
Distrib. Comput. (2000) 13: 99–125

c© Springer-Verlag 2000

Failure detection and consensus in the crash-recovery model

Marcos Kawazoe Aguilera1, Wei Chen2, Sam Toueg1

1 Department of Computer Science, Cornell University, Ithaca, NY 14853-7501, USA (e-mail:{aguilera,sam}@cs.cornell.edu)
2 Oracle Corporation, One Oracle Drive, Nashua, NH 03062, USA (e-mail: weichen@us.oracle.com)

Received: May 1998 / Accepted: November 1999

Summary. We study the problems of failure detection and
consensus in asynchronous systems in which processes may
crash and recover, and links may lose messages. We first pro-
pose new failure detectors that are particularly suitable to the
crash-recovery model. We next determine under what con-
ditions stable storage is necessary to solve consensus in this
model. Using the new failure detectors, we give two consen-
sus algorithms that match these conditions: one requires stable
storage and the other does not. Both algorithms tolerate link
failures and are particularly efficient in the runs that are most
likely in practice – those with no failures or failure detector
mistakes. In such runs, consensus is achieved within3δ time
and with4n messages, whereδ is the maximum message delay
andn is the number of processes in the system.

Key words: Fault tolerance – Failure detection – Consensus
– Process crash – Process recovery – Asynchronous systems
– Stable storage

1 Introduction

The problem of solving consensus in asynchronous systems
with unreliable failure detectors (i.e., failure detectors that
make mistakes) was first investigated in [3,2]. But these works
only considered systems where process crashes arepermanent
and links are reliable (i.e., they do not lose messages). In real
systems, however, processes mayrecoverafter crashing and
links may lose messages. In this paper, we focus on solving
consensus with failure detectors in such systems, a problem
that was first considered in [4,10,7] (a brief comparison with
these works is in Sect. 1.3).

Solving consensus in a system where process may recover
after crashing raises two new problems; one regards the need
for stable storage and the other is about the failure detection
requirements:

Research partially supported by NSF grant CCR-9402896 and CCR-
9711403, by ARPA/ONR grant N00014-96-1-1014, and by an Olin
Fellowship.

• Stable Storage:When a process crashes, it loses all its
local state. One way to deal with this problem is to as-
sume that parts of the local state are recorded into stable
storage, and can be restored after each recovery. However,
stable storage operations are slow and expensive, and must
be avoided as much as possible. Is stable storage always
necessary when solving consensus? If not, under which
condition(s) can it be completely avoided?

• Failure Detection:In the crash-recovery model, a process
may keep on crashing and recovering indefinitely (such
a process is calledunstable). How should a failure detec-
tor view unstable processes? Note that an unstable process
may be as useless to an application as one that permanently
crashes (and in fact it could be even more disruptive). For
example, an unstable process can be up just long enough to
be considered operational by the failure detector, and then
crash before “helping” the application, and this could go
on repeatedly. Thus, it is natural to require that a failure de-
tector satisfies the followingcompletenessproperty: Even-
tually every unstable process is permanently suspected.1

But implementing such a failure detector is inherently
problematiceven in a perfectly synchronous system. In-
tuitively, this is because, at any given point in time, no
implementation can predict the future behavior of a pro-
cessp that has crashed in the past but is currently “up”.
Will p continue to repeatedly crash and recover? Or will
it stop crashing?

In summary, our goal here is to solve consensus in the
crash-recovery model (with lossy links). As a crucial part of
this problem, we first need to find reasonable failure detectors
that can be used for this task. We also need to determine if and
when stable storage is necessary.

1.1 Failure detectors for the crash-recovery model

We first focus on the problem of failure detection in the crash-
recovery model. Previous solutions require unstable processes

1 In fact, this property is assumed in [10,7].

100 M.K. Aguilera et al.

to be eventually suspected forever [10,7].2 We first prove that
this requirement has a serious drawback: it forces failure de-
tector implementations to have undesirable behaviors even
in perfectly synchronous systems. More precisely, consider
a synchronous round-based system with no message losses,3

where up tonu processes may be unstable. In this system,
everyimplementation of a failure detector with the above re-
quirement has runs with the following undesirable behavior:
there is a round after which (a)all processes are permanently
up, but (b) the failure detector incorrectly suspectsnu of them
forever (see Theorem 1). Note that these permanent mistakes
arenotdue to the usual causes, namely, slow processes or mes-
sage delays. Instead, they are entirely due to the requirement
on unstable processes (which involves predicting the future).

To avoid the above problem, we proposea new type of fail-
ure detectorthat is well-suited to the crash-recovery model.
This failure detector does not output lists of processes sus-
pected to be crashed or unstable. Instead, it outputs a list of
processes deemed to be currently up, with an associatedepoch
numberfor each such process. If a process is on this list we
say it istrusted.

The epoch number of a process is a rough estimate of the
number of times it crashed and recovered in the past. We dis-
tinguish two types of processes:bad ones are those that are
unstable or crash permanently, andgood ones are those that
never crash or eventually remain up. We first propose a simple
failure detector, denoted�Se, with the following two proper-
ties. Roughly speaking (precise definitions are in Sect. 3):

• Completeness:For every bad processb, at every good pro-
cess there is a time after which eitherb is never trusted or
the epoch number ofb keeps on increasing.

• Accuracy:Some good process is eventually trusted for-
ever by all good processes, and its epoch number stops
changing.

Note that the completeness property of�Se does not re-
quire predicting the future (to determine if a process is unsta-
ble), and so it does not force implementations to have anoma-
lous behaviors. To illustrate this, in Appendix B we give an
implementation of�Se for some models of partial synchrony:
this implementation ensures that if all processes are eventually
up forever they will be eventually trusted forever.

Failure detector�Se, however, does not putany restric-
tion on how the bad processes view the system. In particular,
the accuracy property allows unstable processes to repeatedly
“suspect”all processes.4 This is problematic because, in con-
trast to processes that permanently crash, unstable processes
may continue to take steps, and so their incorrect suspicions
may prevent the progress of some algorithms. For example,
in the rotating coordinator consensus algorithms of [3,4,7] if
a process kept suspecting all processes then consensus would
never be reached.

2 In [4], crash-recovery is regarded as a special case of omission
failures, and the algorithm is not designed to handle unstable pro-
cesses that can send and receive messages to and from good pro-
cesses.

3 In such a system, processes execute in synchronized rounds, and
all messages are received in the round they are sent.

4 Intuitively, this is because an unstable process may fail to receive
“I am alive” messages sent by other processes since all messages that
“arrive” at a process while it is down are lost.

From the above it is clear that sometimes it is better to
have a failure detector with:

• Strong Accuracy:Some good process is eventually trusted
forever by all goodand unstableprocesses, and its epoch
number stops changing.

Such a failure detector is denoted�Su. In this paper, we
show how to transform any�Se into �Su in an asynchronous
system provided that a majority of processes are good.

1.2 On the necessity of stable storage in the crash-recovery
model

Can consensus be solved in the crash-recovery modelwithout
stable storage, and if so, how? To answer this question, assume
that during each execution of consensus, at leastna processes
are guaranteed to remain up, and at mostnb processes are bad.

Clearly, ifna < 1 then consensus cannot be solved without
stable storage: it is possible thatall processes crash and recover
during execution, and the entire state of the system (including
previous proposals and possible decisions) can be lost forever.
On the other hand, ifna > n/2, i.e., a majority of processes
are guaranteed to remain up, then solving consensus without
stable storage is easy: If a process crashes we exclude it from
participating in the algorithm even if it recovers (except that
we allow it to receive the decision value). This essentially
reduces the problem to the case where process crashes are
permanent and a majority of processes do not crash (and then
an algorithm such as the one in [3] can be used).

Is it possible to solve consensus without stable storage if
1 ≤ na ≤ n/2? We show that:

• If na ≤ nb then consensuscannot be solved without sta-
ble storageeven using�P (the eventually perfect failure
detectordefined in Sect. 5).

• If na > nb then consensuscan be solved without stable
storageusing�Se (which is weaker than�P).

This last result is somewhat surprising because withna > nb,
a majority of processes may crash and completely lose their
state(including the consensus values they may have previ-
ously proposed and/or decided). To illustrate this with a con-
crete example, supposen = 10, na = 3 andnb = 2. In this
case, up to 7 processes — more than half of the processes —
may crash and lose their state, and yet consensus is solvable
with a failure detector that is weaker than�P. Prima facie,
this seems to contradict the fact that if a majority of processes
may crash then consensus cannot be solved even with�P [3].
There is no contradiction, however, since [3] assumes that all
process crashes are permanent, while in our case some of the
processes that crash do recover: even though they completely
lost their state, they can still provide some help.

What if stable storageis available? In this case, we show
that consensus can be solved with�Su, provided that a major-
ity of processes are good (this majority requirement is weaker
thanna > nb). Note that if the good processes are not a ma-
jority, then consensus cannot be solved even with�P [3].

In addition to crashes and recoveries, the two consensus
algorithms that we give (with and without stable storage) also
toleratemessage losses, provided that links are fair lossy, i.e.,
if p sends messages to a good processq infinitely often, then
q receives messages fromp infinitely often.

Failure detection and consensus in the crash-recovery model 101

1.3 Related work

The problem of solving consensus with failure detectors in
systems where processes may recover from crashes was first
addressed in [4] (with crash-recovery as a form of omission
failures) and more recently studied in [10,7].

In [4,10,7], the question of whether stable storage is al-
ways necessary is not addressed, and all the algorithms use
stable storage: in [4,10], the entire state of the algorithm is
recorded into stable storage at every state transition; in [7],
only a small part of the state is recorded, and writing to stable
storage is done at most once per round. In this paper, we deter-
mine when stable storage is necessary, and give two matching
consensus algorithms — with and without stable storage. In
the one that uses stable storage, only a small part of the state
is recorded and this occurs twice per round.

The algorithms in [10,7] use failure detectors that require
that unstable processes be eventually suspected forever. The
algorithm in [4] is not designed to deal with unstable processes
which may intermittently communicate with good ones.

1.4 Summary of results

We study the problems of failure detection and consensus in
asynchronous systems with process crashes and recoveries,
and lossy links.

1. We show that the failure detectors that have been previ-
ously proposed for the crash-recovery model with unstable
processes have inherent drawbacks: Their completeness
requirement force implementations to have anomalous be-
haviors even in synchronous systems.

2. We propose new failure detectors that avoid the above
drawbacks.

3. We determine under what conditions stable storage is nec-
essary to solve consensus in the crash-recovery model.

4. We give two consensus algorithms that match these con-
ditions, one uses stable storage and the other does not.
Both algorithms tolerate message losses, and are particu-
larly efficient in the runs that are most likely in practice
— those with no failures or failure detector mistakes. In
such runs, consensus is achieved within3δ time and with
4n messages, whereδ is the maximum message delay and
n is the number of processes in the system.

1.5 Roadmap

The paper is organized as follows. Our model is given in
Sect. 2. In Sect. 3 we show that existing failure detectors for
the crash-recovery model have limitations, and then introduce
our new failure detectors, namely�Se and �Su. We define
the Consensus problem in Sect. 4. In Sect. 5, we determine
under what conditions consensus requires stable storage. We
then give two matching consensus algorithms: one does not
require stable storage (Sect. 6), and the other uses stable stor-
age (Sect. 7). In Sect. 8, we briefly consider the performance
of these algorithms. The issue of repeated consensus is dis-
cussed in Sect. 9. In Sect. 10, we show how to transform�Se

into �Su.

2 Model

We consider asynchronous message-passing distributed sys-
tems in which there are no timing assumptions. In particu-
lar, we make no assumptions on the time it takes to deliver a
message, or on relative process speeds. We assume that ev-
ery process is connected with every other process through a
communication link. Links can fail by intermittently dropping
messages. A process can fail by crashing and it may subse-
quently recover. When a process crashes it loses all of its state.
However, it may use local stable storage to save (and later re-
trieve) parts of its state.

We assume the existence of a discrete global clock — this
is merely a fictional device to simplify the presentation and
processes do not have access to it. We take the rangeT of the
clock’s ticks to be the set of natural numbers.

2.1 Processes and process failures

The system consists of a set ofn processes,Π = {1, 2,
. . . , n}. Processes can crash and may subsequently recover.
A failure patternF is a function fromT to 2Π . Intuitively,
F (t) denotes the set of processes that are not functioning at
time t. We say processp is up at timet (in F) if p 6∈ F (t) and
p is down at timet (in F) if p ∈ F (t). We say thatp crashes at
timet if p is up at timet − 1 andp is down at timet.5 We say
thatp recoversat timet ≥ 1 if p is down at timet − 1 andp
is up at timet. A processp can be classified (according toF)
asalways-up, eventually-up, eventually-downandunstableas
follows:

Always-up: Processp never crashes.
Eventually-up: Processp crashes at least once, but there is a

time after whichp is permanently up.
Eventually-down: There is a time after which processp is

permanently down.
Unstable: Processp crashes and recovers infinitely many

times.

A process isgood (inF) if it is either always-up or even-
tually-up. A process isbad (inF) if it is not good (it is either
eventually-down or unstable). We denote bygood(F),bad(F)
andunstable(F) the set of good, bad and unstable processes in
F , respectively. Henceforth, we consider only failure patterns
with at least one good process.

