round (which
runs in parallel with tasksoordinatorandparticipant): apro- ~ Definition 4. We say thap is in roundr at timet if p does
cessp aborts its execution of roundif (1) it suspects the co- not crash by time and the value of variable, at timet is r.
ordinatore of roundr, or (2) it trustsc but detects an increase A proces$ starts round- whenp assigns- to variabler,.
in the epoch number af, or (3) it detects a recovery of or
(4) it receives a message from a rouid> r. Whenp aborts
roundr, it jumps to the lowest round’ > r such that (1p
trusts the coordinatar’ of roundr’, (2) p has not detected a Proof. Trivial. O
recovery ofc’ (¢ ¢ R,) and (3)p has not (yet) received any _)
message with a round number higher than Lemma 5. Suppose thgt in some roumdthe coordmator;
The code in lines 31-33 is executed atomically, i.e., it can-S-S€nds (est, DECIDE) in line 43. In every round” > r, if

not be interrupted, except by a crash. As an obvious optimiza%ﬂe coc;rdinatt(l)rc’ selects a new estimate valag’ in line 31,
enest = est’.

Lemma 4 (Uniform Validity). If a process decides then
some process previously proposed

1 An obvious optimization is for: to checkduring the collection 12 1t is not sufficient to use the restarting mechanism only for col-
of estimatesvhetherR. # PrevR.. If so it can restart the first stage lectingacks: a symmetric example shows that this mechanism must
right away. also be used for collecting estimates.

Failure detection and consensus in the crash-recovery model

109

Remarks:
- ¢ is the coordinator in round r; ¢’ is the coordinator in round r'>r

- A: ¢ sends (r, 0, NEWESTIMATE) to all - E: ¢’ received (r’, 1, ts, ESTIMATE) from c’ and p’,

- B: c received (r, ACK) from c and p
- C: p sends RECOVERED to all
- D: ¢’ sends (r', NEWROUND) to all

Legend:
.

message sent and received

Fig. 3. A bad scenario that can occur if mechanism (2) is not used

Proof. The proof is by induction on the round numbérThe
claim trivially holds forr’ = r. Now assume that the claim
holds for allr’, » < v’ < k. Letc’ be the coordinator of round
k. We will show that the claim holds for’ = k, i.e., if ¢/
selects a new estimate valaet’ in line 31 in roundk, then
est’ = est.

Sincec s-sends (est, DECIDE) in line 43 in roundr, ¢

and ¢’ selects 1 as the new estimate
- F: p’ sends RECOVERED to all
- G: ¢ sends (0, DECIDE) to all

—

message sent but delayed for a long time

process is down

Note that (2)|A| > ny + 1 (this is due to the guard in
line 40). We now showthatNR 4 = (). By the previous claim,
if a proces® € R4 thenp crashes before startss-sending
(r, seqy4, est, NEWESTIMATE), Which happens before any
process-sends (r, seq 4, ACK) to c. Sop crashes before any
processs-sends (r, seq4, ACK) to c. Since after a process
crashes (and recovers) it camsend only RECOVERED Of

executes the wait statement in line 40 only finitely often in DECIDE messages, it follows that¢ A. Thus,AN R = 0.

roundr. Similarly, sincec’ executes line 31 in round, ¢’

So,|A U R4l = |A| + |R4|. By the threshold used to

executes the wait statement in line 25 only finitely often in collectacks in lines 40-41, we haved| > max(n, +1,n —

roundk. Thus the following definitions are valid:

e seq 4, the value ofc_seq, just afterc executes the wait
statement in line 40 for the last time in round

A, the subset of processes from whichas receivedr,
seq 4, ACK) by the timec exits the wait statement in line 40
for the last time in round.

R 4, the value of seR, just afterc executes the wait state-
ment in line 40 for the last time in round

seq g, the value ofc_seq,, just afterc’ executes the wait
statement in line 25 for the last time in rouhd

FE, the subset of processes from whichhas received
messages of the fornk(seqy, *, *, ESTIMATE) by the
time ¢’ exits the wait statement in line 25 for the last time
in roundk.

Rpg, the value of sefR., just afterc’ executes the wait
statement in line 25 for the last time in rouhd

We first claim that (1) processesiity crash before starts
s-sending (r, seq 4, est, NEWESTIMATE) t0 any process in
roundr (line 38). Indeed, just after executes line 40 for the
lasttimeinround, we havethak 4 = R. (by the definition of
Ra) andR. = PrevR. (by the condition in line 42). There-
fore, PrevR. = R4. But all processes iPrevR,. crashed
beforec startss-sending (r, seq 4, est, NEWESTIMATE). SO
the claim follows.

ny — |Ral), and thus (3)AU Ra| > n — ny,.

By analogous arguments we can show thatf4)> n,+1
and (5)|F U Rg| > n — np.

We now show thatr N A # 0. Suppose, for contradiction,
thatE N A = (). By (3) and (4), we havé& N (AU R4) # 0.
SinceENA =0, wehaveEN Ry # . Letp € EN Ra4.
Clearly, ¢ startss-sending (k, seqr, NEWROUND) to pro-
cesses befonpereceives such amessage, which happens before
p S-sends a message of the forrh,(seq z, *, *, ESTIMATE) to
¢ (p s-sends such message becayse FE), which happens
beforep crashes (since after a process crashes and recovers, it
cans-send only RECOVERED Of DECIDE messages), which
happens before startss-sending (r, seq 4, est, NEWESTI-
MATE) to processes (this follows from the fact that R 4 and
Claim (1)). From all this, we conclude thdtstartss-sending
(k, seqr, NEWROUND) beforec startss-sending (r, seq 4,
est, NEWESTIMATE).

By (2) and (5), we haved N (F U Rg) # . By an ar-
gument analogous to the above one, we can conclude that
c startss-sending (r, seq 4, est, NEWESTIMATE) beforec¢’
startss-sending (k, seq;, NEWROUND). This is a contradic-
tion. Hence, we conclude thatn A # 0.

Letp € E N A. By the definition ofA, p s-sends (r,
seq 4, ACK) to c in roundr. Before doing sop updatess,, to

110

r (line 33 or 56). By the definition of’, for someest” and
ts”, ps-sends (k, seqp, est”, ts”, ESTIMATE) to ¢’ in line 51
in roundk. Sincek > r and the value ofs,, is nondecreasing,
we havets” > r. Moreover, it is easy to see thetdoes not
receive any messages of the forkn, *, ts, ESTIMATE) with
ts > k. So, the timestampthatc’ selects in line 29 in round

M.K. Aguilera et al.

roundr; when it executes line 71 in round . This implies
thatr,” = r:indeed, ifr; < r thenp does not select rou

in line 71; instead, it selects a round number that is at most
since (a)p trusts the coordinatak” of roundr (by (3) and the
definitions ofI’ andK), and (b)K ¢ R, (sincekK is always-
up), and (cp does not receive any messages of a round higher

kis such that < ¢ < k. Letq be the process whose estimate thanr (sincep is the first process to start a round higher than

value est’ is selected in line 31 in round. Then in round
k, g s-sends (k, seq, est’, t, ESTIMATE). We claim that in
roundt, ¢ updatesestimate, to est’ in line 31 or 56. Indeed,
in round¢, ¢ updatesestimate, to some valueest”” andgq
updatess, to t. After that,q does not changestimate, and
ts, before round: (because otherwise in rourd ¢s, would
be different from¢ andq would nots-sends (k, seq g, est’, t,
ESTIMATE)). Thereforeest’ = est’”.

Sinceg updatesstimate,, to est’ in roundt (line 31 or 56),
it is easy to see that the coordinator of rourgklectsest’ as

r). Sor, = r. By (3), p starts round- after time7". By (1)
and the definition of" and K, while p is in roundr, condition
K € d.trustlist \ R, in line 66 evaluates to true and condition
(K & d'.trustlist \ R, or d.epoch[K| < d'.epoch[K]) in
line 68 always evaluates to false. Sincstarts a round higher
thanr, it does not loop forever in lines 67—68. peventually
receives a message of a round higher thavhile in round

r. This contradicts the fact thatis the first process to start a
round higher tham. O

the new estimate value in line 31. By the induction hypothesisPéefinition 5. We say thaan always-up procegs blocks in

we haveest’ = est. This shows the induction step

Lemma 6. If processes: and ¢’ s-send (est, DECIDE) and
(est’, DECIDE) in line 43 in rounds- andr’, respectively, then
est = est’.

Proof. Assume without loss of generality thet > r. Since
line 43 is executed only by the coordinaterandc’ are the
coordinators of roundsandr’, respectively. Sincé s-sends
(est’, DECIDE) in line 43 in round, ¢’ selectsest’ in line 31.
By Lemma 5,est = est’. O

Lemma 7 (Uniform Agreement). No two processes decide
differently.

Proof. Suppose that processeandy’ decide on valuesst
andest’, respectively. Procegsdecidesest in line 11 after re-
ceiving messaggest, DECIDE). By a simple induction, some
process must hav@sent messagéest, DECIDE) in line 43.
Similarly, procesg’ decidesest’ in line 11, and so some pro-
cess must have-sent messagéest’, DECIDE) in line 43. By
Lemma 6,est = est’. 0O

Lemma 8. A process can start only finitely many rounds.

roundr if p starts round- butp does not start a higher round,
andp never decides.

Lemma 9. If an always-up processblocks in round-, then
in this round its skipround task loops forever in lines 67—68.

Proof. Clearly, whilep is in roundr, its taskskip.roundmust
loop forever in lines 67—68 or in line 70 (otherwigestarts
a round higher tham). By the Accuracy property 0¢S., p
eventually trusts some always-up procefsrever. Moreover
¢ ¢ R, sincec never crashes. Sp cannot loop forever in
line 70. Therefore loops forever in lines 67—68.0

Lemma 10. Suppose an always-up procgsgproposes but
never decides. I receives a message of roungdthen even-
tually p starts some round’ > r.

Proof. In order to obtain a contradiction, suppose thaever
starts any round’ > r. Sincep proposesp starts some round
(namely, round). Sincep does not decidey blocks in some
roundr” < r. By Lemma 9, while in round” theskip.round
task ofp loops forever in lines 67—68. Sinpaeceives a mes-
sage of round, p eventually exits the loop in lines 67—-68 —
a contradiction. O

Proof. In order to obtain a contradiction, suppose that there

are processes that start infinitely many rounds 2 be the set

Definition 6. We say that an eventually-up procesabilizes

of all such processes? contains only always-up processes, at timet if it recovers at timg and does not crash afterwards.
since a process that crashes does not start any rounds eJBy convention, we say that an always-up process stabilizes at

again (even if it recovers). For any proces& P and any
roundr > 1, p eventually starts a round higher tharLetr;

be the lowest round higher tharthatp starts and let,; be
the highest round lower than or equaktthatp starts. Then
1<r, <r<rf.

By the Accuracy property o$S., we can find a tim&’
and an always-up procegs such that aftefl’, K is never
suspected by any good process and the epoch numiéadf
every good process stops changing.