2.2 Failure detectors

Each process has access to a local failure detector module
that provides (possibly incorrect) information about the failure
pattern that occurs in an execution. A process can query its
local failure detector module at any time. Afailure detector
historyH with rangeR is a function fromΠ×T toR.H(p, t)
is the output value of the failure detector module of processp at
timet. A failure detectorD is a function that maps each failure
patternF to a set of failure detector histories with rangeRD
(whereRD denotes the range of the failure detector output of
D). D(F) denotes the set of possible failure detector histories
permitted byD for the failure patternF .

5 We say thatp crashes at timet = 0 if p is down at time0.

102 M.K. Aguilera et al.

2.3 Stable storage

When a process crashes, it loses all its volatile state, but we
assume that when it recovers, it knows that it is recovering
from a crash. Moreover, a process may use a stable storage
device to store and retrieve a set of variables. These two stable
storage operations cannot be executed atomically with certain
other actions. For example, a process cannot store a variable
in stable storage and then send a message or issue an external
output, in a single atomic step. The actions that a process can
execute in an atomic step are detailed in the next section.

2.4 Runs of algorithms

An algorithmA is a collection ofn deterministic automata,
one for each process in the system. Computation proceeds in
atomicstepsof A. There are two types of steps: acrash step
and anormal step. In a crash step, the state of a process is
changed to a specially designated state called thecrash state
(thus the process “loses its state”). In anormal step, a process:

1. First executesoneof the following actions, according to its
state: (a) store a set of variables into local stable storage,
(b) retrieve a set of variables from local stable storage,
(c) send a message to some process, or (d) issue an external
output.6

2. Then it attempts to executeeach oneof the following ac-
tions: (a) receive a message from a process, (b) get an
external input, and (c) query its failure detector;

3. Finally, it changes state.

An initial configuration of algorithmA consists of the ini-
tial state of the automaton for each process. Arun of algorithm
A using failure detectorD is a tupleR = (F, HD, I, S, T)
whereF is a failure pattern,HD ∈ D(F) is a history of failure
detectorD for failure patternF , I is an initial configuration of
A, S is an infinite sequence of steps ofA, andT is an infinite
list of non-decreasing time values indicating when each step
in S occurs.

A run must satisfy the following properties: (1) a process
takes at most one step at each timet; (2) a process takes a
normal step at timet only if it is up att; (3) a process takes a
crash step at timet if and only if it crashes att; (4) a good pro-
cess takes an infinite number of normal steps; (5) if a process
p takes a step at timet and queries its failure detector, then it
obtainsHD(p, t) as a response; (6) when a process retrieves
a variable from stable storage, it obtains the last value that it
stored for that variable (or⊥ if it never stored the variable).

Note that if a processp recovers from a crash, its first step
is from the special crash state. Since this state is different from
all other states,p “knows” that it is recovering from a crash.

2.5 Link properties

We consider links that do not create messages, or duplicate
messages infinitely often. More precisely, each runR = (F,
HD, I, S, T) must satisfy the following “link properties”. For
all processesp andq:

6 Note that a process cannot both access the stable storage and
send a message (or issue an external output) in the same atomic step.

• No Creation: If q receives a messagem from p at timet,
thenp sentm to q before timet.

• Finite Duplication: If p sends a messagem to q only a
finite number of times, thenq receivesm from p only a
finite number of times.

Links may intermittently drop messages, but they must
satisfy the following fairness property:

• Fair Loss: If p sends messages to a good processq an
infinite number of times, thenq receives messages fromp
an infinite number of times.

2.6 Environments and problem solving

The correctness of an algorithm may depend on certain as-
sumptions on the “environment”, e.g., the maximum number
of processes that may be bad. For example, a consensus algo-
rithm may need the assumption that a majority of processes is
good. Formally, anenvironmentE is a set of failure patterns.

A problem P is defined by properties that sets of runs
must satisfy. An algorithmA solves problemP using a fail-
ure detectorD in environmentE if the set of all runsR =
(F, HD, I, S, T) of A using D whereF ∈ E satisfies the
properties required byP .

LetC be a class of failure detectors. An algorithmA solves
a problemP usingC in environmentE if for all D ∈ C, A
solvesP usingD in E . An algorithm implementsC in envi-
ronmentE if it implements someD ∈ C in E .

3 Failure detectors for the crash-recovery model

In this section, we first consider the failure detectors that
were previously proposed for solving consensus in the crash-
recovery model, and then propose a new type of failure detec-
tor for this model.

3.1 Limitations of existing failure detectors

To solve consensus in the crash-recovery model, Oliveiraet al.
[10] and Hurfinet al. [7] assume that processes have failure
detectors that output lists of processes suspected to be bad,
and that these failure detectors satisfy the following property:

• Strong Completeness: Eventually every bad process is per-
manently suspected by all good processes.

Since bad processes include unstable ones, enforcing this
requirement is problematic even insynchronoussystems, as
we now explain. Consider a systemS in which processes take
steps at perfectly synchronized rounds. In each round, a pro-
cess is either up, in which case it sends a message to every
process, or down, in which case it does nothing in the round.
In S at mostnu processes are unstable, i.e., alternate between
being up and down infinitely often. Links do not lose mes-
sages, and all messages sent in a round are received at the end
of that round. In systemS, it is trivial to implement a failure
detector that is almost perfect: by suspecting every process
from which no message was received in the current round,

Failure detection and consensus in the crash-recovery model 103

each process suspects exactly every process that was down in
this round.

Now suppose we want to implement inS a failure detec-
tor that satisfies Strong Completeness (and possiblyonly this
property). In Theorem 1, we show that any such implemen-
tation has undesirable behaviors: in some executions where
all processes are good, some of them will eventually be sus-
pected forever. Note that these mistakes are entirely due to the
above requirement onunstableprocesses, not to the lack of
synchrony.

Theorem 1. Let I be any implementation of a failure detec-
tor that satisfies Strong Completeness inS. For every set of
processesG of size at mostnu, there is a run ofI in S such
that (a) all processes are good, but (b) eventually all processes
in G are permanently suspected by all processes inΠ \ G.

Intuitively, the main idea of the proof is as follows. Sup-
pose a processu crashes for a long time. Then at some time
t, to satisfy Strong Completeness, the implementationI is
forced to suspectu (because no implementation can predict
whetheru will recover in the future). Suppose thatu recovers
after timet and stays up. IfI keeps suspectingu forever, then
this is a run in which a good process, namelyu, is suspected
forever (as we want to show in the theorem). Suppose, instead,
thatI trustsu again at some later point. In this case, we can
crashu again for a long time. By Strong Completeness,I is
again forced to suspectu. Nowu recovers again and stays up,
and eitherI keeps suspectingu forever (this is a run in which
a good processu is suspected forever), or it trustsu again.
We can repeat the above argument ad infinitum to obtain a
run in which (a)u crashes and recovers infinitely often (it is
unstable) and (b)I trust u an infinite number of times — a
violation of Strong Completeness.

The proof of Theorem 1 follows immediately from Lemma
1 below. Note that in the round-model of execution, the only
“non-determinism” is due to possible process failures and the
times at which they occur. Thus, for each failure patternF ,7

there is onlyone run of I in S, and we denote it byR(F).
A G-crash failure patternis a failure pattern in which only
processes inG crash.

Lemma 1. For every setG of size at mostnu, there is aG-
crash failure pattern prefixP such that the following holds.
For everyG-crash extensionF of P in which all processes
in G crash and recover at least one more time, in runR(F)
eventually all processes inG are permanently suspected by
all processes inΠ \ G.

Proof. Let G be any set of size|G| ≤ nu. Assume by contra-
diction that for everyG-crash failure pattern prefixP , there
exists aG-crash extensionF of P in which all processes in
G crash and recover at least one more time, such that in run
R(F) there is some processp ∈ Π\G that trusts some process
p′ ∈ G infinitely often.

We now construct inductively an increasing sequence{Pi}
of failure pattern prefixes. LetP0 be the failure pattern prefix

7 In the round-modelS, a failure pattern indicates for each round
which processes are up and which ones are down; a process crashes
in roundk, if it is up in roundk − 1 and down in roundk; a process
recovers in roundk, if it is down in roundk − 1 and up in roundk.

of length 0. GivenPi, by assumption we can find aG-crash
extensionFi in which all processes inG crash and recover
at least one more time, such that in runR(Fi) there is some
processpi ∈ Π \ G that trusts some processp′

i ∈ G infinitely
often. Letti be the length ofPi and letti+1 > ti be some time
such that between timesti andti+1 in R(Fi): (1) each process
in G crashes and recovers at least once and (2)pi trustsp′

i at
least once. We definePi+1 to be the prefix ofFi of lengthti+1.

DefineP := limi→∞ Pi. Then inR(P), every process
in G crashes an infinite number of times, no process inΠ \
G crashes, and some process inΠ \ G trusts some process
in G an infinite number of times. This violates the Strong
Completeness property ofI.

3.2 Failure detectors with epoch numbers

Theorem 1 shows that if we require Strong Completeness then
incorrect suspicions are inevitable even in synchronous sys-
tems. Although many algorithms are designed to tolerate such
failure detector mistakes, the erroneous suspicions of some
good processes may hurt the performance of these algorithms.
For example, the erroneous suspicions of good coordinators
can delay the termination of the consensus algorithms in [3,4,
10,7]. Thus, requiring Strong Completeness should be avoided
if possible.

In this section, we propose a new type of failure detectors
that are well-suited to the crash-recovery model: Although
they do not require unstable processes to be eventually sus-
pected forever, they do provide enough information to cope
with unstable processes.

At each processp, the output of such a failure detector
consists of two items,〈trustlist , epoch〉, wheretrustlist is a
set of processes andepochis a vector of integers indexed by
the elements oftrustlist. Intuitively, q ∈ trustlist if p believes
that q is currently up, andepoch[q] is p’s rough estimate of
how many timesq crashed and recovered so far (it is called the
epoch number ofq at p). Let H(p, t) denote the output ofp’s
failure detector module at timet. If q ∈ H(p, t).trustlist , we
say thatp trustsq at timet, otherwise we say thatp suspects
q at timet.

We define�Se to be the class of failure detectorsD that
satisfy the following properties:

• Monotonicity: At every good process, eventually the epoch
numbers are nondecreasing8. More precisely:

∀F,∀H ∈ D(F),∀g ∈ good(F),∀p ∈ Π, ∃T ∈ T ,

∀t, t′ > T : [p ∈ H(g, t).trustlist ∧
p ∈ H(g, t′).trustlist ∧ t < t′] ⇒
H(g, t).epoch[p] ≤ H(g, t′).epoch[p]

• Completeness: For every bad processb and for every good
processg, either eventuallyg permanently suspectsb or
b’s epoch number atg is unbounded. More precisely:

∀F,∀H ∈ D(F),∀b ∈ bad(F),∀g ∈ good(F) :
[∃T ∈ T ,∀t > T, b 6∈ H(g, t).trustlist] ∨

8 We require the monotonicity of epoch numbers to hold onlyeven-
tually and only atgoodprocesses so that the failure detector can be
implementedwithout stable storage.

104 M.K. Aguilera et al.

[∀M ∈ N,∃t ∈ T , b ∈ H(g, t).trustlist ∧
H(g, t).epoch[b] > M]

• Accuracy: For some good processK and for every good
processg, eventuallyg permanently trustsK and K ’s
epoch number atg stops changing. More precisely:

∀F,∀H ∈ D(F),∃K ∈ good(F),∀g ∈ good(F),
∃M ∈ N,∃T ∈ T ,∀t > T : K ∈ H(g, t).trustlist ∧
H(g, t).epoch[K] = M

A simple implementation of�Se for some models of partial
synchrony is given in Appendix B. This implementation does
not have the limitations associated with Strong Completeness.
Moreover, it does not use stable storage.

Note that�Se imposes requirements only on the failure de-
tector modules of good processes. In particular, the accuracy
property of�Se allowsunstableprocesses to suspect all good
processes. This is problematic because unstable processes can
continue to take steps, and their incorrect suspicions may hin-
der the progress of some algorithms. Thus, we extend the ac-
curacy property so that it also applies to unstable processes,
as follows:

• Strong Accuracy: For some good processK: (a) for every
good processg, eventuallyg permanently trustsK andK ’s
epoch number atg stops changing; and (b) for every unsta-
ble processu, eventually wheneveru is up,u trustsK and
K ’s epoch number atu stops changing. More precisely:

∀F,∀H ∈ D(F),∃K ∈ good(F) : [∀p ∈ good(F),
∃M ∈ N,∃T ∈ T ,∀t > T, ∈ H(p, t).trustlist ∧
H(p, t).epoch[K] = M] ∧ [∀u ∈ unstable(F),
∃M ∈ N,∃T ∈ T ,∀t > T, u 6∈ F (t) ⇒
K ∈ H(u, t).trustlist ∧ H(u, t).epoch[K] = M]

The class of failure detectors that satisfy Monotonicity,
Completeness, and Strong Accuracy is denoted�Su. For con-
venience, we sometimes use�Se or�Su to refer to an arbitrary
member of the corresponding class.

�Se and�Su are closely related: In Sect. 10 we show that
one can transform�Se into �Su provided that a majority of
processes are good (this transformation does not require stable
storage).

4 Consensus with crash-recovery

With consensus, each process proposes a value and processes
must reach a unanimous decision on one of the proposed val-
ues. The following properties must be satisfied:

• Uniform Validity: If a process decidesv then some process
previously proposedv.

• Agreement: Good processes do not decide different values.
• Termination: If all good processes propose a value, then

they all eventually decide.

A stronger version of consensus, calleduniform consensus[9],
requires:

• Uniform Agreement: Processes do not decide different val-
ues.

The above specification allows a process to decide more
than once. However, with Agreement, a good process cannot
decide two different values. Similarly, with Uniform Agree-
ment, no process (whether good or bad) can decide two dif-
ferent values.

The algorithms that we provide solve uniform consensus,
and the lower bounds that we prove hold even for consensus.

When processes have access to stable storage, a process
proposesv, or decidesv, by writingv into corresponding local
stable storage locations. By checking these locations, a process
that recovers from a crash can determine whether it previously
proposed (or decided) a value.

When processes do not have access to stable storage, pro-
posing and decidingv occur via an external input and output
containingv, and so when a process recovers it cannot deter-
mine whether it has previously proposed or decided a value.
Thus it is clear that if stable storage is not available andall
processes may crash and recover, consensus cannot be solved.
In many systems, however, it is reasonable to assume that
in each execution of consensus there is a minimum number
of processes that do not crash. In such systems, consensusis
solvable without stable storage provided certain conditions are
met, as we will see next.

5 On the necessity of stable storage for consensus

In this section, we determine some necessary conditions for
solving consensus without stable storage. Consider a system
in which at leastna processes are always-up and at mostnb

are bad. Our first result is that ifna ≤ nb then it is impossible
to solve consensus without stable storage, even in systems
where there are no unstable processes, links are reliable, and
processes can use aneventually perfect failure detector�P.
Informally, for the crash-recovery model,�P outputs a tag
∈ {AU,EU,UN,ED} for each process such that:

• There is a time after which at each process the tag of ev-
ery processp is AU, EU, UN, or ED iff p is always-up,
eventually-up, unstable, or eventually-down, respectively.

Note that�P is stronger than the other failure detectors in this
paper and in [10,7].

Theorem 2. If na ≤ nb consensus cannot be solved without
stable storage even in systems where there are no unstable
processes, links do not lose messages, and processes can use
�P.

This result is tight in the sense that ifna > nb then wecan
solve consensus without stable storage using a failure detector
that is weaker than�P (see Sect. 6).

The impossibility result of Theorem 2 assumes that pro-
cesses do not use any stable storage at all. Thus, if a process
crashes it cannot “remember” its previous proposal and/or de-
cision value. Suppose stable storage is available, but to mini-
mize the cost of accessing it, we want to use itonly for storing
(and retrieving) the proposed and decision values. Isna > nb

still necessary to solve consensus? It turns out that ifnb > 2,
the answer is yes:

Theorem 3. Suppose that each process can use stable stor-
age only for storing and retrieving its proposed and decision

Failure detection and consensus in the crash-recovery model 105

��������
process is down

����
����
��������������������

��������������������

no steps taken

no steps taken

t+t’+1

making progress

making progress

Legend:

G

G’

decide v’

decide v

t

p

Fig. 1. A run constructed to prove Theorem 3

values. Ifna ≤ nb and nb > 2 then consensus cannot be
solved even in systems where there are no unstable processes,
links do not lose messages, and processes can use�P.

Theorems 2 and 3 have similar proofs, and so we only
give a detailed proof of Theorem 3 here. The main idea of this
proof is as follows. For a contradiction, assume that there is a
consensus algorithm that does not use stable storage (except
for saving the proposed and decision values) and works for
na ≤ nb andnb > 2. Let G be a subset ofnb processes.
Consider a run in which initially processes inG are very slow,
i.e., they do not take steps for a while (see Fig. 1). From the
point of view of the other processes, all the processes inG
could be bad, so eventually some processp not in G decides
some valuev. Let t be the time whenp decidesv, and let
G′ be a subset ofnb processes that containsp and is disjoint
from G. At time t, every process that is not inG or G′ crashes
and recovers (i.e., it loses its intermediate state and restarts
in a recovery state; at this point it “remembers” only its own
proposed value). Note that at timet, processes not inG′ do not
know about the decision valuev (and processes inG have not
taken any step yet). From timet, all messages still in transit at
timet are delayed, and all the processes inG′ stop taking steps
for a long time. From the point of view of processes not inG′,
it could be that: (1) all thenb processes inG′ are bad, (2) all the
processes not inG or G′ are eventually up, and (3) all thenb

processes inG are always up (this scenario is consistent with
the assumption thatna ≤ nb). Thus, the processes not inG′
must decide without input fromG′, and in particular without
the knowledge thatp has decidedv. Let v′ be the decision of
the processes not inG′.

It remains to show thatv could be different fromv′ (a
contradiction). Proving this is not simple because: (1) the pro-
cesses not inG or G′ participate in the decision of bothv
andv′, (2) for both decisions, they propose the same values
(each process stores its proposed value in stable storage, and
so when it recovers it proposes the same value), and (3) the
processes not inG or G′ could be a (large) majority of the
processes. By Lemma 2, however, we can indeed find some

assignment of proposed values to processes, and setsG and
G′, such thatv 6= v′ (this lemma uses the fact thatnb > 2).

We now prove Theorem 3 in detail.
Consider a system withna ≤ nb, nb > 2, and such that

links do not lose messages. Assume for a contradiction that
there is a consensus algorithmA that (1) uses stable storage
only for storing and retrieving its proposed and decision val-
ues; and (2) uses failure detector�P. Henceforth, in all runs
of A that we consider, processes always propose a value in
{0, 1} at the beginning of the run.

Definition 1. Let R be a set of runs ofA. By the properties
of consensus, in every run inR, all good processes eventually
decide the same value. We say thatR is 0-valent (resp.1-
valent) if in every run inR, the good processes decide0 (resp.
1). We say thatR is bivalent if R is neither0-valent nor1-
valent, i.e.,R has a run in which the good processes decide0
and a run in which the good processes decide1.

In the next definitions, letV be an assignment of proposed
values, one for each process, andGau andGbad be disjoint
subsets of sizenb of processes.

Definition 2. R(V, Gbad) is defined to be the set of runs of
A such that (1) the value proposed by each process is given
byV ; (2) processes inGbad crash at the beginning and never
recover; and (3) processes not inGbad never crash.

Note that in any run inR(V, Gbad), processes inGbad are
bad, and the other processes are always-up.

Definition 3. R(V, Gau, Gbad) is defined to be the set of runs
of A such that (1) the value proposed by each process is given
byV ; (2) processes inGbad crash at the beginning and never
recover; (3) processes inGau never crash; and (4) processes
not inGau ∪Gbad crash at the beginning, recover right after-
wards, and never crash again.

106 M.K. Aguilera et al.

Note that in any run inR(V, Gau, Gbad), processes inGau

are always-up,9 processes inGbad are bad, and the other pro-
cesses are eventually-up.

Lemma 2. There existsV and disjoint subsets of processes
G andG′ of sizenb such that (1) in some runr ∈ R(V, G),
the first good process to decide is inG′; (2) in some run
r′ ∈ R(V, G, G′), the decision value of the good processes
is different from the decision value of the good processes inr.

Proof. There are two cases. For the first case, assume that there
isV and a setG of sizenb such thatR(V, G) is bivalent. Then,
for i = 0, 1 we can find a runri in R(V, G) in which good
processes decidei. Letpi be the first good process to decide in
ri and letG′ be any subset of sizenb that is disjoint fromG and
containsp0 andp1. Let r′ be any run inR(V, G, G′). If good
processes inr′ decide0, let r := r1; else letr := r0. Then
clearlyr andr′ satisfy conditions (1) and (2) of the lemma.

For the other case, assume that for everyV̄ and every
setḠ of sizenb, R(V̄ , Ḡ) is either0-valent or1-valent. Let
G = {n − nb + 1, . . . , n}. For i = 0, 1, . . . , n, let Vi be the
assignment of proposed values such that the proposed value
for processes1, 2, . . . , i is 1, and for processesi + 1, . . . , n,
it is 0. Then clearlyR(V0, G) is 0-valent. Moreover, for any
run in R(Vn−nb

, G), all processes that ever take any steps
propose 1, soR(Vn−nb

, G) is 1-valent. Therefore, for some
j ∈ {0, . . . , n − nb − 1} we have thatR(Vj , G) is 0-valent
andR(Vj+1, G) is 1-valent.

Let r0 ∈ R(Vj , G) andr1 ∈ R(Vj+1, G). Note that good
processes inr0 decide0, and inr1 good processes decide1. For
i = 0, 1, let pi be the first good process to decide inri and let
G′ be any subset of sizenb that is disjoint fromG and contains
p0, p1 andj +1 (here we are using the fact thatnb > 2). Note
that the only difference betweenVj andVj+1 is the proposed
value of processj + 1. Moreover,j + 1 ∈ G′, so that process
j + 1 never takes any steps in any runs inR(Vj , G, G′) or in
R(Vj+1, G, G′). Therefore,R(Vj , G, G′) = R(Vj+1, G, G′).
Let r′ ∈ R(Vj , G, G′). If good processes inr′ decide0, let
r := r1 andV := Vj+1; otherwise, letr := r0 andV := Vj .
Then clearlyr and r′ satisfy conditions (1) and (2) of the
lemma.

Proof of Theorem 3 (Sketch).Let V , G, G′, r andr′ be as in
Lemma 2. Letp (resp.p′) be the first good process to decide inr
(resp.r′), lett (resp.t′) be the time when this decision happens
and letv (resp.v′) be the decision value. Thenv 6= v′ and
p ∈ G′. We now construct a new runr′′ of A as follows. The
proposed value of processes is given byV . Initially processes
in G do not take any steps and processes inΠ \G behave as in
runr. This goes on until timet (whenp decidesv). Messages
sent and not received by timet are delayed until after time
t + t′ + 1. At time t + 1, all processes inG′ stop taking steps,
and processes not inG ∪ G′ crash. At timet + 2, processes
not inG ∪ G′ recover. Note that at timet + 2, the state of all
processes not inG′ are as in runr′ at time 1 (this is because
processes could not use stable storage to keep intermediate
states of the computation). From timet + 2 to timet + t′ + 1,
processes not inG′ behave as in runr′ from time 1 to t′.
Thus, at timet + t′ + 1, processp′ decidesv′. After time
t+ t′ +1, (1) all processes take steps in a round-robin fashion,

9 This is possible because|Gau| = nb ≥ na.

(2) all messages ever sent are received, (3) the failure detector
behaves perfectly, i.e., at every process the tag of processes in
G ∪ G′ is AU and the tag of processes not inG ∪ G′ is EU.

Note thatr′′ is a run ofA in which all processes are good.
Moreover,p decidesv andp′ decidesv′ 6= v. This violates the
agreement property of consensus.ut

We now briefly outline the proof of Theorem 2. Letna ≤
nb. If nb = 0 thenna = 0 and it is easy to see that there can
be no consensus algorithm (since all processes may lose their
proposed values by crashing at the beginning). So letnb > 0.
Assume for a contradiction that there is a consensus algorithm
A that does not use stable storage (and uses�P).

Lemma 3. There existsV and disjoint subsets of processesG
andG′ of sizenb such that the decision value of good processes
in some runr ∈ R(V, G) is different from the decision value
of good processes in some runr′ ∈ R(V, G, G′).

Proof. The proof is similar to the proof of Lemma 2.

The rest of the proof of Theorem 2 uses Lemma 3 and other-
wise is similar to the proof of Theorem 3.

6 Solving consensus without stable storage

It turns out that ifna > nb, consensus can be solved without
stable storage using�Se. This is somewhat surprising since
na > nb allows a majority of processes to crash (and thus
lose all their states). Note that the requirement ofna > nb

is “tight”: in the previous section, we proved that ifna ≤ nb

consensus cannot be solved without stable storage even with
�P, a failure detector that is stronger than�Se.

The consensus algorithm that uses�Se is given in Ap-
pendix A. In this section, we present a more efficient algorithm
that uses a minor variant of�Se, denoted�S ′

e. The only differ-
ence between�Se and�S ′

e is that while the accuracy property
of �Se requires thatK be agoodprocess (see Sect. 3.2), the
accuracy property of�S ′

e additionally requires thatK be an
always-upprocess if such a process exists. It is worth noting
that the implementation of�Se in Appendix B also implements
�S ′

e.
The consensus algorithm that we give here always satisfies

the Uniform Agreement and Validity properties of uniform
consensus for any choice ofna andnb, and ifna > nb then it
also satisfies the Termination property.

This algorithm, shown in Fig. 2, is based on the rotat-
ing coordinator paradigm [3] and uses�S ′

e. It must deal with
unstable processes and link failures. More importantly, since
more than half of the processes may crash and completely lose
their states, and then recover, it must use new mechanisms to
ensure the “locking” of the decision value (so that successive
coordinators do not decide differently).10 We first explain how
the algorithm deals with unstable processes and link failures,
and then describe the algorithm and the new mechanisms for
locking the decision value.

How does a rotating coordinator algorithm cope with an
unstable coordinator? In [10,7] the burden is entirely on the

10 The standard technique for locking a value is to ensure that a
majority of processes “adopt” that value. This will not work here: a
majority of processes may crash and recover, and soall the processes
that adopted a value may later forget the value they adopted.