Letr be around such that (X is the coordinator of round
r,and (2) no process iff \ P starts a round higher thanand
(3) foreveryp € P,pstartsround, aftertimeT". Such round
clearly exists because processediin, P start only finitely
many rounds and processegHrstart infinitely many rounds.

Let p be the first process to start a round higher than
By (2), p € P and by the definition of andr;f, p selects

timeO0.

Lemma 11. Supposep and ¢ are good processes. If (I)
s-sendsm to g after p stabilizes, (2)n is the last message
s-sendsto ¢, and (3)p does not decide afterstabilizes, then
q receivesn from p infinitely often.

Proof. By (1), (2) and (3)p sendsm to ¢ infinitely often in
taskretransmit(line 7). By the Fair Loss property of links,
receives messages framinfinitely often. Note thain is the
only message thatsends tg; infinitely often: this is because
(1) in taskretransmit p eventually sends no message different
from m to ¢, and (2) outside tastetransmit p can only send
messages of the forifx, DECIDE) (line 13); however, such
messages are sent only finitely often sipagoes not decide
after p stabilizes. Therefore, by the No Creation and Finite
Duplication properties of links; receives fromp only finitely

Failure detection and consensus in the crash-recovery model

many messages different from. Sinceq receives messages
from p infinitely often, it follows thatq receivesm from p
infinitely often. O

Lemma 12. Suppose andq are good processes.jfdecides

after p stabilizes ang receives nomECIDE messages from
g an infinite number of times, then eventuallgecides after

q stabilizes.

Proof. After p stabilizes and decides, every timeeceives a
NonDECIDE message from, p sends aECIDE message tq
(line 13). Therefore sendsDECIDE messages tg infinitely
often. Moreover, this is the only message thatends tog
infinitely often (since aftep decides, it terminates all tasks).
By the link properties, this implies that receivesSDECIDE
messages from infinitely often. Thus, eventually decides
afterq stabilizes. O

Lemma 13. If an always-up procesg blocks in a roundr,
then the coordinatoe of this round is also an always-up pro-
cess. Moreover, if # ¢ thenc receives messages of round
from p infinitely often.

Proof. Note that ifp = ¢ then the lemma holds trivially. So
assume that # c. We first prove that is a good process. In
order to obtain a contradiction, suppose thé bad. By the
Completeness and Monotonicity propertiessf, eventually
eitherc is suspected by forever, or the epoch number of
atp is nondecreasing and unbounded. Therefore, in raynd
p eventually exits the loop in lines 67—68. This contradicts
Lemma 9. Sa is a good process.

We now claim that receives messages of rountrom p
infinitely often. To show the claim, first note that in rounc
s-sends at least one messa@e WAKEUP) to c. If p s-sends
only finitely many messages in roundthen letmn be the last
message s-sends toc. By Lemma 11¢receives this message
from p infinitely often and this shows the claim.gfs-sends
infinitely many messages in round thenp sends infinitely
many messages of roundo c. Moreoverp sends only finitely
many messages that are not of rounthis is because (1) in
taskretransmit p eventually sends only messages of round
r, and (2) outside tasketransmit p can only send messages

of the form (%, DECIDE), and such messages are never sent

sincep never decides. By the link properties, this implies that
c receives messages of roundrom p infinitely often. This
shows the claim.

We now prove that is an always-up process. In order
to obtain a contradiction, suppose that an eventually-up
process. Ifc decides after: stabilizes then by Lemma 12
eventually decides, and this contradicts the assumptiopthat
blocksinround-. Soc does not decide aftesstabilizes. Then
s-sends aRECOVERED message tpafterc stabilizes, and this
is the last messages-sends top. By Lemma 11p eventually
receives this message and adtisR,,. So eventually condition
c & d'.trustlist \ R, inline 68 is true. Therefore, in round
p’'s skip.-roundtask cannot loop forever in lines 67—68. This
contradicts Lemma 9. Heneds an always-up process.

O

Lemma 14. If the coordinatore of roundr is always-up and
blocks in roundr, thenc waits forever at line 25 or 40.

111

Proof. Sincec is the coordinator of round andc blocks in
roundr, c loops forever in lines 22—-28 or 36—42, because
otherwiseq s-sends a DECIDE message to itself (line 43)
and then decides (line 11). Since g&tis finite andc never
removes any process froi., eventually conditionR, =
PrevR. in lines 28 or 42 is always true. Thereforewaits
forever at line 25 or 40. O

Lemma 15. Suppose every always-up process proposes. If
some good procegalecides aftep stabilizes, then eventually
every good procesgdecides after stabilizes.

Proof. In order to obtain a contradiction, suppose that every
always-up process proposes and some good prpassdes
afterp stabilizes, but there is some good proceskat does
not decide afteq stabilizes. Let) be the set of good processes
q such thaty does not decide afterstabilizes.

We first claim that) contains only always-up processes.
In order to obtain a contradiction, suppose that) for some
eventually-up procesg Then afterg stabilizesg s-sends a
RECOVERED message to all processes, and in particular to pro-
cesp. This is the last messages-sends top. By Lemma 11,

p receiveRECOVERED messages from infinitely often. By
Lemma 124 eventually decides after stabilizes. This con-
tradicts the assumption thatc Q.

So @ contains only always-up processes. By Lemma 8,
for everyq € @, ¢ can start only finitely many rounds. Since
g proposesy blocks in some round,. Letr = max{r, | ¢ €
Q}, and letg € @ be a process that blocks in round

e Case l:q is the coordinator of round. By Lemma 14,
q waits forever at line 25 or 40. Beforgwaits forever, it
s-sends a nonPECIDE message t@ (line 24 or 38). By
Lemma 11,p receives this message infinitely often. By
Lemma 12,q eventually decides after stabilizes. This
contradicts the fact thate Q.

Case 2:q is not the coordinator of round. Let ¢ # ¢
be the coordinator of round. By Lemma 13,c is an
always-up process andreceives messages of round
from ¢ infinitely often. If ¢ decides aftee stabilizes, then
by Lemma 124 decides afteq stabilizes and this contra-
dicts the fact tha €). Soc does not decide afterstabi-
lizes. Since: is always-up¢ never decides. By Lemma 10,
eventuallyc starts a round’ > r. Sincec € @, by the
definition of r, we have that’ < r. Thusr’ = r and so
¢ blocks in roundr. By Case 1¢ eventually decides — a
contradiction. O

Henceforth, assume that at mast processes are bad, and
more tham,, processes are always up.

Lemma 16. If every always-up process proposes avalue, then
eventually some always-up process decides.

Proof. In order to obtain a contradiction, suppose that no
always-up process decides. By Lemma 8, every always-up
processp can start only finitely many rounds. Singepro-
posesp blocks in some round,. Let r max{r, | pis
always-ug and letp be an always-up process that blocks in
roundr.

e Case lpis the coordinator of round.
By Lemma 14 p waits forever at line 25 or 40.

112 M.K. Aguilera et al.

e Case 1.1p waits forever at line 25. Thusr’ = r and soc blocks in roundr. In Case 1, we
Let seq be the value ofc_seq, whenp waits forever at showed that the coordinator of roundloes not block in
line 25. roundr — a contradiction. O

We first show that for every always-up procesgventu- o
ally p receives £, seq, estimate,, ts,, ESTIMATE) from Corollary 1 (Termination). If all good processes propose a
q. Proces® s-sends (r, seq, NEWROUND) t0 ¢ (line 24) value, then they all eventually decitfe.

beforep waits forever at line 25. We claim thatreceives

this message from andq eventually starts roung. In- Proof. By Lemmata 15 and 16.00

deed, if¢ = p, thenp receives this message from itself
(line 4) andp starts round- by definition. If¢ # p, then

(r, seq, NEWROUND) is the last message s-sends to

q. By Lemma 114 eventually receives this message. By
Lemma 104 eventually starts a round > r. By the def-
inition of r, we have that’ < r. Thusr’ = r and soq
starts round-.

Process; cannot receive alEWESTIMATE message of
roundr fromp, because waits forever atline 25 and never
S-SendSNEWESTIMATE messages. Sothe guardinline 53
is always false. Thugloops forever in lines 48-53. Since
eventuallygq receives £, seq, NEWROUND) from p and
seq > 0 is the largest value of variableseq,, in roundr,
eventuallyg s-sends (r, seq, estimateg, tsq, ESTIMATE)
top (line 51) and setsaz _seq,, t0 seq (line 52). We claim
thatp eventually receives this message fronindeed, if

q = p, thenp receives this message from itself (line 4).
If ¢ # p, then ¢, seq, estimatey, tsq, ESTIMATE) is the
last message s-sends top. By Lemma 11p eventually
receives this message framTherefore for every always-
up procesg, eventuallyp receivest, seq, estimateg, tsq,
ESTIMATE) from q.

Since there are more than, processes that are always
up, eventuallyp receives £, seq, estimateq, tsq, ESTI-
MATE) from at leask;, + 1 processes. Moreover, for every
eventually-up procesg, ¢ does not decide after stabi-
lizes, otherwise by Lemma 15 every always-up proces
decides. After; stabilizesg s-sends aRECOVERED mes-
sage to all (line 75). By Lemma 14,eventually receives
this message from. Whenp receives this message from
g, p addsy to setR,, (line 9). So eventually?, contains all
eventually-up processes. Since at megtprocesses are
bad, eventually the number of always-up processes is
leastn — ny, — |R,|. Therefore, eventually receives {,
seq, estimatey, tsq, ESTIMATE) from atleasi—ny — | R,|

Proof of Theorem 4mmediate from Lemmata 4 and 7, and
Corollary 1. O

7 Solving consensus with stable storage

We now present a consensus algorithm that uses stable storage
andoS,,. It requires a majority of good processes and works

in systems with lossy links. If the good processes are not a
majority, a majority of processes may crash permanently, and
S0 consensus cannot be solved even wiRtand reliable links

[3]. Note that requiring a majority of good processes is weaker
thanrequiringz, > ny, andthisis where having stable storage
pays off.

The basic structure of the algorithm (given in Fig. 4) is as
in [3,4] and consists of rounds of 4 phases each @ablases

In each round, initially the coordinator: broadcasts aEw-
ROUND message to announce a new round, and each process
sends its current estimate of the decision value — together
with a timestamp indicating in which round it was obtained
— to ¢; ¢ waits until it obtains estimates from a majority of
processes; it selects one with the largest timestamp and sends
itto all processes; every process that receives this new estimate
updates its estimate and timestamp accordingly, and sends an
acknowledgement te; when ¢ receives this acknowledge-
Jnent from a majority of processes, it sends its estimate as the
decision to all processes and then it decides. Once a process
decides, it stops tasképhasesandretransmit and enters a
passive state in which, upon receipt of a message, the process
responds with the decision value.

A roundr can be interrupted by taskip.round (which
Juns in parallel with tasksoordinatorandparticipant): a pro-
cessp aborts its execution of roundif (1) it suspects the co-
ordinatorc of roundr, or (2) it trustsc but detects an increase
81 the epoch number af or (3) it receives a message from a
roundr’ > r. Whenp aborts round-, it jumps to the lowest
« Case 1.2 waits forever at line 40. roundr’ > r such thatp trusts the coordinator of round

Let seq be the value ofc_seq, whenp waits forever at ﬂ%dr?e??ﬁ;rgf (vet) received any message with a round number
line 40. Ineachround, a procegaccessesthe stable storage twice:
t to store the current round number, and later to store the
new estimate and its corresponding timestamp. Upon recov-
ery, p reads the stable storage to restore its round number,
estimate, and timestamp, and then restarts 4aslasewith
these values.

Note that in round 1, the coordinateican simply set its
estimate to itsown proposed value and skip the phase used
to select a new estimate (PhasewRrOUND). It is also easy
to see that the coordinator does not have to store its round

p cannot wait forever at line2— a contradiction.

By an argument analogous to the one in Case 1.1, W?.
can show that: (1) for every always-up proces® re- Irs
ceives(r, seq, ACK) fromg; (2) eventuallyR, contains all
eventually-up processes. Therefore, since at mpgro-
cesses are bad, and more thgiprocesses are always up,
preceivegr, seq, ACK) frommax(ny +1,n —np — | R,|)
processes. Henge cannot wait forever at line 40 — a
contradiction.

e Case 2 is not the coordinator of round.
Let ¢ # p be the coordinator of round By Lemma 13¢
is an always-up process andeceives messages of round 13 | fact, itis clear that the following stronger property holds: if all
r fromp infinitely often. By Lemma 10; eventually starts always-up processes propose, then every good process decides after
around-’ > r. By the definition ofr, we have that’ < r. it stabilizes.

Failure detection and consensus in the crash-recovery model 113

For every process:

1

42
43
44
45
46
47
48
49
50

51
52
53
54
55
56

57
58
59
60
61
62

Initialization :

forall ¢ € IT \ {p} do zmitmsg|q] < L
To s-send m to ¢:

if ¢ # p then zmitmsg[q] < m; sendm to ¢ elsesimulatereceivem from p
Task retransmit

repeat forever

forall g € IT \ {p} do if zmitmsg[q] # L then sendzmitmsg[q] to ¢

upon propose(vp): {p proposes;, by writing it into stable storage

(rp, estimatey, tsp) < (1,vp,0)

fork task {4phasesretransmit
Task 4phases

store {rp}; ¢p < (rp mod n) + 1; fork task {skip_round participant}

if p = ¢, then fork task coordinator

14 Task coordinator a1 Task participant

15 {PhaseNEWROUND} 2 {Phase&sTIMATE}

16 if tsp # rp then 33 if tsp # rp then

17 s-send (rp, NEWROUND) to all 34 s-send (rp, estimatey, tsp, ESTIMATE) tO ¢p
18 wait until [received(r,, estimateq, tsq, 35 wait until [received(r,, estimate.,,

10 ESTIMATE) from [(n + 1)/2] processes] s NEWESTIMATE) from ¢,]

20 t + largestts, such thap received 37 if p # ¢, then

21 (rp, estimateq, tsq, ESTIMATE) 38 (estimatey, tsp) < (estimate.,,rp)
22 estimate, < select onesstimate, such that se store { estimate,, tsp}

2 p received(r,, estimateq, t, ESTIMATE)

24 tsp < Tp

2 store { estimate,, tsp}

26 {PhaseNEWESTIMATE } w0 {Phasenck}

27 s-send (rp, estimate,, NEWESTIMATE) to all a1 s-send (rp, ACK) t0 ¢,

wait until [received(r,, ACK) from
[(n+1)/2] processes]
s-send (estimatep, DECIDE) to all

Task skip.round
d <+ Dp {queryoS. }
if ¢, € d.trustlist then
repeatd’ < D, {querysS.,.}
until [¢, &€ d'.trustlist or d.epoch[cpy] < d'.epoch[c,] or received some message . ..) such that >,]
terminate task {4phasesparticipant coordinator; {abort current roungd
repeatd < D, until d.trustlist # ({querysS, to go to a higher round

rp < the smallest > r,, such tha{(r mod n) + 1] € d.trustlist andr > max{r’| p received(r’,...)}
fork task 4phases

upon receivem from ¢ do

if m = (estimate, DECIDE) and decide(—) has not occurrethen {check stable storage abaigcide}
decide(estimate) {decide is logged into stable storage
terminate task {skip_round, 4phasesparticipant coordinator, retransmit

if m # (—, DECIDE) and decide(estimate) has occurrethen {check stable storage abaigcide}

send(estimate, DECIDE) t0 ¢

upon recovery.
forall ¢ € IT \ {p} do zmitmsgq] < L
if propose(v,) has occurreénd decide(—) has not occurrethen {check stable storage abqubpose anddecide }
retrieve {r,, estimatep, tsp}
if r, = L thenr, < 1;if estimate, = L then (estimate,, tsp) < (vp,0)
fork task {4phasesretransmit

Fig. 4. Solving Consensus with Stable Storage usif§g

114 M.K. Aguilera et al.

number in stable storage in this case. We omit these obviou8 Repeated consensus
optimizations from the code.
The following regions of code are executed atomically:
lines 22—-25 and 38-39. In Sects. 6 and 7, and Appendix A, we give algorithms that
]] o) solve a single instance of consensus. This is appropriate for
Theorem 5. The algorithm of Fig. 4 satisfies the Uniform Va- settings where for each instance of consensus, a distinct set of
lidity and Uniform Agreement properties of uniform consen-processes is created to execute it (for example, an application
sus. If a majority of processes are good then it also satisfiesnay spawn a new set of processes for each consensus that it
the Termination property. wants to do). In other settings, it is necessary forshmeset
. - of processes to execute repeated (and concurrent) instances of
The proof of this theorem has a similar structure as theygnsensus. We now describe how to modify our algorithms to
proof of Theorem 4, and is given in Appendix C. handle this case.
To separate the multiple instances of consensus, each in-
stance must have a unique identifier, and all proposals, deci-

8 Performance of the consensus algorithms sions, and messages associated with a particular instance of
) o consensus are tagged with the corresponding identifier. This
8.1 Time and message complexity in nice runs is the only change necessary for the consensus algorithm that

uses stable storage (shown in Fig. 4 in Sect. 7).
We analyze the complexity of our algorithms with the op- For the algorithms that do not use stable storage (Fig. 2
timization in which, in round 1, the coordinator chooses itsin Sect. 6 and Fig. 6 in Appendix A), we can also apply the
own estimate and sends it without waiting for estimates fromabove modification, except th&lECOVERED messages are
other processes. In most executions of consensus in practicgot tagged with instance identifiers (such messages cannot be
no process crashes or recovers, no message is lost, the fajhgged since a process that recovers has lost all its state). In
ure detector does not make mistakes, and message delaygginciple, this modification still works, but in this case the
bounded by some known(including the message processing resulting algorithms are not practical because of the following
times). In such “nice” executions, our two algorithms (with reasons.
and without stable storage) achieve consensus withirit A process that recovers from a crash stops participating in
takes onej for the coordinator to broadcasEWESTIMATE all subsequent instances of consensus. For a long-lived appli-
messages, onefor processes to respond witlvks, and an- cation this is impractical, since every process is likely to crash
other ¢ for the coordinator to broadcastzCIDE messages. and recover at least once during the life of the application, and
By adding appropriate delays in thetransmittask, so thata so eventually no process will remain to run new instances of
message is retransmitted oglytime units after itis sent, pro- consensus. Moreover, when a process recovers from a crash,
cesses send a total 6fn — 1) messages: in the algorithm of it repeatedly sendsmECOVERED message to get the decision
Sect. 6, there are — 1 messages for each @fAKEUP, NEW- values that it may have “missed” while it was down. When a
ESTIMATE, ACK, andDECIDE; in the algorithm of Sect. 7, process receives such amessage, it repliesaliithe decision
there aren — 1 messages for each of the typesriMATE, values that it knows — this is also impractical.
NEWESTIMATE, ACK, andDECIDE. To solve the above problems, we now assume that stable

In contrast, in nice executions the consensus algorithms Of;torage is available, but each process usenlit to store its

[10,7] reach decision withiad and withO(n*) messages. So, proposals and decisions (processes do not use it to store any in-
compared to our algorithms, they gain ohé the decision termediate state, and so, by Theorem 3, solving consensus still
time, at the cost of increasing the message complexity frontequires that,, > n;). When a process recovers from a crash,
O(n) to O(n®). Roughly speaking, this is achieved by dis- itfirst checks its stable storage to determine which instances of
tributing the task of collecting.ck’s: in our algorithms, the consensus it was executing when it crashed, i.e., the instances
ACK's are sent to the coordinator who counts whether thergor which it proposed a value but did not yet decide. Then, for
are enough of them to sendacipE to all (this take4 and each such instandg it sends & ECOVERED message tagged
O(n) messages), while in [10, 7] everyk is broadcasttoall with 7, and stops participating ih With such messages, each
processes: each process can then do the counting and decidipghcesg can now maintain a sazf) of processes that it knows
by itself (this takes oné andO(n*) messages). to have crashed and recoverellile executing instancg and

itusesk/ instead ofR,,. R! is initialized to the empty setwhen

p proposes a value for instanéeand is updated every time
8.2 Quiescence p receives &RECOVERED message tagged with Finally, if

a process receivesrECOVERED message tagged withand
An algorithm isquiescenif eventually all processes stop send- knows the decision value of instantghen it replies with this
ing messages [1]. It is clear that no consensus algorithm cadecision value.
be quiescent in the presence of unstable processes (each time With these modifications, a process that crashes and re-
such a process recovers, it must be sent the decision valuepvers can participate in subsequent instances of consensus.
at which point it may crash again and lose this message; thiMoreover, the algorithm no longer requires that at legst 1
scenario can be repeated infinitely often). If no process is unprocesses be always up throughout the lifetime of the system.
stable, our consensus algorithms are quiescent despite procdsstead, it is sufficient that fazach instancé of consensysat
crashes and message losses (provided all good processes pleastn;, + 1 processes remain up from the time they propose
pose a value). a value for (to the time they all decide).

Failure detection and consensus in the crash-recovery model

10 Transforming oS, into ¢S,

Figure 5 shows an algorithm to transfofne oS, into D’ €

115

Lemma 17 (Monotonicity). At every good process, eventu-
ally the D’-epoch numbers are nondecreasing.

08,1 This transformation works in any asynchronous systemProof. Clear because, after a good procgsstabilizes, for
with crash and recoveries, provided a majority of processes arevery process, epoch, [¢] can only be incremented.O

good. It does not require any stable storage.
Recall that bottD andD’ require the existence of a good
process(such thafs is eventually trusted forever by all good

Lemma 18. For every good procesg, eventuallyg perma-
nentlyD’-trusts K.

processes anfi’’'s epoch number at all good processes stops

increasing. The difference betwe@&hand D’ is that, while
D allows unstable processes to susp€abr to keep increas-
ing K’s epoch numberD’ requires all unstable processes to
eventually trustK’ forever and to stop increasing'’s epoch
number.