Failure detection and consensus in the crash-recovery model 107

For every processp:

1 Initialization :
2 Rp ← ∅; decisionvaluep ← ⊥; for all q ∈ Π \ {p} do xmitmsg [q]← ⊥
3 To s-send m to q:
4 if q 6= p then xmitmsg [q]← m; sendm to q elsesimulatereceivem from p

5 Task retransmit:
6 repeat forever
7 for all q ∈ Π \ {p} do if xmitmsg [q] 6= ⊥ then sendxmitmsg [q] to q

8 upon receivem from q do
9 if m = recovered then Rp ← Rp ∪ {q}
10 if m = (decisionvalue, decide) and decisionvaluep = ⊥ then
11 decisionvaluep ← decisionvalue; decide(decisionvaluep)
12 terminate task {skip round, 4phases, participant, coordinator, retransmit}
13 if m 6= (−, decide) and decisionvaluep 6= ⊥ then send(decisionvaluep, decide) to q

14 upon propose(vp): {p proposesvp via an external input containingvp}
15 (rp, estimatep, tsp)← (1, vp, 0); fork task {4phases, retransmit}
16 Task 4phases:
17 cp ← (rp mod n) + 1; fork task {skip round, participant}
18 if p = cp then fork task coordinator

19 Task coordinator:
20 {Stage 1: Phasenewround}
21 c seqp ← 0
22 repeat
23 PrevRp ← Rp; c seqp ← c seqp + 1
24 s-send (rp, c seqp, newround) to all
25 wait until [received(rp, c seqp, estimateq,
26 tsq, estimate) from
27 max(nb + 1, n− nb − |Rp|) processes]
28 until Rp = PrevRp

29 t← largesttsq such thatp received
30 (rp, c seqp, estimateq, tsq, estimate)
31 estimatep ← select oneestimateq such that
32 p received(rp, c seqp, estimateq, t, estimate)
33 tsp ← rp

44 Task participant:
45 {Stage 1: Phaseestimate}
46 s-send (rp, wakeup) to cp

47 max seqp ← 0
48 repeat
49 if received(rp, seq , newround) from cp

50 for someseq > max seqp then
51 s-send (rp, seq , estimatep, tsp, estimate) to cp

52 max seqp ← seq
53 until [received(rp, seq , estimatecp , newestimate)
54 from cp for someseq]
55 if p 6= cp then
56 (estimatep, tsp)← (estimatecp , rp)

34 {Stage 2: Phasenewestimate}
35 c seqp ← 0
36 repeat
37 PrevRp ← Rp; c seqp ← c seqp + 1
38 s-send (rp, c seqp, estimatep,
39 newestimate) to all
40 wait until [received(rp, c seqp, ack) from
41 max(nb + 1, n− nb − |Rp|) processes]
42 until Rp = PrevRp

43 s-send (estimatep, decide) to all

57 {Stage 2: Phaseack}
58 max seqp ← 0
59 repeat forever
60 if received(rp, seq , estimatecp , newestimate)
61 from cp for someseq > max seqp then
62 s-send (rp, seq , ack) to cp

63 max seqp ← seq

64 Task skip round:
65 d← Dp {query�S ′

e}
66 if cp ∈ d.trustlist \Rp then
67 repeatd′ ← Dp {query�S ′

e}
68 until [cp 6∈ d′.trustlist \Rp or d.epoch[cp] < d′.epoch[cp] or received some message(r, . . .) such thatr > rp)]
69 terminate task {4phases, participant, coordinator} {abort current round}
70 repeatd← Dp until d.trustlist \Rp 6= ∅ {query�S ′

e}
71 rp ← the smallestr > rp such that[(r mod n) + 1] ∈ d.trustlist \Rp andr ≥ max{r′| p received(r′, . . .)}
72 fork task 4phases {go to a higher round}
73 upon recovery:
74 decisionvaluep ← ⊥; for all q ∈ Π \ {p} do xmitmsg [q]← ⊥; fork task retransmit
75 s-send recovered to all

Fig. 2. Solving Consensus without Stable Storage using�S ′
e

108 M.K. Aguilera et al.

failure detector: it is postulated that every unstable process
is eventually suspected forever. In our algorithm, the failure
detector is not required to suspect unstable processes: they can
be trusted as long as their epoch number increases from time
to time — a requirement that is easy to enforce. If the epoch
number of the current coordinator increases at a process, this
process simply abandons this coordinator and goes to another
one.

To deal with the message loss problem, each processp has
a taskretransmitthat periodically retransmits the last message
sent to each process (only the last message really matters, just
as in [4,6,7]). This task is terminated oncep decides.

We now describe the algorithm in more detail. When a
process recovers from a crash, it stops participating in the al-
gorithm, except that it periodically broadcasts arecovered
message until it receives the decision value. When a process
p receives arecovered message fromq, it addsq to a set
Rp of processes known to have recovered.

Processes proceed in asynchronous rounds, each one con-
sisting of two stages. In the first stage, processes send awake-
up message to the coordinatorc so thatc can start the current
round (if it has not done so yet). The coordinatorc broadcasts a
newround message to announce a new round, and each pro-
cess sends its current estimate of the decision value — together
with a timestamp indicating in which round it was obtained —
toc. Thenc waits for estimates frommax(nb+1, n−nb−|Rc|)
processes — this is the maximum number of estimates thatc
can wait for without fear of blocking forever, because more
than nb processes are always-up and respond, and at most
nb + |Rc| processes have crashed and do not respond. Then
c checks whether during the collection of estimates it de-
tected the recovery of a process that never recovered before
(Rc 6= PrevRc). If so,c restarts the first stage from scratch.11

Otherwise,c chooses the estimate with the largest timestamp
as its new estimate and proceeds to the second stage.

In the second stage,c broadcasts its new estimate; when
a process receives this estimate, it changes its own estimate
and sends anack toc. Processc waits forack messages from
max(nb+1, n−nb−|Rc|) processes. As before,c restarts this
stage from scratch if during the collection ofacks it detected
the recovery of a process that never recovered before (Rc 6=
PrevRc). Finallyc broadcasts its estimate as the decision value
and decides accordingly. Once a process decides, it enters a
passive state in which, upon receipt of a message, the process
responds with the decision value.

A round r can be interrupted by taskskip round (which
runs in parallel with taskscoordinatorandparticipant): a pro-
cessp aborts its execution of roundr if (1) it suspects the co-
ordinatorc of roundr, or (2) it trustsc but detects an increase
in the epoch number ofc, or (3) it detects a recovery ofc, or
(4) it receives a message from a roundr′ > r. Whenp aborts
roundr, it jumps to the lowest roundr′ > r such that (1)p
trusts the coordinatorc′ of roundr′, (2) p has not detected a
recovery ofc′ (c′ 6∈ Rp) and (3)p has not (yet) received any
message with a round number higher thanr′.

The code in lines 31–33 is executed atomically, i.e., it can-
not be interrupted, except by a crash. As an obvious optimiza-

11 An obvious optimization is forc to checkduring the collection
of estimateswhetherRc 6= PrevRc. If so it can restart the first stage
right away.

tion, the coordinator of round1 can skip phasenewround
and simply set its estimate to its own proposed value. We omit
this optimization from the code.

The correctness of the algorithm relies on the following
crucial property: if the coordinator sends a decision forv in
some round, then valuev has previously been “locked”, i.e.,
in any later round, a coordinator can only choosev as its new
estimate. This property is ensured by two mechanisms: (1) the
coordinator usesmax(nb + 1, n − nb − |Rp|) as a threshold
to collect estimates andacks, and (2) the coordinator restarts
the collection of estimates andacks from scratch if it detects
a new recovery (Rc 6= PrevRc).

The importance of mechanism (2) is illustrated in Fig. 3: it
shows a bad scenario (a violation of the crucial property above)
that could occur if this mechanism is omitted. The system
consists of four processes{c, p, p′, c′}. Assume thatnb = 1
and there are at leastna = 2 processes that are always up. At
pointA, the coordinatorc of roundr sends its estimate0 to all,
and atB, it receivesacks from itself andp. At F , p′ recovers
from a crash and sends arecovered message to all. AtG, c
has received onerecovered message fromp′ (so|Rc| = 1)
and twoacks. Sincemax(nb + 1, n − nb − |Rc|) = 2, c
completes its collection ofacks (this is the maximum number
of acks thatc can wait for without fear of blocking), andc
sends a decision for0 to all in roundr. Meanwhile, atC, p
recovers from a crash and sends arecovered message to all,
andc′ receives this message beforeD. At D, c′ becomes the
coordinator of roundr′ > r and sends anewround message
to all. At E, c′ has received two estimates for1, one from itself
and one fromp′. Since it has also received onerecovered
message fromp, c′ completes its collection of estimates, and
chooses1 as its new estimate for roundr′ — even thoughc
sends a decision for0 in an earlier round.

The proof of the algorithm shows that mechanism (2) pre-
vents this and other similar bad scenarios. In this example, if
c had used mechanism (2), then atG it would have restarted
the collection ofacks from scratch becausePrevRc = ∅ 6=
{p′} = Rc.12

Theorem 4. The algorithm of Fig. 2 satisfies the Uniform Va-
lidity and Uniform Agreement properties of uniform consen-
sus. If at mostnb processes are bad, and more thannb pro-
cesses are always up, then it also satisfies the Termination
property.

The proof follows.

Definition 4. We say thatp is in roundr at timet if p does
not crash by timet and the value of variablerp at timet is r.
A processp starts roundr whenp assignsr to variablerp.

Lemma 4 (Uniform Validity). If a process decidesv then
some process previously proposedv.

Proof. Trivial. ut
Lemma 5. Suppose that in some roundr the coordinatorc
s-sends (est , decide) in line 43. In every roundr′ ≥ r, if
the coordinatorc′ selects a new estimate valueest ′ in line 31,
thenest = est ′.

12 It is not sufficient to use the restarting mechanism only for col-
lectingacks: a symmetric example shows that this mechanism must
also be used for collecting estimates.

Failure detection and consensus in the crash-recovery model 109

������

��������

������

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

F

D

Remarks:

- C: p sends RECOVERED to all
- B: c received (r, ACK) from c and p

- D: c’ sends (r’, NEWROUND) to all

- E: c’ received (r’, 1, ts, ESTIMATE) from c’ and p’,

- F: p’ sends RECOVERED to all

and c’ selects 1 as the new estimate

- G: c sends (0, DECIDE) to all

- A: c sends (r, 0, NEWESTIMATE) to all

Legend:

message sent and received message sent but delayed for a long time process is down

A B

p

p’

c’

c
G

- c is the coordinator in round r; c’ is the coordinator in round r’>r

E

C

Fig. 3. A bad scenario that can occur if mechanism (2) is not used

Proof. The proof is by induction on the round numberr′. The
claim trivially holds forr′ = r. Now assume that the claim
holds for allr′, r ≤ r′ < k. Let c′ be the coordinator of round
k. We will show that the claim holds forr′ = k, i.e., if c′
selects a new estimate valueest ′ in line 31 in roundk, then
est ′ = est .

Sincec s-sends (est , decide) in line 43 in roundr, c
executes the wait statement in line 40 only finitely often in
round r. Similarly, sincec′ executes line 31 in roundk, c′
executes the wait statement in line 25 only finitely often in
roundk. Thus the following definitions are valid:

• seqA, the value ofc seqc just afterc executes the wait
statement in line 40 for the last time in roundr.

• A, the subset of processes from whichc has received (r,
seqA,ack) by the timec exits the wait statement in line 40
for the last time in roundr.

• RA, the value of setRc just afterc executes the wait state-
ment in line 40 for the last time in roundr.

• seqE , the value ofc seqc′ just afterc′ executes the wait
statement in line 25 for the last time in roundk.

• E, the subset of processes from whichc′ has received
messages of the form (k, seqE , *, *, estimate) by the
time c′ exits the wait statement in line 25 for the last time
in roundk.

• RE , the value of setRc′ just afterc′ executes the wait
statement in line 25 for the last time in roundk.

We first claim that (1) processes inRA crash beforec starts
s-sending (r, seqA, est , newestimate) to any process in
roundr (line 38). Indeed, just afterc executes line 40 for the
last time in roundr, we have thatRA = Rc (by the definition of
RA) andRc = PrevRc (by the condition in line 42). There-
fore, PrevRc = RA. But all processes inPrevRc crashed
beforec startss-sending (r, seqA, est , newestimate). So
the claim follows.

Note that (2)|A| ≥ nb + 1 (this is due to the guard in
line 40). We now show thatA∩RA = ∅. By the previous claim,
if a processp ∈ RA thenp crashes beforec startss-sending
(r, seqA, est , newestimate), which happens before any
processs-sends (r, seqA, ack) to c. Sop crashes before any
processs-sends (r, seqA, ack) to c. Since after a process
crashes (and recovers) it cans-send only recovered or
decide messages, it follows thatp 6∈ A. Thus,A ∩ RA = ∅.

So, |A ∪ RA| = |A| + |RA|. By the threshold used to
collectacks in lines 40-41, we have|A| ≥ max(nb + 1, n −
nb − |RA|), and thus (3)|A ∪ RA| ≥ n − nb.

By analogous arguments we can show that (4)|E| ≥ nb+1
and (5)|E ∪ RE | ≥ n − nb.