We now explain the main ideas of the algorithm. The out-

Proof. Suppose for a contradiction thatD’-suspects in-
finitely often. Good processes send messagesgitdinitely
often, so by the Fair Loss property of linkgreceives mes-
sages from good processes infinitely often. Thusxecutes
line 17 infinitely often as well. Whegpexecutes line 17, iD’-
suspectdy precisely if there is a majority of processgsuch

put of D’ consists of a trustlist, and epoch numbers for eacHhatlatesty[q] # L andK & latest[q].trustlist. Since there

process on that list. The algorithm maintains the trustlist'of
as follows. At each procegsinitially and every timep recov-
ers, the trustlist of includes all processes. Procegemoves

a process from it®’-trustlist only if it finds out that a major-
ity of processe®-suspect this process. With this scheme, if a
processX is D-trusted by all the good processes, thenvill

be D’-trusted byp — even ifp is unstable — as required by
D' € 98,.

How does maintain an epoch number for each processin
its D’-trustlist? A naive approach would be foto increment
the D’-epoch number of a procegsevery timep finds out
that theD-epoch number of has increased at a majority of
processes. But this does not work, as we now explainulLet
be an unstable process. Suppose that:(d)good processes
D-suspectu, (b) n/4 + 1 good processe®-trust u while
continually increasing it$-epoch number, and (c) all other

processes have crashed permanently. In this case: (1) there S

no majority thatD-suspects, and (2) there is no majority that
D-trustsu and increments it$-epoch number. From (1), a
good procesp keepsD’-trustingu (see previous paragraph).
From (2) and the naive way of generating theepoch num-
bers, theD’-epoch number af atp stops changing. Sokeeps
D’-trustingu and stops increasing if8’-epoch number — a
violation of the Completeness property®f € ©S,,.

To overcome this problemp,increases th®’-epoch num-
ber of a process every time it finds out that the number of
processes that “dislike] is a majority; a procesdislikesq if
it D-suspectg or it D-trustsq but increases it®-epoch num-
ber. This scheme ensures thatfeepoch number of keeps
on increasing. This also ensures thatTeepoch number of
K stops changing.

In the algorithmp stores inlatest, [¢] the latest output of
D thatp received frony (it is initialized to).

Theorem 6. If a majority of processes are good, then the al-
gorithm in Fig. 5 transformsS, into ¢S,,.

We now proceed with the proof. Assume that a majority
of processes are good. Throughout this proof debe some
process such that eventually: (K)is permanentiyD-trusted
by all good processes and (2) tReepoch number ok” at each
good process stops changing. The existené¢€igfguaranteed
by the accuracy property @ € oS..

14 As explained in [3], a transformation algorith#f,_,»» uses
failure detectorD to maintain at each procepsa variableD,, that
emulates the output @b’ atp.

is a majority of good processes, every time thatxecutes
line 17 andD’-suspectd(, there is some good procegsuch
that K & latest,[q]. trustlist. Thus, for some good procegs
K ¢ latest,[q].trustlist holds infinitely often.

Sincey is good, eventually is permanentlyD-trusted by
g. Then, by the No Creation and Finite Duplication properties
of links, eventuallyy receives no messagg from g with K ¢
dq.trustlist. Sinceg receives an infinite number of messages
from ¢, eventuallyK € latest,[q].trustlist holds forever —
a contradiction. O

Lemma 19. For every unstable process eventually when-
everu is up,u D’-trusts K.

Proof. Suppose for a contradiction thatD’-suspectsK in-
finitely often. Every time. recoversy setsD,,.trustlist to I1,
gpd so sincer D’-suspectd(infinitely often, it must execute
line 17 infinitely often as well. Whemn executes line 17, it
D’-suspectds precisely if there is a majority of processes
such thatatest, [q] # L andK & latest,[q].trustlist. Since
there is a majority of good processes, every time theke-
cutes line 17 an®’-suspectds, there is some good process
such thatatest,[q] # L andK ¢ latest,[q]. trustlist. Thus,
for some good process (1) latest,[q] # L and (2)K ¢
latest, [q].trustlist hold infinitely often.

Whenu recovers, it sethitest,, [¢] to L and, since (1) holds
infinitely often, v must setlatest,[¢] to a non-L value in-
finitely often. Sou receives messages frapinfinitely often.
Sinceq is good, eventually is permanentlyD-trusted by
q. Then, by the No Creation and Finite Duplication proper-
ties of links, eventually: receives no messagdsrom ¢ with
K & d.trustlist. Sinceu receives messages framnfinitely
often, eventuallyk™ € latest,[q].trustlist holds forever. This
contradicts the fact that (2) holds infinitely often

Lemma 20. For every good or unstable processeventually
K’s epoch number gt stops changing.

Proof. Suppose for a contradiction thits epoch number at
never stops changing. Theincrementspoch,,[K]inline 15
infinitely often. So,|dislike,[K]| > n/2 holds infinitely of-
ten, anddislike, [K] is reset td) infinitely often. This implies
that there exists a majority/ of processes such that for every
q € M, p infinitely often receives a valug, from ¢ such that
either (1)K & d,.trustlist or (2) (latesty[q] # L andK €
latest,[q].trustlist andd,.epoch[K] > latest,[q|.epoch[K]).

116 M.K. Aguilera et al.

1 For every procesg:

2 Initialization and upon recovery:
3 D,,.trustlist < IT
4 forall ¢ € IT do
5 Dy,.epoch[q] < 0; epoch,,[q] < 0; dislike,[q] < 0; latest,[q] < L
6 repeat forever
7 dp < Dy {queryD}
8 sendd,, to all processes
9 upon received, from ¢ do
10 for all » € IT do
1 if r & dg.trustlist or (latesty[q] # L and r € latest,(q|.trustlist and dq.epoch[r] > latest,|q].epoch|r])

{p determines if; dislikesr (i.e., ¢ does notD-trustr or ¢ increased thé®-epoch number of)}
12 then dislike,[r] < dislikep[r] U {q}
13 if |dislikey[r]| > n/2 then {if a majority dislikesr, p increases th®’-epoch number of }
1 dislikep[r] < 0
15 epoch,,[r] + epoch,[r] + 1
16 latestp(q] < dg
17 Dy, trustlist < {s : |{r : latest,[r] # L and s ¢ latestp|r].trustlist}| < n/2}

{outputD’-trust list: p D’-trusts all the processes that are fibsuspected by a majority

18 for all r € D,,.trustlist do
19 Dj,.epoch[r] < epoch,,[r] {outputD’-epoch numbeis

Fig. 5. TransformingD € ¢S, into D’ € ¢S,

Since a majority of processes is good, there exists a good pray, g receives messages frogh infinitely often, so it exe-
cessy € M. By the No Creation and Finite Duplication prop- cutes line 11 infinitely often as well. So, by Lemma 21,
erties of the linksg infinitely often sends a valu&, such that is added into setlislike,[b] an infinite number of times in
either (1) or (2) holds. This implies that eithgrD-suspects line 12. By the assumption that a majority of processes are
K infinitely often or theD-epoch number ok atg increases good, |dislike,y[b]| > n/2 evaluates to true infinitely often
infinitely often. Sincey is a good process, this contradicts the and thusepoch, ,[b] grows unboundedly. O

definition of K. O)
Lemma 23. For each good procesg either (1) eventually

Henceforth, Ieib. bp a fixed t_)ad process. The Complete- permanentlyD’-suspects: or (2) the D’-epoch number of
ness and Monotonicity properties of. guarantees that for 4t is unbounded.

each good procesgeither (1) eventuallyy permanentlyD-

suspects; or (2) eventually theéD-epoch number ofatgis Proof. Let g be any good process and suppose that (1) does
nondecreasing and unbounded. not hold. Thereforg D’-trustsb an infinite number of times.
Every timeg D’-trustsb, it sets theD’-epoch number of to

Lemma 21. For every good processesandg, line 11 evalu-
y900CP psandy epoch,,[b]. The result now follows from Lemma 22.

ates to true infinitely often far = b.

Proof. First note that line 11 is executed an infinite number Proof of Theorem 6The Monotonicity property oD’ follows

of times sincep receives messages froginfinitely often from Lemma 17. Strong Accuracy follows from Lemmata 18,

(this follows from the Fair Loss property of links). Suppose 19 and 20. Completeness follows from Lemma 281

that conditionb ¢ d,,.trustlist does not hold infinitely often.

Then eventuallyp € d,.trustlist holds forever. So, eventu-

ally all failure detector values thatreceives fromy contain ~ A. Solving consensus without stable storage usingsS,

b in its trustlist. Sincep eventually stops crashing, eventu-

ally conditionsiatesty[q] # L andb € latesty[q|.trustlist Figure 6 shows the algorithm that solves consensus without

are always true. Moreover, by the No Creation and Finitestable storage usingsS, (it is less efficient than the one that

Duplication properties of linksy infinitely often sends fail- useseS. in Sect. 6). This algorithm always satisfies the Uni-

ure detector values containirigin its trustlist. Therefore; form Agreement and Validity properties of uniform consensus,

D-trustsb infinitely often. By the Completeness and Mono- and if the number of processes that are always up is more than

tonicity properties ofS,, eventually theD-epoch number ny, then it also satisfies the Termination property.

of b at ¢ is nondecreasing and unbounded. This implies that In each round:, each process starts by repeatedly send-

dg.epoch[b] > latest,[q].epoch[b] evaluates to true in line 11 ing its estimate to the current coordinato(this estimate is

an infinite number of times. O called thek-suggestion 0f). Whenc receives &-suggestion,

Lemma 22. For every good process epoch, [b] is unboun- it responds with théirst k-suggestion tha}t it receivgq. Process

ded. p waits for a response fro_m the coordinator until it suspects
¢ or detects an increase in the epoch numbet.df p re-

Proof. Let ¢y, be the time after whicly does not crash. Af- ceives a response fromit updates its estimate to that value.

ter to, epoch[b] is nondecreasing. For every good processThen,p sets itsreport[k] variable to its current estimate —

Failure detection and consensus in the crash-recovery model 117

For proces:

1 Initialization :

2 rp < 0; Ry 0

3 forall ¢ € N do

4 report, [i] <= L; proposal [i] <= L; coord_estp[i] < L

5 upon propose(vp): {p proposes, via an external input containing, }
6 repeat forever

7 rp—rp+1

8 ¢p < (rp mod n) +1

9 repeat send(rp, vp, SUGGESTION) 10 ¢,

10 until [for somew receive(rp, w, ESTIMATE) from ¢, or suspect, or epoch number aof, increases]
1 if for somew receive(r,, w, ESTIMATE) from ¢, then v, + w

12 report,, [rp] < vp

13 RV p[rp] + collect(REPORT)

14 if for somew, RV ,[ry] = {w} then proposal,, [rp] < w elseproposal [rp] < A

15 PV y[rp] « collect(PROPOSAL)

16 if for somew # A\, w € PV ,[r,] thenv, < w

17 if for somew # A, PV ,[rp] = {w} then decide(w)

18 procedure colleci(valtypg

19 seq, <0

20 repeat

21 PrevRy, < Rp; seq,, < seq, + 1

2 repeat send(ry, seq,,, valtype, REQUEST) to all

23 until [received messages of the foiim,, seq,,, *, valtype) from max(ny, + 1,1 — ny — | Rp|) processes |
2 until R, = PrevR,

2 return ({ v : received(ry, seq,,, v, valtype) })

26 UPON receiveRECOVERED from ¢ do
27 Ry, < Ry, U{q}
28 UpoON receive(rq, vq, SUGGESTION) from ¢ do

29 if coord_estp[rq] = L then coord_estp|rq] < vgq

30 send(rq, coord_esty[rq], ESTIMATE) t0 ¢

a1 Upon receive(ry, seq,, REPORT, REQUEST) from ¢ do

32 if report,[rq] # L then send(ry, seq,, report,,[rq], REPORT) tO ¢

s UpON receive(ry, seq,, PROPOSAL, REQUEST) from ¢ do

34 if proposal,[rq] # L then send(ry, seq,, proposal,[rq], PROPOSAL) tO ¢

35 UpON recovery.
36 forall < € N do

a7 report ,[i] < L; proposal,[i] <= L; coord_esty[i] + L
38 repeat forever
39 SendRECOVERED to all

Fig. 6. Solving Consensus without Stable Storage usifig

this is thek-report of p. After this, p collects thek-reports of so. When a procegsreceives &ECOVERED message from

other processes (the collect procedure is explained below). Ifome procesg, it addsg to a setR, of processes known to

all the collectedk-reports are for theamevalue, therp sets have recovered.

its proposal[k] variable to that value; otherwisg,sets it to To collectk-reports, a process invokes procedureol-

the special valueX” (which cannot be one of the proposed lect(REPORT). In this procedurep repeatedly sends requests

values) — this is thé:-proposal ofp. Then,p collects the for the k-reports of other processes; when a process receives

k-proposals of other processesstimecollectedk-proposal such a request, it sends backiktseport if it is different from

w is different from), thenp sets its estimate ta (we will L. After p has received-reports frommax(n, + 1,n —n, —

show that it cannot collect two distinétproposals different |R,|) processes, it checks whether during the collection of

from \). Moreover, ifall collectedk-proposals are fow, p k-reports it detected the recovery of a process that never re-

decidesw. covered beforeR, # PrevR,). If so, p restarts the collec-
When a process recovers from a crash, it stops participation of k-reports from scratch; elsg,returns from procedure

ing in the algorithm except that: (1) it periodically broadcasts acollect(REPORT). Proces® collectsk-proposals in a similar

RECOVERED message, and (2) if asked to act as the coordinaway.

tor for some round (by receiving anr-suggestion) it will do

118

To illustrate the main ideas of the algorithm, we made

two simplifications. First, we did not require that gbod

M.K. Aguilera et al.

Clearly, to show thaRV ,[k] N RV ,[k] # 0, it is suffi-
cient to show tha®, N P, # (. We first claim that (1) pro-

processes decide: infact, this algorithm only guarantees that ajesses irﬁp crash before starts sendingk{ s,, REPORT,
always-upprocesses eventually decide. Second, we assume@eqQuesT) to any process in rounk (line 22). Indeed, when

that links satisfy the followinger-Message Fair Logwoperty
(instead of thdair Lossproperty of Sect. 2.5): if a procegs
sends a message to a good procesgan infinite number of
times, theny receivesn from p an infinite number of time&

We later remove these two simplifications by modifying the
algorithm so that: (1) allgood processes eventually decide (an
eventually stop executing the algorithm), and (2) the algorithm
works with links that satisfy the Fair Loss property of Sect. 2.5.

Theorem 7. The algorithm of Fig. 6 satisfies the Uniform Va-

lidity and Uniform Agreement properties of uniform consen-

sus. Moreover, suppose that at magt processes are bad,

p executes line 24 for the last time during its invocation of
collect(REPORT) in round k, we have that?, = R, (by
the definition ofR,) andR, = PrevR,, (by the condition in
line 24). ThereforePrevR, = R,. All processes inPrevR,,
rash beforg starts sendingy, s,,, REPORT, REQUEST), and
o0 the claim follows.

Note that (2)|P,| > n, + 1 (this is due to the guard in
line 23). We now show thaP, N R, = 0. Letp’ € R,. By
the previous claimyp’ crashes beforg starts sendingk s,
REPORT, REQUEST). This happens before any process sends
(k, sp, *, REPORT) to p. Sop’ crashes before any process

more thann, processes are always up, and links satisfy theSends &, s, *, REPORT) to p. Since after a process crashes
Per-Message Fair Loss property. If all always-up processed@nd recovers) it does not seRdrORT messages, it follows

propose a value, then they all eventually decide.
The proof follows.

Definition 7. We say thap is in roundr at timet if p does
not crash by time and the value of variable, at timet is
r. A process starts round- whenp sets variabler, to r in
line 7. Proces® reaches the end of roumdf p completes the
execution of the loop in lines 7-17 in round

Definition 8. We say thap k-reportsv if it setsreport , [k] to
vinline 12 in roundk. Similarly, we say thap k-proposes
if it setsproposal,,[k] to v in line 14.

Definition 9. We say thatp completes the collection of-
reportsif it returns from the invocation ofollect(REPORT)
and setsRV k] to the return value in line 13 in rounkl Sim-
ilarly, we say thap completes the collection @fproposalsf
it returns from the invocation afollect(PROPOSAL) and sets
PV ,|k] to the return value in line 15 in rounkl.

Lemma 24 (Uniform Validity). If a process decides then
some process previously proposed

Proof. A simple but tedious induction shows that the vari-
ablew, of any procesgp is always set to some value that was

previously proposed by some process. Moreover, clearly th

decision value is the value of variahlg of some procesg at
some time.

Lemma 25. For any processeg andq that complete the col-
lection ofk-reports RV ,[k] N RV ,[k] # 0.

Proof. For any procesg that completes the collection &f
reports,p invokescollect(REPORT) and returns from this in-
vocation. During this invocation, consider the time when
executes line 24 for the last time, and at this time let:

® s, be the value oeq,);
e P, be the subset of processes from whijchas received
(k, sp, *, REPORT);

e R}, the value of seR,,.

thatp’ ¢ P,. Thus,P, N R, = 0.

So,|P, U R,| = |P,| + |R,|. By the threshold in line 23,
we haveg P,| > max(ny+1,n—n,—|R,|), and thus (3)P,U
Ep\ >n—nyg.

By the same argument, we have (#),| > n, + 1 and
(5)|P,UR,| > n—mny.

Now suppose, in order to obtain a contradiction, tHan
P, = 0. By (3) and (4), we hav#’, N (P, U R,) # (. Since
P,NP, = 0,wehaveP,NR, # (. Letp’ € P,NR,,.Clearlyg
starts sendingy, s,, REPORT, REQUEST) to processes before
p’ receives such a message, which happens bgfaends a
message of the formk(s,, *, REPORT) to ¢ (p’ sends such
message becaugé € F,), which happens beforg’ crashes
(since after a process crashes and recovers, it does not send
REPORT messages), which happens befostarts sending
sp, REPORT, REQUEST) to processes (this follows from the
fact thatp’ € R, and Claim (1)). From all this, we conclude
thatg starts sendingy, s,, REPORT, REQUEST) beforep starts
sending g, sp, REPORT, REQUEST).

By (2) and (5), we have’, N (P, UR,) # (. By an
argument analogous to the one above, we can conclude that
p starts sendingk(s,, REPORT, REQUEST) beforegq starts
sending , s, REPORT, REQUEST). This is a contradiction.

é—|ence, we conclude th&, N P, # 0.

Lemma 26. If p andq k-proposev # X andv’ #)\, respec-
tively, themnv = o',

Proof. If p k-proposesy # A, thenp setsproposal,,[k] to v

inline 14. ThusRV ,[k] = {v}. Similarly we haveRV ,[k] =

{v'}. By Lemma 25,RV ,[k] N RV 4[k] # 0. Thereforep =
!/

v.

Lemma 27. If p completes the collection éfproposals, then
PV ,[k] contains at most one value different from

Proof. In order to obtain a contradiction, suppose that this is
not true, i.e., there exist # X andv’ # X such that # v’
andv, v’ € PV ,[k|. Every value inPV , (k] is k-proposed by
some process, so there exist procegseslg’ thatk-propose
andv’, respectively. By Lemma 26,= v’ — a contradiction.

15 The Fair Loss and Per-Message Fair Loss properties of links are

called Weak Loss Limitation and Strong Loss Limitation, respec-

tively, in [8].

Lemma 28. For any processeg andq that complete the col-
lection ofk-proposals,PV ,[k] N PV ,[k] # 0.

Failure detection and consensus in the crash-recovery model 119

Proof. This proof is similar to the proof of Lemma 25. Thus eventually the guard in line 10 is true gndoes not

.) loop forever in lines 9-10. Seis a good process. Process
Lemma 29. If in round k some procesp decidesy, then all sendg, v, sucaEsTION) tocinfinitely often (line 9). By the
processeg that reach the end of rounki set variablev, tov per-Message Fair Loss propertyeceives this message from
in line 16. Moreover, ify decides” in roundk thenv = v’ p infinitely often. Sincer is a good process, there is a tite

Proof. Since in round: p decidess, thenv # A and PV, [k] after whichc does not crash. After timgevery time: receives
. , »

= {v}. For every procesg that reaches the end of round (k, vp, SUGGESTION) fromp, c sends the same messdgeuw,

k, g completes the collection of-proposals, and thus by ESTIMATE) 0 p. Soc sends(k:,w? ESTIMATE) 10 p infinitely

Lemma 28p € PV ,[k]. By Lemma 27y is the only value in ofien. By the Per-Message Fair Loss propeptgventually

PV [k] different frgm)\, soq sets variabley, to v in line 16. receives this message. Therefgsajoes not loop forever in

Moreover, since € PV ,[k], if ¢ decidesy’ thenv = v'. lines 9-D — a contradiction.

Lemma 34. If all always-up processésreport a value, then

Lemma 30. If all processe that reach the end of round eventually they alk-propose a value.

set variablev, to v in line 16, then all processes thét + 1)-
report a value(k + 1)-reportuv. Proof. In order to obtain an contradiction, suppose that all
always-up processésreportavalue, butthere is an always-up
proces® that neverk-proposes any value. $onever returns
from the invocation ofollect(REPORT) in roundk. Process
p loops forever either in lines 20—24 or 22-23. Since3gt

Lemma 31. If all processes that-report a valuek-reportthe 1S finite andp never removes any process frdep, eventually
same value, then all processesthat reach the end of round conditionR, = PrevR, in lines 24 is always true. Therefore,

Proof. This is clear from the fact that every valgg + 1)-
reported is the value of variablg, at the end of round for
some procesg.

k set variablev. to v in line 16 and decide. ploops forever in lines 22—-23. Thus for some valygp sends
v (k, sp, REPORT, REQUEST) to all processes infinitely often.
Proof. First note that processes canroteport A, because For every always-up procegs by the Per-Message Fair

no proces9 can set its variable, to A at any time. If all ~ Loss propertyg receives k, s,, REPORT, REQUEST) from p
processes thatreport a valué-report the same valug then infinitely often. Sincey k-reports a value, there is a timafter
for all processep that complete the collection dfreports, ~ whichreport [k] = w for somew # L. So after time, every
RV ,[k] = {v}. Thus all processes thatpropose a valué- time q receives k, s,, REPORT, REQUEST) from p, ¢ sends
propose the same value Therefore, for all processesthat (%, s,, w, REPORT) to p (line 32). Thusg sends(k, s,, w,
complete the collection df-proposalsPV ,[k] = {v}. Since REPORT) to p infinitely often. By the Per-Message Fair Loss
v #), all processesthat reach the end of rourtcset variable property, eventually receives &, s,, w, REPORT) from q.
vp tow in line 16 and decide. Therefore eventuallyreceives messages of the fofhy s,,, *,

)) REPORT) from all always-up processes. Since more than
Lemma 32 (Uniform Agreement).No two processes decide processes are always up, eventupltgceives messages of the
differently. form (k, s,,, *, REPORT) from at leasty, + 1 processes.