We now show thatE ∩A 6= ∅. Suppose, for contradiction,
thatE ∩ A = ∅. By (3) and (4), we haveE ∩ (A ∪ RA) 6= ∅.
SinceE ∩ A = ∅, we haveE ∩ RA 6= ∅. Let p ∈ E ∩ RA.
Clearly, c′ startss-sending (k, seqE , newround) to pro-
cesses beforep receives such a message, which happens before
p s-sends a message of the form (k, seqE , *, *, estimate) to
c′ (p s-sends such message becausep ∈ E), which happens
beforep crashes (since after a process crashes and recovers, it
cans-send only recovered or decide messages), which
happens beforec startss-sending (r, seqA, est , newesti-
mate) to processes (this follows from the fact thatp ∈ RA and
Claim (1)). From all this, we conclude thatc′ startss-sending
(k, seqE , newround) beforec startss-sending (r, seqA,
est , newestimate).

By (2) and (5), we haveA ∩ (E ∪ RE) 6= ∅. By an ar-
gument analogous to the above one, we can conclude that
c startss-sending (r, seqA, est , newestimate) beforec′
startss-sending (k, seqE , newround). This is a contradic-
tion. Hence, we conclude thatE ∩ A 6= ∅.

Let p ∈ E ∩ A. By the definition ofA, p s-sends (r,
seqA, ack) to c in roundr. Before doing so,p updatestsp to

110 M.K. Aguilera et al.

r (line 33 or 56). By the definition ofE, for someest ′′ and
ts ′′, p s-sends (k, seqE , est ′′, ts ′′, estimate) to c′ in line 51
in roundk. Sincek > r and the value oftsp is nondecreasing,
we havets ′′ ≥ r. Moreover, it is easy to see thatc′ does not
receive any messages of the form (k, *, *, ts, estimate) with
ts ≥ k. So, the timestampt thatc′ selects in line 29 in round
k is such thatr ≤ t < k. Let q be the process whose estimate
value est ′ is selected in line 31 in roundk. Then in round
k, q s-sends (k, seqE , est ′, t, estimate). We claim that in
roundt, q updatesestimateq to est ′ in line 31 or 56. Indeed,
in round t, q updatesestimateq to some valueest ′′′ and q
updatestsq to t. After that,q does not changeestimateq and
tsq before roundk (because otherwise in roundk, tsq would
be different fromt andq would nots-sends (k, seqE , est ′, t,
estimate)). Thereforeest ′ = est ′′′.

Sinceq updatesestimateq toest ′ in roundt (line 31 or 56),
it is easy to see that the coordinator of roundt selectsest ′ as
the new estimate value in line 31. By the induction hypothesis,
we haveest ′ = est . This shows the induction step.ut
Lemma 6. If processesc and c′ s-send (est , decide) and
(est ′, decide) in line 43 in roundsr andr′, respectively, then
est = est ′.

Proof. Assume without loss of generality thatr′ ≥ r. Since
line 43 is executed only by the coordinator,c andc′ are the
coordinators of roundsr andr′, respectively. Sincec′ s-sends
(est ′, decide) in line 43 in roundr′, c′ selectsest ′ in line 31.
By Lemma 5,est = est ′. ut
Lemma 7 (Uniform Agreement). No two processes decide
differently.

Proof. Suppose that processesp andp′ decide on valuesest
andest ′, respectively. Processp decidesest in line 11 after re-
ceiving message(est , decide). By a simple induction, some
process must haves-sent message(est , decide) in line 43.
Similarly, processp′ decidesest ′ in line 11, and so some pro-
cess must haves-sent message(est ′, decide) in line 43. By
Lemma 6,est = est ′. ut
Lemma 8. A process can start only finitely many rounds.

Proof. In order to obtain a contradiction, suppose that there
are processes that start infinitely many rounds. LetP be the set
of all such processes.P contains only always-up processes,
since a process that crashes does not start any rounds ever
again (even if it recovers). For any processp ∈ P and any
roundr ≥ 1, p eventually starts a round higher thanr. Let r+

p

be the lowest round higher thanr thatp starts and letr−
p be

the highest round lower than or equal tor thatp starts. Then
1 ≤ r−

p ≤ r < r+
p .

By the Accuracy property of�S ′
e, we can find a timeT

and an always-up processK such that afterT , K is never
suspected by any good process and the epoch number ofK at
every good process stops changing.

Letr be a round such that (1)K is the coordinator of round
r, and (2) no process inΠ \P starts a round higher thanr, and
(3) for everyp ∈ P , p starts roundr−

p after timeT . Such round
clearly exists because processes inΠ \ P start only finitely
many rounds and processes inP start infinitely many rounds.

Let p be the first process to start a round higher thanr.
By (2), p ∈ P and by the definition ofr−

p andr+
p , p selects

roundr+
p when it executes line 71 in roundr−

p . This implies
thatr−

p = r: indeed, ifr−
p < r thenp does not select roundr+

p

in line 71; instead, it selects a round number that is at mostr
since (a)p trusts the coordinatorK of roundr (by (3) and the
definitions ofT andK), and (b)K 6∈ Rp (sinceK is always-
up), and (c)p does not receive any messages of a round higher
thanr (sincep is the first process to start a round higher than
r). Sor−

p = r. By (3), p starts roundr after timeT . By (1)
and the definition ofT andK, whilep is in roundr, condition
K ∈ d.trustlist \Rp in line 66 evaluates to true and condition
(K 6∈ d′.trustlist \ Rp or d.epoch[K] < d′.epoch[K]) in
line 68 always evaluates to false. Sincep starts a round higher
thanr, it does not loop forever in lines 67–68. Sop eventually
receives a message of a round higher thanr while in round
r. This contradicts the fact thatp is the first process to start a
round higher thanr. ut
Definition 5. We say thatan always-up processp blocks in
roundr if p starts roundr butp does not start a higher round,
andp never decides.

Lemma 9. If an always-up processp blocks in roundr, then
in this round its skipround task loops forever in lines 67–68.

Proof. Clearly, whilep is in roundr, its taskskip roundmust
loop forever in lines 67–68 or in line 70 (otherwisep starts
a round higher thanr). By the Accuracy property of�S ′

e, p
eventually trusts some always-up processc forever. Moreover
c 6∈ Rp sincec never crashes. Sop cannot loop forever in
line 70. Thereforep loops forever in lines 67–68.ut
Lemma 10. Suppose an always-up processp proposes but
never decides. Ifp receives a message of roundr, then even-
tually p starts some roundr′ ≥ r.

Proof. In order to obtain a contradiction, suppose thatp never
starts any roundr′ ≥ r. Sincep proposes,p starts some round
(namely, round1). Sincep does not decide,p blocks in some
roundr′′ < r. By Lemma 9, while in roundr′′ theskip round
task ofp loops forever in lines 67–68. Sincep receives a mes-
sage of roundr, p eventually exits the loop in lines 67–68 —
a contradiction. ut
Definition 6. We say that an eventually-up processstabilizes
at timet if it recovers at timet and does not crash afterwards.
By convention, we say that an always-up process stabilizes at
time0.

Lemma 11. Supposep and q are good processes. If (1)p
s-sendsm to q afterp stabilizes, (2)m is the last messagep
s-sends to q, and (3)p does not decide afterp stabilizes, then
q receivesm fromp infinitely often.

Proof. By (1), (2) and (3),p sendsm to q infinitely often in
taskretransmit(line 7). By the Fair Loss property of links,q
receives messages fromp infinitely often. Note thatm is the
only message thatp sends toq infinitely often: this is because
(1) in taskretransmit, p eventually sends no message different
from m to q, and (2) outside taskretransmit, p can only send
messages of the form(∗, decide) (line 13); however, such
messages are sent only finitely often sincep does not decide
after p stabilizes. Therefore, by the No Creation and Finite
Duplication properties of links,q receives fromp only finitely

Failure detection and consensus in the crash-recovery model 111

many messages different fromm. Sinceq receives messages
from p infinitely often, it follows thatq receivesm from p
infinitely often. ut

Lemma 12. Supposep andq are good processes. Ifp decides
after p stabilizes andp receives non-decide messages from
q an infinite number of times, then eventuallyq decides after
q stabilizes.

Proof. After p stabilizes and decides, every timep receives a
non-decide message fromq, p sends adecide message toq
(line 13). Thereforep sendsdecide messages toq infinitely
often. Moreover, this is the only message thatp sends toq
infinitely often (since afterp decides, it terminates all tasks).
By the link properties, this implies thatq receivesdecide
messages fromp infinitely often. Thus, eventuallyq decides
afterq stabilizes. ut

Lemma 13. If an always-up processp blocks in a roundr,
then the coordinatorc of this round is also an always-up pro-
cess. Moreover, ifp 6= c thenc receives messages of roundr
fromp infinitely often.

Proof. Note that ifp = c then the lemma holds trivially. So
assume thatp 6= c. We first prove thatc is a good process. In
order to obtain a contradiction, suppose thatc is bad. By the
Completeness and Monotonicity properties of�S ′

e, eventually
eitherc is suspected byp forever, or the epoch number ofc
at p is nondecreasing and unbounded. Therefore, in roundr,
p eventually exits the loop in lines 67–68. This contradicts
Lemma 9. Soc is a good process.

We now claim thatc receives messages of roundr from p
infinitely often. To show the claim, first note that in roundr, p
s-sends at least one message(r, wakeup) to c. If p s-sends
only finitely many messages in roundr, then letm be the last
messagep s-sends toc. By Lemma 11,c receives this message
from p infinitely often and this shows the claim. Ifp s-sends
infinitely many messages in roundr, thenp sends infinitely
many messages of roundr toc. Moreover,p sends only finitely
many messages that are not of roundr: this is because (1) in
task retransmit, p eventually sends only messages of round
r, and (2) outside taskretransmit, p can only send messages
of the form(∗, decide), and such messages are never sent
sincep never decides. By the link properties, this implies that
c receives messages of roundr from p infinitely often. This
shows the claim.

We now prove thatc is an always-up process. In order
to obtain a contradiction, suppose thatc is an eventually-up
process. Ifc decides afterc stabilizes then by Lemma 12p
eventually decides, and this contradicts the assumption thatp
blocks in roundr. Soc does not decide afterc stabilizes. Thenc
s-sends arecoveredmessage topaftercstabilizes, and this
is the last messagec s-sends top. By Lemma 11,p eventually
receives this message and addsc toRp. So eventually condition
c 6∈ d′.trustlist \ Rp in line 68 is true. Therefore, in roundr,
p’s skip round task cannot loop forever in lines 67–68. This
contradicts Lemma 9. Hencec is an always-up process.
ut

Lemma 14. If the coordinatorc of roundr is always-up and
blocks in roundr, thenc waits forever at line 25 or 40.

Proof. Sincec is the coordinator of roundr andc blocks in
round r, c loops forever in lines 22–28 or 36–42, because
otherwiseq s-sends a decide message to itself (line 43)
and then decides (line 11). Since setRc is finite andc never
removes any process fromRc, eventually conditionRc =
PrevRc in lines 28 or 42 is always true. Therefore,c waits
forever at line 25 or 40. ut
Lemma 15. Suppose every always-up process proposes. If
some good processp decides afterp stabilizes, then eventually
every good processq decides afterq stabilizes.

Proof. In order to obtain a contradiction, suppose that every
always-up process proposes and some good processp decides
afterp stabilizes, but there is some good processq that does
not decide afterq stabilizes. LetQ be the set of good processes
q such thatq does not decide afterq stabilizes.

We first claim thatQ contains only always-up processes.
In order to obtain a contradiction, suppose thatq ∈ Q for some
eventually-up processq. Then afterq stabilizes,q s-sends a
recoveredmessage to all processes, and in particular to pro-
cessp. This is the last messageq s-sends top. By Lemma 11,
p receivesrecovered messages fromq infinitely often. By
Lemma 12,q eventually decides afterq stabilizes. This con-
tradicts the assumption thatq ∈ Q.

So Q contains only always-up processes. By Lemma 8,
for everyq ∈ Q, q can start only finitely many rounds. Since
q proposes,q blocks in some roundrq. Let r = max{rq | q ∈
Q}, and letq ∈ Q be a process that blocks in roundr.

• Case 1:q is the coordinator of roundr. By Lemma 14,
q waits forever at line 25 or 40. Beforeq waits forever, it
s-sends a non-decide message top (line 24 or 38). By
Lemma 11,p receives this message infinitely often. By
Lemma 12,q eventually decides afterq stabilizes. This
contradicts the fact thatq ∈ Q.

• Case 2:q is not the coordinator of roundr. Let c 6= q
be the coordinator of roundr. By Lemma 13,c is an
always-up process andc receives messages of roundr
from q infinitely often. If c decides afterc stabilizes, then
by Lemma 12,q decides afterq stabilizes and this contra-
dicts the fact thatq ∈ Q. Soc does not decide afterc stabi-
lizes. Sincec is always-up,c never decides. By Lemma 10,
eventuallyc starts a roundr′ ≥ r. Sincec ∈ Q, by the
definition ofr, we have thatr′ ≤ r. Thusr′ = r and so
c blocks in roundr. By Case 1,c eventually decides — a
contradiction. ut

Henceforth, assume that at mostnb processes are bad, and
more thannb processes are always up.

Lemma 16. If every always-up process proposes a value, then
eventually some always-up process decides.