For every eventually-up procegsit is clear that even-
tually p receives & ECOVERED message frong, since after
¢’s last recoveryy sendsRECOVERED messages to all pro-
cesses infinitely often. Therefore, eventuaily contains all
eventually-up processes. Since there are at mpsgad pro-
cesses, eventually the number of always-up processes is at
leastn —ny, — | R, |. Therefore eventually receives messages
of the form(k, s,,, *, REPORT) from at leastn — ny — |R,|

Proof. Suppose procegsdecidesy in roundk and process
decides’ in roundk’. We show that = v'.

Assume without loss of generality that< &'. If k =
k', thenv’ = v by Lemma 29. Now suppose < k’. By
Lemma 29, all processes that reach the end of rounk
set variablev,, to v in line 16. By Lemma 30, all processes
that(k + 1)-report a valuék + 1)-reportv. By Lemma 31, alll
processeg’ that reach the end of rourkdt-1 set variable,, to processes
vinline 16 and decide. By repeatedly applying Lemmata 30 ' .
and 31, we conclude that all processes that reach the end of Hence, ?ventuallyf recel\lles messages of the fo(f s,,
round &’ decidev. Sinceq reaches the end of rourid, it . REPORT) from max(ny, + 1,n — n, — | 1},|) processes, so
decidesy in roundk’. and Sou — v’ the guard in line 23 is true. Therefor_e procgsioes not loop

' forever in lines 22-2 — a contradiction.

Henceforth assume that at mosgt processes are bad, more
thann, processes are always up, and links satisfy the Per
Message Fair Loss property.

Lemma 35. Ifall always-up processédspropose avalue then
eventually they all reach the end of rouhd

Proof. Similar to the proof of Lemma 34.
Lemma 33. If an always-up process starts a roundk, then P

eventually itk-reports a value. Corollary 2. If all always-up processes propose, then for ev-

_ . eryk € {1,2,3,...}, eventually they all reach the end of
Proof. In order to obtain a contradiction, suppose fhaever 514,

k-reports any value. Thep loops forever in lines 9-10 in

roundk. Let ¢ be the coordinator of round. If c is a bad Proof. If all always-up processes propose, they all start round
process, then according to the Monotonicity and Completenest. Lemmata 33, 34 and 35 show that if all always-up processes
property ofS,, either eventually permanently suspector startarounda then eventually they all reach the end of round

the epoch number afat p is nondecreasing and unbounded. thus, they all start roung+ 1. The proof follows by induction.

120 M.K. Aguilera et al.

Lemma 36. There exists a round such that all processes different active message, and so on. The problem arises when
that k-report a valuek-report the same value. p repeatedly sends an active messagg tehile ¢ repeatedly
_ sends another active messaget&very timep receives the

Proof. Choose a timd” such that (1) all processes that are gctive message from p replies with a passive message, and
not always-up have crashed at least once by fim¢2) all yjce-versa. Thus; repeatedly sends both an active and a pas-
good processes remain up forever after tifeand (3) for sjye message tg and vice-versa. With the Fair Loss property,
some good process for every good process after imeT’, it js possible that all the active messages are received and all
g permanently trusts and the epoch number ofat g Stops the passive ones are lost. Thpsandg never receive a reply
changing (we can find such processy the Accuracy property from each other.
of oS.). Choose a round such that no process starts round To fix this problem, we modify the algorithm as follows.
by timeT’, andc is the coordinator of round. For allp andg, proces® now keeps a copy of the last message

_Letpbeaprocess thatreports avalue. Themeventually of each type (active or passive) that it wants to send.to
exits the IOOp n ||r.]es 9-10. Moreover, by dEflnltlonlﬂfp Every t|mep sends an active or passive message ito the
starts round: after time7". Only always-up processes can start griginal algorithm, in the modified algorithm it actually sends
a round after timel’, because all other processes crashed aj typle consisting oboth the last active and the last passive
least once by timé' and, after they crash, they never start any messages tg. Wheng receives such a tuple, it processes both
round. Thusp is an always-up process, and so in roung components separately (asqgithad received both messages
never suspectsand the epoch numbereatp neverincreases. separately in the original algorithm). With this modification,

Thus,p canonly exitthe loop in lines 9-10 by receivifig w, the algorithm will work with the Fair Loss property.
ESTIMATE) from ¢, for somew # L. Sincep eventually exits From the above, we have:

this loop, it receiveqk, w, ESTIMATE) from c. Therefore,

there is a time at whichoord_est.[k] = w. Note thaic never ~ Theorem 8. Assume that at most, processes are bad and
receives any message of the fofkn x, SUGGESTION) by time more tham,, processes are always up. Uniform consensus can
T, because no process starts rokry time7". Therefore, the be solved without stable storage usiss,..

value of coord _est.[k] is L before or at timel". Thus,c sets

coord_est.[k] to w after imeT'. Sincec does not crash after

time T', oncec setscoord_est.[k] to w, it never changes this B, |mplementation of oS, and oS! in partially

variable again. This implies that every process thaports synchronous systems)

a value receiveék, w, ESTIMATE) from ¢, and therk-reports

w. We show how to implementS, andoS,, in the models of par-
tial synchrony of [5, 3] (extended to systems with crashes and
recoveries). [5] considers two models of partial synchrony.
Roughly speaking, the first model, denotéd; here, stipu-

Proof. Suppose that all always-up processes propose a valuéates thatin every execution there are bounds on process speeds
By Lemma 36, there exists a roukdsuch that all processes and on message transmission times, but these bounds are not
thatk-report a valug-report the same value. By Corollary 2, known. In the second model, denotéd,, these bounds are

all a|Ways_up processes reach the end of roh.rﬂy Lemma knOWn, but they hold Only after some unknown time (Ca.”ed
31, all a|Ways_up processes decide in rodnd GSTfor Global Stabilization T|m)3 [3] defines a weaker mod-

el of partial synchrony, denoteti s, in which bounds exist
Proof of Theorem Ammediate from Lemmata 24, 32, and 37. butthey are not knowandthey hold only after some unknown
O GST. InM, links do not lose messages, andlf, and M

We now explain how to remove the two limitations that we links can only lose messages sent before the GST. Note that
mentioned at the beginning of this section. The first one is thaevery system that conforms tbt; or M, also conforms to
the algorithm in Fig. 6 does not guarantee that eventually-upMs.
processes decide; moreover processes never stop executing All the above models assume that process crashes are per-
rounds. To fix these problems, we modify the algorithm asmanent. A natural extension gf{3 to systems with crashes
follows. Once a procegsdecides, it stops executing the algo- and recoveries, which we also dengi¢;, is as follows: after
rithm. Then, every time thatreceives any message it replies some (unknown) GST, all the good processes are up forever,
with the decision value. When a process receives the decisioand there are bounds on process speeds and on message trans-
value, it decides. With this modification, all good processesmission times. In particular, all the messages sent to good
decide and all processes eventually stop executing rounds. processes after the GST, including those sent by unstable pro-

The second limitation is that the algorithm does not work cesses, are received within the (unknown) bound. Messages
with the Fair Loss property of Sect. 2.5. We first explain why, sent to bad processes may be lost. Hencefo¥ty, denotes
and then we modify the algorithm to fix this problem. this extended model.

There are two types of messages in the algorithative Figure 7 shows an implementation of. (and also of
messages, i.e., those that are actively sent by processes (©S.) in Ms. The algorithm is similar to one given in [3]. To
GESTION, REQUEST and RECOVERED messages), angas- measure elapsed time, each progesgintains a local clock,
sivemessages, which are sentin response to an active messasggy, by counting the number of steps that it takes. After each
(ESTIMATE, REPORT, PROPOSAL and “decide” messages). In recovery, each procegsirst sends an RECOVERED message
the algorithm, a procegsproceeds by sending an active mes- to all processes; then it periodically sendsianm-ALIVE
sage to other processes, until it gets responsesyptBends a message. Ip does not receive anAM-ALIVE message from

Lemma 37. If all always-up processes propose a value then
they all eventually decide.

Failure detection and consensus in the crash-recovery model 121

1 For proces®:

2 Initialization and upon recovery:

3 Dyp.trustlist < II; trustlist, < II

4 forall ¢ € IT do Dy.epoch[q] < 0; epoch,,[q] < 0; Ap[q] «+ default time-out interval

5 sendI-RECOVERED to all processes

6 repeat forever

7 sendi-AM-ALIVE to all processes

8 forall ¢ € IT do

9 if ¢ € trustlist, andp did notreceivel-AM-ALIVE from ¢ during the lastd,[¢] ticks of p’s clockthen

10 trustlist, < trustlisty \ {q} {suspecy}
1 D,.trustlist < trustlisty {update the failure detector output
12 forall g € Dy.trustlist do Dy.epoch[q] + epoch,,[q]

13 upon receiver-AM-ALIVE from ¢ do

14 if ¢ & trustlist, then

15 trustlist, < trustlist, U {q} {trustq}
16 Aplg] + Aplg] + 1 {increase timeout
17 upon receivel-RECOVERED from ¢ do

18 epoch,,[q] < epoch,[q] + 1

Fig. 7. ImplementingsS. andsS,, in M3

some procesgfor A,[¢] time units on its clockp removes;

fromits list of trusted processes. Whereceives-AM-ALIVE

from some processg it checks if it currently suspects If so,

p knows that its previous time-out @nwas premature and so

p addsg to its list of trusted processes and increases its time- Note that the algorithm doewt implementoS,, in Ms.

out periodA, [¢]. Whenp receives-rRECOVERED from some This is because an unstable processgsets its timeouts to a

procesg;, it increments the epoch numberpfNote that this ~ default value infinitely often, and if this value is smaller than

implementation does not use any stable storage. the (unknown) bound on message delays, themay suspect
Following [3], it is easy to see that when this algorithm is everyprocess infinitely ofte — a violation of the strong ac-

executed inV13, there is a time after which every good process curacy property obS,. In Sect. 10, however, we show how

trusts every good process and suspects every eventually-dovifi transform any implementation o, into ¢S, (this trans-

process. Itis also easy to see that at every good process, evermation doesiot rely on partial synchrony assumptions).

tually the epoch numbers are nondecreasing (this occurs after

the process stops crashing). Moreover, good processes-send

RECOVERED messages only a finite number of times, so thatC. Proof of Theorem 5

the epoch numbers of each good process at every good process

eventually stop changing. It remains to show that for every un-Theorem 5 The algorithm of Fig. 4 satisfies the Uniform Va-

stable procesa and every good process either eventually lidity and Uniform Agreement properties of uniform consen-

g permanently suspects or u's epoch number ay is un- sus. If a majority of processes are good then it also satisfies

bounded. Indeed, if does not permanently suspestthenit the Termination property.

trustsu infinitely often; in this casey receiveS-AM-ALIVE The proof follows.

messages frominfinitely often. Sau sends-AM-ALIVE mes-

sages tq infinitely often. Note that after each recovety,

Corollary 3. In any patrtially synchronous system that con-
forms to M3, the algorithm in Fig. 7 implementsS, and
oS!,

Definition 10. We say thap is in roundr at timet if the value

always sends-RECOVERED message before sendimgM-
ALIVE messages. Thereforesends-RECOVERED messages
infinitely often. Thus,g receivesi-RECOVERED messages
from w infinitely often and s@ increments.’s epoch number
infinitely often.