Proof. In order to obtain a contradiction, suppose that no
always-up process decides. By Lemma 8, every always-up
processp can start only finitely many rounds. Sincep pro-
poses,p blocks in some roundrp. Let r = max{rp | p is
always-up} and letp be an always-up process that blocks in
roundr.

• Case 1:p is the coordinator of roundr.
By Lemma 14,p waits forever at line 25 or 40.

112 M.K. Aguilera et al.

• Case 1.1:p waits forever at line 25.
Let seq be the value ofc seqp whenp waits forever at
line 25.
We first show that for every always-up processq, eventu-
ally p receives (r, seq , estimateq, tsq, estimate) from
q. Processp s-sends (r, seq , newround) to q (line 24)
beforep waits forever at line 25. We claim thatq receives
this message fromp andq eventually starts roundr. In-
deed, ifq = p, thenp receives this message from itself
(line 4) andp starts roundr by definition. If q 6= p, then
(r, seq , newround) is the last messagep s-sends to
q. By Lemma 11,q eventually receives this message. By
Lemma 10,q eventually starts a roundr′ ≥ r. By the def-
inition of r, we have thatr′ ≤ r. Thusr′ = r and soq
starts roundr.
Processq cannot receive anewestimate message of
roundr fromp, becausep waits forever at line 25 and never
s-sendsnewestimate messages. So the guard in line 53
is always false. Thusq loops forever in lines 48–53. Since
eventuallyq receives (r, seq , newround) from p and
seq > 0 is the largest value of variablec seqp in roundr,
eventuallyq s-sends (r, seq , estimateq, tsq, estimate)
top (line 51) and setsmax seqq to seq (line 52). We claim
thatp eventually receives this message fromq. Indeed, if
q = p, thenp receives this message from itself (line 4).
If q 6= p, then (r, seq , estimateq, tsq, estimate) is the
last messageq s-sends top. By Lemma 11,p eventually
receives this message fromq. Therefore for every always-
up processq, eventuallyp receives (r, seq , estimateq, tsq,
estimate) from q.
Since there are more thannb processes that are always
up, eventuallyp receives (r, seq , estimateq, tsq, esti-
mate) from at leastnb +1 processes. Moreover, for every
eventually-up processq, q does not decide afterq stabi-
lizes, otherwise by Lemma 15 every always-up process
decides. Afterq stabilizes,q s-sends arecovered mes-
sage to all (line 75). By Lemma 11,p eventually receives
this message fromq. Whenp receives this message from
q, p addsq to setRp (line 9). So eventuallyRp contains all
eventually-up processes. Since at mostnb processes are
bad, eventually the number of always-up processes is at
leastn − nb − |Rp|. Therefore, eventuallyp receives (r,
seq ,estimateq, tsq,estimate) from at leastn−nb−|Rp|
processes. Hence the guard in line 25 is true forever, and
p cannot wait forever at line 25 — a contradiction.

• Case 1.2:p waits forever at line 40.
Let seq be the value ofc seqp whenp waits forever at
line 40.
By an argument analogous to the one in Case 1.1, we
can show that: (1) for every always-up processq, p re-
ceives(r, seq , ack) from q; (2) eventuallyRp contains all
eventually-up processes. Therefore, since at mostnb pro-
cesses are bad, and more thannb processes are always up,
p receives(r, seq , ack) from max(nb +1, n−nb −|Rp|)
processes. Hencep cannot wait forever at line 40 — a
contradiction.

• Case 2:p is not the coordinator of roundr.
Let c 6= p be the coordinator of roundr. By Lemma 13,c
is an always-up process andc receives messages of round
r fromp infinitely often. By Lemma 10,c eventually starts
a roundr′ ≥ r. By the definition ofr, we have thatr′ ≤ r.

Thusr′ = r and soc blocks in roundr. In Case 1, we
showed that the coordinator of roundr does not block in
roundr — a contradiction. ut

Corollary 1 (Termination). If all good processes propose a
value, then they all eventually decide.13

Proof. By Lemmata 15 and 16.ut
Proof of Theorem 4.Immediate from Lemmata 4 and 7, and
Corollary 1. ut

7 Solving consensus with stable storage

We now present a consensus algorithm that uses stable storage
and�Su. It requires a majority of good processes and works
in systems with lossy links. If the good processes are not a
majority, a majority of processes may crash permanently, and
so consensus cannot be solved even with�P and reliable links
[3]. Note that requiring a majority of good processes is weaker
than requiringna > nb, and this is where having stable storage
pays off.

The basic structure of the algorithm (given in Fig. 4) is as
in [3,4] and consists of rounds of 4 phases each (task4phases).
In each roundr, initially the coordinatorc broadcasts anew-
round message to announce a new round, and each process
sends its current estimate of the decision value — together
with a timestamp indicating in which round it was obtained
— to c; c waits until it obtains estimates from a majority of
processes; it selects one with the largest timestamp and sends
it to all processes; every process that receives this new estimate
updates its estimate and timestamp accordingly, and sends an
acknowledgement toc; when c receives this acknowledge-
ment from a majority of processes, it sends its estimate as the
decision to all processes and then it decides. Once a process
decides, it stops tasks4phasesand retransmit, and enters a
passive state in which, upon receipt of a message, the process
responds with the decision value.

A round r can be interrupted by taskskip round (which
runs in parallel with taskscoordinatorandparticipant): a pro-
cessp aborts its execution of roundr if (1) it suspects the co-
ordinatorc of roundr, or (2) it trustsc but detects an increase
in the epoch number ofc, or (3) it receives a message from a
roundr′ > r. Whenp aborts roundr, it jumps to the lowest
roundr′ > r such thatp trusts the coordinator of roundr′
andp has not (yet) received any message with a round number
higher thanr′.

In each round, a processpaccesses the stable storage twice:
first to store the current round number, and later to store the
new estimate and its corresponding timestamp. Upon recov-
ery, p reads the stable storage to restore its round number,
estimate, and timestamp, and then restarts task4phaseswith
these values.

Note that in round 1, the coordinatorc can simply set its
estimate to itsown proposed value and skip the phase used
to select a new estimate (Phasenewround). It is also easy
to see that the coordinator does not have to store its round

13 In fact, it is clear that the following stronger property holds: if all
always-up processes propose, then every good process decides after
it stabilizes.

Failure detection and consensus in the crash-recovery model 113

For every processp:

1 Initialization :
2 for all q ∈ Π \ {p} do xmitmsg [q]← ⊥
3 To s-send m to q:
4 if q 6= p then xmitmsg [q]← m; sendm to q elsesimulatereceivem from p

5 Task retransmit:
6 repeat forever
7 for all q ∈ Π \ {p} do if xmitmsg [q] 6= ⊥ then sendxmitmsg [q] to q

8 upon propose(vp): {p proposesvp by writing it into stable storage}
9 (rp, estimatep, tsp)← (1, vp, 0)
10 fork task {4phases, retransmit}
11 Task 4phases:
12 store{rp}; cp ← (rp mod n) + 1; fork task {skip round, participant}
13 if p = cp then fork task coordinator

14 Task coordinator:
15 {Phasenewround}
16 if tsp 6= rp then
17 s-send (rp, newround) to all
18 wait until [received(rp, estimateq, tsq,
19 estimate) from d(n + 1)/2e processes]
20 t← largesttsq such thatp received
21 (rp, estimateq, tsq, estimate)
22 estimatep ← select oneestimateq such that
23 p received(rp, estimateq, t, estimate)
24 tsp ← rp

25 store{estimatep, tsp}

31 Task participant:
32 {Phaseestimate}
33 if tsp 6= rp then
34 s-send (rp, estimatep, tsp, estimate) to cp

35 wait until [received(rp, estimatecp ,
36 newestimate) from cp]
37 if p 6= cp then
38 (estimatep, tsp)← (estimatecp , rp)
39 store{estimatep, tsp}

26 {Phasenewestimate}
27 s-send (rp, estimatep, newestimate) to all
28 wait until [received(rp, ack) from
29 d(n + 1)/2e processes]
30 s-send (estimatep, decide) to all

40 {Phaseack}
41 s-send (rp, ack) to cp

42 Task skip round:
43 d← Dp {query�Su}
44 if cp ∈ d.trustlist then
45 repeatd′ ← Dp {query�Su}
46 until [cp 6∈ d′.trustlist or d.epoch[cp] < d′.epoch[cp] or received some message(r, . . .) such thatr > rp]
47 terminate task {4phases, participant, coordinator} {abort current round}
48 repeatd← Dp until d.trustlist 6= ∅ {query�Su to go to a higher round}
49 rp ← the smallestr > rp such that[(r mod n) + 1] ∈ d.trustlist andr ≥ max{r′| p received(r′, . . .)}
50 fork task 4phases

51 upon receivem from q do
52 if m = (estimate, decide) and decide(−) has not occurredthen {check stable storage aboutdecide}
53 decide(estimate) {decide is logged into stable storage}
54 terminate task {skip round, 4phases, participant, coordinator, retransmit}
55 if m 6= (−, decide) and decide(estimate) has occurredthen {check stable storage aboutdecide}
56 send(estimate, decide) to q

57 upon recovery:
58 for all q ∈ Π \ {p} do xmitmsg [q]← ⊥
59 if propose(vp) has occurredand decide(−) has not occurredthen {check stable storage aboutpropose anddecide}
60 retrieve {rp, estimatep, tsp}
61 if rp = ⊥ then rp ← 1; if estimatep = ⊥ then (estimatep, tsp)← (vp, 0)
62 fork task {4phases, retransmit}

Fig. 4. Solving Consensus with Stable Storage using�Su

114 M.K. Aguilera et al.

number in stable storage in this case. We omit these obvious
optimizations from the code.

The following regions of code are executed atomically:
lines 22–25 and 38–39.

Theorem 5. The algorithm of Fig. 4 satisfies the Uniform Va-
lidity and Uniform Agreement properties of uniform consen-
sus. If a majority of processes are good then it also satisfies
the Termination property.

The proof of this theorem has a similar structure as the
proof of Theorem 4, and is given in Appendix C.

8 Performance of the consensus algorithms

8.1 Time and message complexity in nice runs

We analyze the complexity of our algorithms with the op-
timization in which, in round 1, the coordinator chooses its
own estimate and sends it without waiting for estimates from
other processes. In most executions of consensus in practice,
no process crashes or recovers, no message is lost, the fail-
ure detector does not make mistakes, and message delay is
bounded by some knownδ (including the message processing
times). In such “nice” executions, our two algorithms (with
and without stable storage) achieve consensus within3δ: it
takes oneδ for the coordinator to broadcastnewestimate
messages, oneδ for processes to respond withacks, and an-
other δ for the coordinator to broadcastdecide messages.
By adding appropriate delays in theretransmittask, so that a
message is retransmitted only2δ time units after it is sent, pro-
cesses send a total of4(n − 1) messages: in the algorithm of
Sect. 6, there aren − 1 messages for each ofwakeup, new-
estimate, ack, anddecide; in the algorithm of Sect. 7,
there aren − 1 messages for each of the typesestimate,
newestimate, ack, anddecide.

In contrast, in nice executions the consensus algorithms of
[10,7] reach decision within2δ and withO(n2) messages. So,
compared to our algorithms, they gain oneδ in the decision
time, at the cost of increasing the message complexity from
O(n) to O(n2). Roughly speaking, this is achieved by dis-
tributing the task of collectingack’s: in our algorithms, the
ack’s are sent to the coordinator who counts whether there
are enough of them to send adecide to all (this takes2δ and
O(n) messages), while in [10,7] everyack is broadcast to all
processes: each process can then do the counting and deciding
by itself (this takes oneδ andO(n2) messages).

8.2 Quiescence

An algorithm isquiescentif eventually all processes stop send-
ing messages [1]. It is clear that no consensus algorithm can
be quiescent in the presence of unstable processes (each time
such a process recovers, it must be sent the decision value,
at which point it may crash again and lose this message; this
scenario can be repeated infinitely often). If no process is un-
stable, our consensus algorithms are quiescent despite process
crashes and message losses (provided all good processes pro-
pose a value).

9 Repeated consensus

In Sects. 6 and 7, and Appendix A, we give algorithms that
solve a single instance of consensus. This is appropriate for
settings where for each instance of consensus, a distinct set of
processes is created to execute it (for example, an application
may spawn a new set of processes for each consensus that it
wants to do). In other settings, it is necessary for thesameset
of processes to execute repeated (and concurrent) instances of
consensus. We now describe how to modify our algorithms to
handle this case.

To separate the multiple instances of consensus, each in-
stance must have a unique identifier, and all proposals, deci-
sions, and messages associated with a particular instance of
consensus are tagged with the corresponding identifier. This
is the only change necessary for the consensus algorithm that
uses stable storage (shown in Fig. 4 in Sect. 7).

For the algorithms that do not use stable storage (Fig. 2
in Sect. 6 and Fig. 6 in Appendix A), we can also apply the
above modification, except thatrecovered messages are
not tagged with instance identifiers (such messages cannot be
tagged since a process that recovers has lost all its state). In
principle, this modification still works, but in this case the
resulting algorithms are not practical because of the following
reasons.

A process that recovers from a crash stops participating in
all subsequent instances of consensus. For a long-lived appli-
cation this is impractical, since every process is likely to crash
and recover at least once during the life of the application, and
so eventually no process will remain to run new instances of
consensus. Moreover, when a process recovers from a crash,
it repeatedly sends arecovered message to get the decision
values that it may have “missed” while it was down. When a
process receives such a message, it replies withall the decision
values that it knows — this is also impractical.

To solve the above problems, we now assume that stable
storage is available, but each process uses itonly to store its
proposals and decisions (processes do not use it to store any in-
termediate state, and so, by Theorem 3, solving consensus still
requires thatna > nb). When a process recovers from a crash,
it first checks its stable storage to determine which instances of
consensus it was executing when it crashed, i.e., the instances
for which it proposed a value but did not yet decide. Then, for
each such instanceI, it sends arecovered message tagged
with I, and stops participating inI. With such messages, each
processp can now maintain a setRI

p of processes that it knows
to have crashed and recoveredwhile executing instanceI, and
it usesRI

p instead ofRp.RI
p is initialized to the empty set when

p proposes a value for instanceI, and is updated every time
p receives arecovered message tagged withI. Finally, if
a process receives arecovered message tagged withI and
knows the decision value of instanceI, then it replies with this
decision value.

With these modifications, a process that crashes and re-
covers can participate in subsequent instances of consensus.
Moreover, the algorithm no longer requires that at leastnb +1
processes be always up throughout the lifetime of the system.
Instead, it is sufficient that foreach instanceI of consensus, at
leastnb + 1 processes remain up from the time they propose
a value forI (to the time they all decide).

Failure detection and consensus in the crash-recovery model 115

10 Transforming �Se into �Su

Figure 5 shows an algorithm to transformD ∈ �Se into D′ ∈
�Su.14 This transformation works in any asynchronous system
with crash and recoveries, provided a majority of processes are
good. It does not require any stable storage.

Recall that bothD andD′ require the existence of a good
processK such thatK is eventually trusted forever by all good
processes andK ’s epoch number at all good processes stops
increasing. The difference betweenD andD′ is that, while
D allows unstable processes to suspectK or to keep increas-
ing K ’s epoch number,D′ requires all unstable processes to
eventually trustK forever and to stop increasingK ’s epoch
number.

We now explain the main ideas of the algorithm. The out-
put of D′ consists of a trustlist, and epoch numbers for each
process on that list. The algorithm maintains the trustlists ofD′
as follows. At each processp, initially and every timep recov-
ers, the trustlist ofp includes all processes. Processp removes
a process from itsD′-trustlist only if it finds out that a major-
ity of processesD-suspect this process. With this scheme, if a
processK is D-trusted by all the good processes, thenK will
beD′-trusted byp — even ifp is unstable — as required by
D′ ∈ �Su.

How doesp maintain an epoch number for each process in
its D′-trustlist? A naive approach would be forp to increment
the D′-epoch number of a processq every timep finds out
that theD-epoch number ofq has increased at a majority of
processes. But this does not work, as we now explain. Letu
be an unstable process. Suppose that: (a)n/4 good processes
D-suspectu, (b) n/4 + 1 good processesD-trust u while
continually increasing itsD-epoch number, and (c) all other
processes have crashed permanently. In this case: (1) there is
no majority thatD-suspectsu, and (2) there is no majority that
D-trustsu and increments itsD-epoch number. From (1), a
good processp keepsD′-trustingu (see previous paragraph).
From (2) and the naive way of generating theD′-epoch num-
bers, theD′-epoch number ofu atp stops changing. Sop keeps
D′-trustingu and stops increasing itsD′-epoch number — a
violation of the Completeness property ofD′ ∈ �Su.

To overcome this problem,p increases theD′-epoch num-
ber of a processq every time it finds out that the number of
processes that “dislike”q is a majority; a processdislikesq if
it D-suspectsq or it D-trustsq but increases itsD-epoch num-
ber. This scheme ensures that theD′-epoch number ofu keeps
on increasing. This also ensures that theD′-epoch number of
K stops changing.

In the algorithm,p stores inlatestp[q] the latest output of
D thatp received fromq (it is initialized to⊥).

Theorem 6. If a majority of processes are good, then the al-
gorithm in Fig. 5 transforms�Se into �Su.

We now proceed with the proof. Assume that a majority
of processes are good. Throughout this proof, letK be some
process such that eventually: (1)K is permanentlyD-trusted
by all good processes and (2) theD-epoch number ofK at each
good process stops changing. The existence ofK is guaranteed
by the accuracy property ofD ∈ �Se.

14 As explained in [3], a transformation algorithmTD→D′ uses
failure detectorD to maintain at each processp a variableD′

p that
emulates the output ofD′ atp.

Lemma 17 (Monotonicity). At every good process, eventu-
ally theD′-epoch numbers are nondecreasing.

Proof. Clear because, after a good processp stabilizes, for
every processq, epochp[q] can only be incremented.ut
Lemma 18. For every good processg, eventuallyg perma-
nentlyD′-trustsK.

Proof. Suppose for a contradiction thatg D′-suspectsK in-
finitely often. Good processes send messages tog infinitely
often, so by the Fair Loss property of links,g receives mes-
sages from good processes infinitely often. Thus,g executes
line 17 infinitely often as well. Wheng executes line 17, itD′-
suspectsK precisely if there is a majority of processesq such
thatlatestg[q] 6= ⊥ andK 6∈ latestg[q].trustlist . Since there
is a majority of good processes, every time thatg executes
line 17 andD′-suspectsK, there is some good processq such
thatK 6∈ latestg[q].trustlist . Thus, for some good processq,
K 6∈ latestg[q].trustlist holds infinitely often.

Sinceq is good, eventuallyK is permanentlyD-trusted by
q. Then, by the No Creation and Finite Duplication properties
of links, eventuallyg receives no messagedq fromq with K 6∈
dq.trustlist . Sinceg receives an infinite number of messages
from q, eventuallyK ∈ latestg[q].trustlist holds forever —
a contradiction. ut
Lemma 19. For every unstable processu, eventually when-
everu is up,u D′-trustsK.

Proof. Suppose for a contradiction thatu D′-suspectsK in-
finitely often. Every timeu recovers,u setsD′

p.trustlist toΠ,
and so sinceu D′-suspectsK infinitely often, it must execute
line 17 infinitely often as well. Whenu executes line 17, it
D′-suspectsK precisely if there is a majority of processesq
such thatlatestu[q] 6= ⊥ andK 6∈ latestu[q].trustlist . Since
there is a majority of good processes, every time thatu exe-
cutes line 17 andD′-suspectsK, there is some good processq
such thatlatestu[q] 6= ⊥ andK 6∈ latestg[q].trustlist . Thus,
for some good processq, (1) latestu[q] 6= ⊥ and (2)K 6∈
latestu[q].trustlist hold infinitely often.

Whenu recovers, it setslatestu[q] to⊥ and, since (1) holds
infinitely often, u must setlatestu[q] to a non-⊥ value in-
finitely often. Sou receives messages fromq infinitely often.
Sinceq is good, eventuallyK is permanentlyD-trusted by
q. Then, by the No Creation and Finite Duplication proper-
ties of links, eventuallyu receives no messaged from q with
K 6∈ d.trustlist . Sinceu receives messages fromq infinitely
often, eventuallyK ∈ latestu[q].trustlist holds forever. This
contradicts the fact that (2) holds infinitely often.ut
Lemma 20. For every good or unstable processp, eventually
K ’s epoch number atp stops changing.

Proof. Suppose for a contradiction thatK ’s epoch number atp
never stops changing. Thenp incrementsepochp[K] in line 15
infinitely often. So,|dislikep[K]| > n/2 holds infinitely of-
ten, anddislikep[K] is reset to∅ infinitely often. This implies
that there exists a majorityM of processes such that for every
q ∈ M , p infinitely often receives a valuedq from q such that
either (1)K 6∈ dq.trustlist or (2) (latestp[q] 6= ⊥ andK ∈
latestp[q].trustlist anddq.epoch[K] > latestp[q].epoch[K]).

116 M.K. Aguilera et al.

1 For every processp:

2 Initialization and upon recovery:
3 D′

p.trustlist ← Π
4 for all q ∈ Π do
5 D′

p.epoch[q]← 0; epochp[q]← 0; dislikep[q]← ∅; latestp[q]← ⊥
6 repeat forever
7 dp ← Dp {queryD}
8 senddp to all processes

9 upon receivedq from q do
10 for all r ∈ Π do
11 if r 6∈ dq.trustlist or (latestp[q] 6= ⊥ and r ∈ latestp[q].trustlist and dq.epoch[r] > latestp[q].epoch[r])

{p determines ifq dislikesr (i.e.,q does notD-trustr or q increased theD-epoch number ofr)}
12 then dislikep[r]← dislikep[r] ∪ {q}
13 if |dislikep[r]| > n/2 then {if a majority dislikesr, p increases theD′-epoch number ofr}
14 dislikep[r]← ∅
15 epochp[r]← epochp[r] + 1
16 latestp[q]← dq

17 D′
p.trustlist ← {s : |{r : latestp[r] 6= ⊥ and s 6∈ latestp[r].trustlist}| ≤ n/2}

{outputD′-trust list:p D′-trusts all the processes that are notD-suspected by a majority}
18 for all r ∈ D′

p.trustlist do
19 D′

p.epoch[r]← epochp[r] {outputD′-epoch numbers}

Fig. 5. TransformingD ∈ �Se intoD′ ∈ �Su

Since a majority of processes is good, there exists a good pro-
cessq ∈ M . By the No Creation and Finite Duplication prop-
erties of the links,q infinitely often sends a valuedq such that
either (1) or (2) holds. This implies that eitherq D-suspects
K infinitely often or theD-epoch number ofK atq increases
infinitely often. Sinceq is a good process, this contradicts the
definition ofK. ut

Henceforth, letb be a fixed bad process. The Complete-
ness and Monotonicity properties of�Se guarantees that for
each good processg either (1) eventuallyg permanentlyD-
suspectsb; or (2) eventually theD-epoch number ofb at g is
nondecreasing and unbounded.

Lemma 21. For every good processesp andq, line 11 evalu-
ates to true infinitely often forr = b.

Proof. First note that line 11 is executed an infinite number
of times sincep receives messages fromq infinitely often
(this follows from the Fair Loss property of links). Suppose
that conditionb 6∈ dq.trustlist does not hold infinitely often.
Then eventuallyb ∈ dq.trustlist holds forever. So, eventu-
ally all failure detector values thatp receives fromq contain
b in its trustlist. Sincep eventually stops crashing, eventu-
ally conditionslatestp[q] 6= ⊥ andb ∈ latestp[q].trustlist
are always true. Moreover, by the No Creation and Finite
Duplication properties of links,q infinitely often sends fail-
ure detector values containingb in its trustlist. Thereforeq
D-trustsb infinitely often. By the Completeness and Mono-
tonicity properties of�Se, eventually theD-epoch number
of b at q is nondecreasing and unbounded. This implies that
dq.epoch[b] > latestp[q].epoch[b] evaluates to true in line 11
an infinite number of times. ut
Lemma 22. For every good processg, epochg[b] is unboun-
ded.

Proof. Let t0 be the time after whichg does not crash. Af-
ter t0, epoch[b] is nondecreasing. For every good process

g′, g receives messages fromg′ infinitely often, so it exe-
cutes line 11 infinitely often as well. So, by Lemma 21,g′
is added into setdislikeg[b] an infinite number of times in
line 12. By the assumption that a majority of processes are
good, |dislikeg[b]| > n/2 evaluates to true infinitely often
and thusepochg[b] grows unboundedly. ut
Lemma 23. For each good processg, either (1) eventuallyg
permanentlyD′-suspectsb; or (2) theD′-epoch number ofb
at g is unbounded.

Proof. Let g be any good process and suppose that (1) does
not hold. Thereforeg D′-trustsb an infinite number of times.
Every timeg D′-trustsb, it sets theD′-epoch number ofb to
epochg[b]. The result now follows from Lemma 22.

Proof of Theorem 6.The Monotonicity property ofD′ follows
from Lemma 17. Strong Accuracy follows from Lemmata 18,
19 and 20. Completeness follows from Lemma 23.ut

A. Solving consensus without stable storage using�Se

Figure 6 shows the algorithm that solves consensus without
stable storage using�Se (it is less efficient than the one that
uses�S ′

e in Sect. 6). This algorithm always satisfies the Uni-
form Agreement and Validity properties of uniform consensus,
and if the number of processes that are always up is more than
nb, then it also satisfies the Termination property.