Hence we have:

of variabler), in stable storage at timeis . A proces starts
roundr whenp storesr as the value of,, for the first time in
line 12. We say that updates:stimate,, to est whenp stores
est as the value otstimate,, (in line 25 or 39). Similarly, we
say thatp updatess,, to ¢t whenp storest as the value ofs,,
(in line 25 or 39).

Lemma 38 (Uniform Validity). If a process decides then

Theorem 9. In any partially synchronous system that con- SOMe Process previously proposed

forms to M3, the algorithm in Fig. 7 guarantees that (1) at
every good process, eventually the epoch numbers are nonde-

creasing, (2) for every bad processaind every good process
g, either eventuallyy permanently suspectsor b's epoch

Proof. Trivial. O

Lemma 39. A process can updatstimate, andts, at most
once in each round.

number atg is unbounded, and (3) for every good process

g, eventuallyy is permanently trusted by every good process,Proof. Let be a round ang be a process. In round if p is
andg’s epoch number at every good process stops changingihe coordinator of round thenp can only updatestimate,,

122

andts, in line 25; elsep can only updatestimate, andts,
in line 39. Wherp updatesestimate, andts,, it updatests,,

M.K. Aguilera et al.

wait statement in line 18. Sinceexecutes line 30 in round
r, ¢ receives(r, ACK) from [(n + 1)/2] processes. Thus,

to r. After it does so, it can not execute lines 25 and 39 inthere is some procegssuch that (1) in round, ¢ receiveyr,
roundr again (even if it crashes and later recovers) becausack) from p, and (2) in roundk, for someest” andts”, ¢’

of the guard in lines 16 and 33, respectivelyl

Lemma 40. Letc be the coordinator of some round (1) In
roundr, if ¢ starts Phase3NEWESTIMATE With estimate. =
est, thenc updatesestimate, to est; and (2) in some round
r’ > r, if some procesg s-sends (', est, r, ESTIMATE) in
line 34, then in round, c updatesestimate,. to est.

Proof. To prove (1), assume that in round ¢ starts Phase
NEWESTIMATE With estimate, = est. Clearly, before starts

PhaseNEWESTIMATE, it updatesestimate. to some value
est’. By Lemma 39¢ updates:stimate, at most once in round
r. Thereforeest = est’. This shows (1).

To prove (2), assume that in some rourid> r some
proces® s-sends (', est, r, ESTIMATE) in line 34. We first
claim that in roundr, p updatesestimate, to est. Indeed,
sincets, = r whenp executes line 34 in round, p must
have executed line 24 or 38 in roumdo setts, to r, and
then storedts,, in line 25 or 39 in round-. Let est’ be the
value of estimate, thatp stores in line 25 or 39 in round
r. We need to show thatst’ = est. Indeed, it is clear that
whenp executes line 34 in round, the values okstimate,,
andts, in stable storage arest andr, respectively (this is
because every timg changesestimate,, or ts,, it stores its

receivesk, est”, ts”, ESTIMATE) fromp in the wait statement
in line 18. By (1),p s-sends (r, ACK) to ¢ in roundr. By (2),
p s-sends (k, est”, ts”, ESTIMATE) to ¢’ in roundk. Before
doing thatp startsround. After p startsround:, p never starts
around lower thak. Thisimpliesthap s-sends(k, est”, ts”,
ESTIMATE) to ¢’ in roundk afterp s-sends (r, ACK) to ¢ in
roundr. Befores-sending (r, ACK) to ¢ in roundr, p updates
tsp tor (line 25 or 39). Since the value ¢f, in stable storage
is non-decreasing, we must hai’ > r. It is easy to see
that no process eversends a message of the for(#, *, ts,
ESTIMATE) with ts > k. So, the valueéthatc’ selectsinline 20
in roundk is such that < ¢ < k. Letq be the process whose
estimate valuexst’ is selected in line 22 in rounkl. Then in
roundk, g s-sends (k, est’, t, ESTIMATE). By Lemma 40 (2),
the coordinator” of roundt updatedestimate . to est’. By
the induction hypothesis, we havet’ = est. O

Lemma 42. If processeg andc’ s-send (est, DECIDE) and
(est’, DECIDE) in line 30 in rounds- andr’, respectively, then
est = est’.

Proof. Assume without loss of generality thet > r. Since
line 30 is executed only by the coordinaterandc’ are the
coordinators of roundsandr’, respectively. Sincé s-sends

A : / T : ’o
new value in stable storage — see lines 25 and 39). Moreovef,¢st'; DECIDE) inline 30 in round, ¢’ starts PhasgrwEs-

from the structure of the algorithm, the valuetsj in stable
storage is nondecreasing, so that aftstorests,, in roundr,
its value in stable storage does not change until rotindote
thatestimate, andts, are always updated together. So after
storesestimate,, in roundr, the value ofestimate,, in stable
storage also does not change until rout\dSo est’ = est,
and this shows the claim.

Now there are two cases.jdf= c (i.e.,p is the coordinator
of roundr), then part (2) follows immediately from the claim.
If p # ¢, thenp does not execute line 25 in roungdand so by
the claimp storesest as the value otstimate,, in line 39 in
roundr. Thusp must have received-(est, NEWESTIMATE)
from ¢, which implies that: must haves-sent this message
topinline 27 in roundr. By part (1),c updatesstimate, to
estinroundr. 0O

Lemma 41. Suppose that the coordinater of round r s-
sends (est, DECIDE) in line 30. In every round’ > r, if
the coordinatore’ updatesestimate. to some valuest’ then
est = est’.

TIMATE With estimate., = est’. By Lemma40 (1)¢/ updates
estimate. t0 est’. By Lemma 4lest = est’. O

Lemma 43 (Uniform Agreement).No two processes decide
differently.

Proof. Suppose that processesandp’ decide on valuesst
andest’, respectively. Procegsdecidesst in line 53 after re-
ceiving messaggest, DECIDE). By a simple induction, some
process must hav@sent messagéest, DECIDE) in line 30.
Similarly, proces$’ decidesest’ in line 53, and so some pro-
cess must have-sent messagéest’, DECIDE) in line 30. By
Lemma42est = est’. 0O

Lemma 44. A process can start only finitely many rounds.

Proof. Inorderto obtain a contradiction, suppose thatthere are
processes that start infinitely many rounds. Pdie the set of
all such processes. Clearlyy,contains only good or unstable
processes. For any procgss= P and any round > 1, p
eventually starts a round higher thanLet . be the lowest

round higher than thatp starts and let, be the highest round

Proof. We prove this lemma by induction on the round numberlower than or equal te thatp starts. Thel < <7 <.

r’. For the base case’(= r), note that ifc s-sends (est,
DECIDE) in line 30, thenc starts PhassEWESTIMATE with
estimate. = est. The base case now follows directly from
Lemmata 39 and 40 (1).

Now assume that the lemma holds fordllr < r’ < k.
Let ¢’ be the coordinator of rounkl We show that the lemma
holds forr’ = k.

Suppose that in round, ¢’ updatesestimate. to some
valueest’. Sincec’ is the coordinator of round, this update
can only happen in line 25. Thefireceived messages of the
form (k, %, *, ESTIMATE) from [(n + 1)/2] processes in the

By the Strong Accuracy property of,,, we canfind atime
T and agood proceds such that aftef’, K is never suspected
by any good or unstable process and the epoch numb&r of
at every good or unstable process stops changing.

Letr be around such that (& is the coordinator of round
r,and (2) no process iff \ P starts a round higher thanand
(3) foreveryp € P, pstartsround,, aftertime7". Such round
clearly exists because processediin, P start only finitely
many rounds and processegArstart infinitely many rounds.

Let p be the first process to start a round higher than
By (2), p € P and by the definition of - andrj, p selects

D

Failure detection and consensus in the crash-recovery model

roundr; when it executes line 49 in round". This implies
thatr, = r:indeed, ifr, < r thenp does not select round

123

Lemma 48. If a good procesp blocks in a round-, then the
coordinatorc of this round is also a good process. Moreover,

#+ in line 49; instead, it selects a round number that is atif P # ¢ thenc receives messages of roundérom p infinitely

mostr since (a)p trusts the coordinatak™ of roundr (by (3)
and the definitions of” and K), and (b)p does not receive
any messages of a round higher thafsincep is the first
process to start a round higher then Sor, = r. By (3),

p starts round- after time7". By (1) and the definition of”
and K, while p is in roundr, condition K € d.trustlist in
line 44 evaluates to true and conditioR’ ¢ d’.trustlist or
d.epoch[K] < d'.epoch[K]) in line 46 always evaluates to
false. Sincep starts a round higher than it does not loop
forever in lines 45—-46. Sp eventually receives a message of
a round higher tham while in roundr. This contradicts the
fact thatp is the first process to start a round higher than
O

Definition 11. We say that a good procegdlocks in round
r if p starts round- butp does not start a higher round, and
never decides.

Lemma 45. If a good procesg blocks in round-, then in this
round its skipround task loops forever in lines 45-46.

Proof. Clearly, while procesg is in roundr, its taskskip.
round must loop forever in lines 45-46 or in line 48 (other-
wisep starts a round higher tharn. By the Strong Accuracy

often.

Proof. Letp by a good process that blocks in roundnd let
¢ be the coordinator of round We now prove that is a good
process. In order to obtain a contradiction, supposedieat
bad. Sincey blocks in roundr, by Lemma 45, while in round
r”’ theskip_roundtask ofp loops forever in lines 45-46. By the
Completeness and Monotonicity properties8f,, eventually
eitherp permanently suspectsor ¢'s epoch number at is
nondecreasing and unbounded. Therefpreyentually exits
the loop in lines 45-46. This is a contradiction.de a good
process.

Now, assume # c. After p stabilizes, its-sends a mes-
sage toc for the last time in round, either in line 34 or in
line 41. By Lemma47;receives this message frgrnfinitely
often. O

Lemma 49. Letp andq be good processes. jgfdecides and

p receives NOMBECIDE messages frominfinitely often, then

eventuallyg decides.

Proof. After p decides, every timg receives a NOMECIDE
message frong, p sends abECIDE message tg (line 56).
Thereforep sendspECIDE messages tq infinitely often.

property ofoS,, p eventually trusts some process forever andMOreover, this is the only message thatends ta infinitely

sop cannot loop forever in line 48. Therefopdoops forever
in lines 45-46. O

Definition 12. We say that an eventually-up procetabilizes
at timet if it recovers at timg and does not crash afterwards.
By convention, we say that an always-up process stabilizes
time0.

Lemma 46. Suppose a good procegsproposes but never
decides. Ifp receives a message of roundfter p stabilizes,
then eventually starts some round’ > r.

Proof. In order to obtain a contradiction, suppose {haever
starts any round’ > r. Sincep proposesyp starts some round
(namely, round). Sincep does not decidey blocks in some
roundr” < r.ByLemma45, whileinround’, theskip-round
task ofp loops forever in lines 45—-46. Singgeceives a mes-
sage of round- afterp stabilizesp eventually exits the loop
in lines 45—46. This is a contradictiond

Lemma 47. Letp and ¢ be two good processes. If (k)s-
sends m to g after p stabilizes, (2)n is the last message
s-sendsto ¢, and (3)p never decides, thapreceivesn from
p infinitely often.

Proof. By (1), (2) and (3)p sendsm to ¢ infinitely often in
taskretransmit(line 7). By the Fair Loss property of links,
receives messages fraprinfinitely often. Note thain is the
only message thaisends tgy infinitely often: this is because
(1) in taskretransmit p eventually sends no message different
from m to ¢, and (2) outside tastetransmit p can only send
messages of the forrfx, DECIDE) (line 56); however, such
messages are never sent sipaeever decides. Therefore, by
the No Creation and Finite Duplication properties of links,
receives fronp only finitely many messages different fram
Sinceq receives messages frominfinitely often, it follows
thatq receivesn from p infinitely often. O

often (since aftep decides, it terminates all tasks). This im-
plies thaty receiveECIDE messages frominfinitely often.
Thus, eventually; decides. O

Lemma 50. Suppose all good processes propose. If some

élood process decides then eventually all good processes de-
cide.

Proof. In order to obtain a contradiction, suppose that every
good process proposes and some good prgedssides, but
there is some good procegthat never decides. L&} be the

set of good processes that do not decide. By Lemma 44, for
everyq € @, g can start only finitely many rounds. Singe
proposesg blocks in some round,. Letr = max{r, | ¢ €

Q}, and letg € Q) be a process that blocks in round

e Case 1:q is the coordinator of round. Process; never
decides, so in roundeitherq waits forever at line 18 or at
line 28 (otherwise s-sends aDECIDE message to itselfin
line 30 and then decides in line 53). Befgrevaits forever,

it s-sends a nonpECIDE message tp (line 17 or 27). By
Lemma 47.,p receives this message infinitely often. By
Lemma 494 eventually decides. This contradicts the fact
thatq € Q.

Case 2y is notthe coordinator of round Letc # ¢ be the
coordinator of rouna. By Lemma 48¢ is a good process
andc receives messages of rounftom ¢ infinitely often.

If ¢ decides, then by Lemma 48 eventually decides too
and this contradicts the fact that Q). Soc never decides.
By Lemma 46, eventually starts a round’ > r. Since

¢ € @Q, by the definition ofr, we have that’ < r. Thus

r’ = r and sac blocks in round-. By Case 1¢ eventually
decides — a contradiction. O

Lemma 51. Suppose there is a majority of good processes.
If every good process proposes a value, then eventually some
good process decides.

124

Proof. In orderto obtain a contradiction, suppose that no good

process decides. By Lemma 44, each good prgeeas start
only finitely many rounds. Singeproposesp blocks in some
roundr,. Letr = max{r, | p is good and letp be a good
process that blocks in round

e Case l:p is the coordinator of round. Proces® never
decides, so in round eitherp waits forever at line 18 or
at line 28.

Case 1.1p waits forever at line 18

We claim that for every good procegsp eventually re-
ceives ¢, estimatey, tsq, ESTIMATE) from ¢ afterp sta-
bilizes. Then by the assumption that there is a majority
of good processeg,does not wait forever at line 18 — a
contradiction.

To show the claim, note that sinpevaits forever at line 18
of roundr, we havets,, # r. Thus,p never updatess,
to r, and sop never updatesstimate, in roundr. By
Lemma 40 (1)p never starts Phas&EWESTIMATE. SOp
nevers-sends NEWESTIMATE messages in round

Case 1.1.1y = p. Sincets, # r, in roundr, afterp stabi-
lizes and forks taskarticipant p s-sends (r, estimate,,
tsp, ESTIMATE) to itself (line 34). Thusp receives this
message after it stabilizes.

Case 1.1.24 # p. Beforep waits forever at line 18, it
s-sends (r, NEWROUND) to ¢ (line 17) afterp stabilizes,
and this is the last message-sends toq. By Lemma 47,
q eventually receivesr(NEWROUND) after ¢ stabilizes.
By Lemma 464 eventually starts a round > r. By the
definition ofr, we have that’ < r. Thusr’ = r and sog
starts round. In roundr, we have thats, # r (otherwise,
q setsts, to r in line 39, which implies that received
a NEWESTIMATE message fromp — contradicting the
factthatp nevers-sendSNEWESTIMATE messages). Then
g s-sends messager(estimatey, tsq, ESTIMATE) tO p
(line 34). Processg waits forever in line 35 sincg never
s-sends a NEWESTIMATE message tg. Therefore £,
estimateq, tsq, ESTIMATE) is the last messagges-sends
to p. By Lemma 47 p eventually receives-(estimate,,
tsq, ESTIMATE) from ¢ afterp stabilizes.

This concludes the proof of the claim.

Case 1.2p waits forever at line 28

We claim that for every good procegsp eventually re-
ceives ¢, ACK) from ¢ afterp stabilizes. Then by the as-
sumption that there is a majority of good procesgemes
not wait forever at line 8 — a contradiction.

We now show the claim.

Case 1.2.1g = p. Beforep waits forever at line 28, it
s-sends aNEWESTIMATE message to itself (and it does
so afterp stabilizes). Thup receives this message from
itself. So in taskparticipant, p finishes PhasesTIMATE
ands-sends (r, ACK) to itself. Thereforep receives this
message from itself after it stabilizes.

Case 1.2.24 # p. Beforep waits forever at line 28, it
s-sends (r, estimate,, NEWESTIMATE) to ¢ and this is
the last message s-sends tog. By Lemma 474 even-
tually receives this message frgmafter ¢ stabilizes. By
Lemma 464 eventually starts a round > r. By the def-
inition of r, we haver’ < r. Thusr’ = r and sog blocks
in roundr. In roundr, afterq stabilizes and forks task
participant ¢ finishes PhasesTIMATE (Sincegq receives

M.K. Aguilera et al.

aNEWESTIMATE message fronp) ands-sends message
(r, ACK) to p in Phaseack. This is the last message
s-sends top, sinceq blocks in round-. By Lemma 47p
eventually receives(Ack) from ¢ afterp stabilizes.
This shows the claim.

Case 2:p is not the coordinator of round.

Let ¢ # p be the coordinator of round By Lemma 48,
¢ is a good process andreceives messages of round
from p infinitely often. By Lemma 46¢ eventually starts
aroundr’ > r. By the definition ofr, we have that’ < r.
Thusr’ = r and soc blocks in roundr. In Case 1, we
showed that the coordinator of rounaloes not block in
roundr — a contradiction. O

Corollary 4 (Termination). Suppose there is a majority of
good processes. If all good processes propose a value, then
they all eventually decide.

Proof. From Lemmata 50 and 51.0

Proof of Theorem 9mmediate from Lemmata 38 and 43, and
Corollary 4. O

Acknowledgementsie would like to thank Rachid Guerraoui, Mi-
chel Raynal and Andr Schiper for introducing us to the problem of
consensus in the crash-recovery model, and for explaining their own
work on this problem. We are also grateful to Borislav Deianov and
the anonymous referees for their helpful comments and suggestions
on how to improve the presentation of the results.

References

1. Aguilera MK, Chen W, Toueg S: Heartbeat: a timeout-free fail-
ure detector for quiescent reliable communication. In Proceed-
ings of the 11th International Workshop on Distributed Algo-
rithms, Lecture Notes on Computer Science. Springer-Verlag,
September 1997. A full version is also available as Technical
Report 97-1631, Computer Science Department, Cornell Uni-
versity, Ithaca, New York, May 1997

. Chandra TD, Hadzilacos V, Toueg S: The weakest failure detec-
tor for solving consensus. Journal of the ACM, 43(4):685-722
(1996)

. Chandra TD, Toueg S: Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225-267 (1996)

. Dolev D, Friedman R, Keidar |, Malkhi D: Failure detectors
in omission failure environments. Technical Report 96-1608,
Department of Computer Science, Cornell University, Ithaca,
New York, September 1996

. Dwork C, Lynch NA, Stockmeyer L: Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288-323 (1988)

6. Guerraoui R, Oliveira R, Schiper A: Stubborn communica-

tion channels. Technical report,épartement d’Informatique,
Ecole Polytechniquedterale, Lausanne, Switzerland, Decem-
ber 1996

7. Hurfin M, Mostefaoui A, Raynal M: Consensus in asynchronous
systems where processes can crash and recover. In Proceedings
of the 17th IEEE Symposium on Reliable Distributed Systems,
pages 280-286, October 1998

. Lynch NA: Distributed Algorithms. Morgan Kaufmann Pub-
lishers, Inc., 1996

. Neiger G, Toueg S: Automatically increasing the fault-tolerance
of distributed algorithms. Journal of Algorithms, 11(3):374-419
(1990)

Failure detection and consensus in the crash-recovery model 125

10. Oliveira R, Guerraoui R, Schiper A: Consensus in theWei Chenreceived his B.Eng. and M.Eng. degrees from the Depart-
crash-recover model. Technical Report 97-23@p&rtement ment of Computer Science and Technology, Tsinghua University,
d’'Informatique, Ecole Polytechnique éBerale, Lausanne, Beijing, China. He received his M.S. and Ph.D. degrees from the De-
Switzerland, August 1997 partment of Computer Science, Cornell University in 1998 and 2000,

respectively. He is now a senior member of the technical staff at Or-
acle Corporation. His research interests include distributed systems
and fault-tolerant computing.

Sam Touegreceived his B.Sc. from the Technion Israel Institute of
Marcos Kawazoe Aguilerais currently a Ph.D. candidate in the Technology, and his Ph.D. from the Computer Science Department at
Department Computer Science at Cornell University. He receivedPrinceton University. He is a professor in the Department Computer
his B.Eng. in Computer Science from the Universidade Estadual dé&cience of Cornell University, which he joined in 1981. He also
Campinas in Brazil. His research interests include distributed algoserves as the Chair of the Departement d’Informatique, at the Ecole
rithms and fault-tolerant computing. Polytechnique in France. His research area is distributed computing.