In each roundk, each processp starts by repeatedly send-
ing its estimate to the current coordinatorc (this estimate is
called thek-suggestion ofp). Whenc receives ak-suggestion,
it responds with thefirst k-suggestion that it received. Process
p waits for a response from the coordinator until it suspects
c or detects an increase in the epoch number ofc. If p re-
ceives a response fromc, it updates its estimate to that value.
Then,p sets itsreport [k] variable to its current estimate —

Failure detection and consensus in the crash-recovery model 117

For processp:

1 Initialization :
2 rp ← 0; Rp ← ∅
3 for all i ∈ N do
4 reportp[i]← ⊥; proposalp[i]← ⊥; coord estp[i]← ⊥
5 upon propose(vp): {p proposesvp via an external input containingvp}
6 repeat forever
7 rp ← rp + 1
8 cp ← (rp mod n) + 1
9 repeat send(rp, vp, suggestion) to cp

10 until [for somew receive(rp, w, estimate) from cp or suspectcp or epoch number ofcp increases]
11 if for somew receive(rp, w, estimate) from cp then vp ← w
12 reportp[rp]← vp

13 RV p[rp]← collect(report)
14 if for somew, RV p[rp] = {w} then proposalp[rp]← w elseproposalp[rp]← λ

15 PV p[rp]← collect(proposal)
16 if for somew 6= λ, w ∈ PV p[rp] then vp ← w
17 if for somew 6= λ, PV p[rp] = {w} then decide(w)
18 procedure collect(valtype)
19 seqp ← 0
20 repeat
21 PrevRp ← Rp; seqp ← seqp + 1
22 repeat send(rp, seqp, valtype, request) to all
23 until [received messages of the form(rp, seqp, ∗, valtype) from max(nb + 1, n− nb − |Rp|) processes]
24 until Rp = PrevRp

25 return ({ v : received(rp, seqp, v, valtype) })
26 upon receiverecovered from q do
27 Rp ← Rp ∪ {q}
28 upon receive(rq, vq, suggestion) from q do
29 if coord estp[rq] = ⊥ then coord estp[rq]← vq

30 send(rq, coord estp[rq], estimate) to q

31 upon receive(rq, seqq, report, request) from q do
32 if reportp[rq] 6= ⊥ then send(rq, seqq, reportp[rq], report) to q

33 upon receive(rq, seqq, proposal, request) from q do
34 if proposalp[rq] 6= ⊥ then send(rq, seqq, proposalp[rq], proposal) to q

35 upon recovery:
36 for all i ∈ N do
37 reportp[i]← ⊥; proposalp[i]← ⊥; coord estp[i]← ⊥
38 repeat forever
39 sendrecovered to all

Fig. 6. Solving Consensus without Stable Storage using�Se

this is thek-report ofp. After this,p collects thek-reports of
other processes (the collect procedure is explained below). If
all the collectedk-reports are for thesamevalue, thenp sets
its proposal [k] variable to that value; otherwise,p sets it to
the special value “λ” (which cannot be one of the proposed
values) — this is thek-proposal ofp. Then,p collects the
k-proposals of other processes. Ifsomecollectedk-proposal
w is different fromλ, thenp sets its estimate tow (we will
show that it cannot collect two distinctk-proposals different
from λ). Moreover, ifall collectedk-proposals are forw, p
decidesw.

When a process recovers from a crash, it stops participat-
ing in the algorithm except that: (1) it periodically broadcasts a
recovered message, and (2) if asked to act as the coordina-
tor for some roundr (by receiving anr-suggestion) it will do

so. When a processp receives arecovered message from
some processq, it addsq to a setRp of processes known to
have recovered.

To collectk-reports, a processp invokes procedurecol-
lect(report). In this procedure,p repeatedly sends requests
for thek-reports of other processes; when a process receives
such a request, it sends back itsk-report if it is different from
⊥. After p has receivedk-reports frommax(nb +1, n−nb −
|Rp|) processes, it checks whether during the collection of
k-reports it detected the recovery of a process that never re-
covered before (Rp 6= PrevRp). If so, p restarts the collec-
tion of k-reports from scratch; else,p returns from procedure
collect(report). Processp collectsk-proposals in a similar
way.

118 M.K. Aguilera et al.

To illustrate the main ideas of the algorithm, we made
two simplifications. First, we did not require that allgood
processes decide: in fact, this algorithm only guarantees that all
always-upprocesses eventually decide. Second, we assumed
that links satisfy the followingPer-Message Fair Lossproperty
(instead of theFair Lossproperty of Sect. 2.5): if a processp
sends a messagem to a good processq an infinite number of
times, thenq receivesm from p an infinite number of times.15

We later remove these two simplifications by modifying the
algorithm so that: (1) all good processes eventually decide (and
eventually stop executing the algorithm), and (2) the algorithm
works with links that satisfy the Fair Loss property of Sect. 2.5.

Theorem 7. The algorithm of Fig. 6 satisfies the Uniform Va-
lidity and Uniform Agreement properties of uniform consen-
sus. Moreover, suppose that at mostnb processes are bad,
more thannb processes are always up, and links satisfy the
Per-Message Fair Loss property. If all always-up processes
propose a value, then they all eventually decide.

The proof follows.

Definition 7. We say thatp is in roundr at timet if p does
not crash by timet and the value of variablerp at timet is
r. A processp starts roundr whenp sets variablerp to r in
line 7. Processp reaches the end of roundr if p completes the
execution of the loop in lines 7–17 in roundr.

Definition 8. We say thatp k-reportsv if it setsreportp[k] to
v in line 12 in roundk. Similarly, we say thatp k-proposesv
if it setsproposalp[k] to v in line 14.

Definition 9. We say thatp completes the collection ofk-
reportsif it returns from the invocation ofcollect(report)
and setsRV p[k] to the return value in line 13 in roundk. Sim-
ilarly, we say thatp completes the collection ofk-proposalsif
it returns from the invocation ofcollect(proposal) and sets
PV p[k] to the return value in line 15 in roundk.

Lemma 24 (Uniform Validity). If a process decidesv then
some process previously proposedv.

Proof. A simple but tedious induction shows that the vari-
ablevp of any processp is always set to some value that was
previously proposed by some process. Moreover, clearly the
decision value is the value of variablevp of some processp at
some time.

Lemma 25. For any processesp andq that complete the col-
lection ofk-reportsRV p[k] ∩ RV q[k] 6= ∅.

Proof. For any processp that completes the collection ofk-
reports,p invokescollect(report) and returns from this in-
vocation. During this invocation, consider the time whenp
executes line 24 for the last time, and at this time let:

• sp be the value ofseqp;
• Pp be the subset of processes from whichp has received

(k, sp, ∗, report);
• Rp, the value of setRp.

15 The Fair Loss and Per-Message Fair Loss properties of links are
called Weak Loss Limitation and Strong Loss Limitation, respec-
tively, in [8].

Clearly, to show thatRV p[k] ∩ RV q[k] 6= ∅, it is suffi-
cient to show thatPp ∩ Pq 6= ∅. We first claim that (1) pro-
cesses inRp crash beforep starts sending (k, sp, report,
request) to any process in roundk (line 22). Indeed, when
p executes line 24 for the last time during its invocation of
collect(report) in round k, we have thatRp = Rp (by
the definition ofRp) andRp = PrevRp (by the condition in
line 24). Therefore,PrevRp = Rp. All processes inPrevRp

crash beforep starts sending (k, sp, report, request), and
so the claim follows.

Note that (2)|Pp| ≥ nb + 1 (this is due to the guard in
line 23). We now show thatPp ∩ Rp = ∅. Let p′ ∈ Rp. By
the previous claim,p′ crashes beforep starts sending (k, sp,
report, request). This happens before any process sends
(k, sp, ∗, report) to p. So p′ crashes before any process
sends (k, sp, ∗, report) to p. Since after a process crashes
(and recovers) it does not sendreport messages, it follows
thatp′ 6∈ Pp. Thus,Pp ∩ Rp = ∅.

So,|Pp ∪ Rp| = |Pp| + |Rp|. By the threshold in line 23,
we have|Pp| ≥ max(nb+1, n−nb−|Rp|), and thus (3)|Pp∪
Rp| ≥ n − nb.

By the same argument, we have (4)|Pq| ≥ nb + 1 and
(5) |Pq ∪ Rq| ≥ n − nb.

Now suppose, in order to obtain a contradiction, thatPp ∩
Pq = ∅. By (3) and (4), we havePq ∩ (Pp ∪ Rp) 6= ∅. Since
Pp∩Pq = ∅, we havePq∩Rp 6= ∅. Letp′ ∈ Pq∩Rp. Clearly,q
starts sending (k, sq, report, request) to processes before
p′ receives such a message, which happens beforep′ sends a
message of the form (k, sq, ∗, report) to q (p′ sends such
message becausep′ ∈ Pq), which happens beforep′ crashes
(since after a process crashes and recovers, it does not send
report messages), which happens beforep starts sending (k,
sp, report, request) to processes (this follows from the
fact thatp′ ∈ Rp and Claim (1)). From all this, we conclude
thatq starts sending (k,sq,report,request) beforep starts
sending (k, sp, report, request).

By (2) and (5), we havePp ∩ (Pq ∪ Rq) 6= ∅. By an
argument analogous to the one above, we can conclude that
p starts sending (k, sp, report, request) beforeq starts
sending (k, sq, report, request). This is a contradiction.
Hence, we conclude thatPp ∩ Pq 6= ∅.

Lemma 26. If p andq k-proposev 6= λ andv′ 6= λ, respec-
tively, thenv = v′.

Proof. If p k-proposesv 6= λ, thenp setsproposalp[k] to v
in line 14. ThusRV p[k] = {v}. Similarly we haveRV q[k] =
{v′}. By Lemma 25,RV p[k] ∩ RV q[k] 6= ∅. Therefore,v =
v′.

Lemma 27. If p completes the collection ofk-proposals, then
PV p[k] contains at most one value different fromλ.

Proof. In order to obtain a contradiction, suppose that this is
not true, i.e., there existv 6= λ andv′ 6= λ such thatv 6= v′
andv, v′ ∈ PV p[k]. Every value inPV p[k] is k-proposed by
some process, so there exist processesq andq′ thatk-proposev
andv′, respectively. By Lemma 26,v = v′ — a contradiction.

Lemma 28. For any processesp andq that complete the col-
lection ofk-proposals,PV p[k] ∩ PV q[k] 6= ∅.

Failure detection and consensus in the crash-recovery model 119

Proof. This proof is similar to the proof of Lemma 25.

Lemma 29. If in round k some processp decidesv, then all
processesq that reach the end of roundk set variablevq to v
in line 16. Moreover, ifq decidesv′ in roundk thenv = v′.

Proof. Since in roundk p decidesv, thenv 6= λ andPV p[k]
= {v}. For every processq that reaches the end of round
k, q completes the collection ofk-proposals, and thus by
Lemma 28,v ∈ PV q[k]. By Lemma 27,v is the only value in
PV q[k] different fromλ, soq sets variablevq to v in line 16.
Moreover, sincev ∈ PV q[k], if q decidesv′ thenv = v′.

Lemma 30. If all processesp that reach the end of roundk
set variablevp to v in line 16, then all processes that(k + 1)-
report a value(k + 1)-reportv.

Proof. This is clear from the fact that every value(k + 1)-
reported is the value of variablevp at the end of roundk for
some processp.

Lemma 31. If all processes thatk-report a valuek-report the
same valuev, then all processesp that reach the end of round
k set variablevp to v in line 16 and decidev.

Proof. First note that processes cannotk-report λ, because
no processp can set its variablevp to λ at any time. If all
processes thatk-report a valuek-report the same valuev, then
for all processesp that complete the collection ofk-reports,
RV p[k] = {v}. Thus all processes thatk-propose a valuek-
propose the same valuev. Therefore, for all processesp that
complete the collection ofk-proposals,PV p[k] = {v}. Since
v 6= λ, all processesp that reach the end of roundk set variable
vp to v in line 16 and decidev.

Lemma 32 (Uniform Agreement).No two processes decide
differently.

Proof. Suppose processp decidesv in roundk and processq
decidesv′ in roundk′. We show thatv = v′.

Assume without loss of generality thatk ≤ k′. If k =
k′, thenv′ = v by Lemma 29. Now supposek < k′. By
Lemma 29, all processesp′ that reach the end of roundk
set variablevp′ to v in line 16. By Lemma 30, all processes
that(k +1)-report a value(k +1)-reportv. By Lemma 31, all
processesp′ that reach the end of roundk+1 set variablevp′ to
v in line 16 and decidev. By repeatedly applying Lemmata 30
and 31, we conclude that all processes that reach the end of
round k′ decidev. Sinceq reaches the end of roundk′, it
decidesv in roundk′, and sov = v′.

Henceforth assume that at mostnb processes are bad, more
than nb processes are always up, and links satisfy the Per-
Message Fair Loss property.

Lemma 33. If an always-up processp starts a roundk, then
eventually itk-reports a value.

Proof. In order to obtain a contradiction, suppose thatp never
k-reports any value. Thenp loops forever in lines 9–10 in
roundk. Let c be the coordinator of roundk. If c is a bad
process, then according to the Monotonicity and Completeness
property of�Se, either eventuallyp permanently suspectsc or
the epoch number ofc at p is nondecreasing and unbounded.

Thus eventually the guard in line 10 is true andp does not
loop forever in lines 9–10. Soc is a good process. Processp
sends(k, vp, suggestion) toc infinitely often (line 9). By the
Per-Message Fair Loss property,c receives this message from
p infinitely often. Sincec is a good process, there is a timet
after whichc does not crash. After timet, every timec receives
(k, vp, suggestion) fromp, c sends the same message(k, w,
estimate) to p. Soc sends(k, w, estimate) to p infinitely
often. By the Per-Message Fair Loss property,p eventually
receives this message. Therefore,p does not loop forever in
lines 9–10 — a contradiction.

Lemma 34. If all always-up processesk-report a value, then
eventually they allk-propose a value.

Proof. In order to obtain an contradiction, suppose that all
always-up processesk-report a value, but there is an always-up
processp that neverk-proposes any value. Sop never returns
from the invocation ofcollect(report) in roundk. Process
p loops forever either in lines 20–24 or 22–23. Since setRp

is finite andp never removes any process fromRp, eventually
conditionRp = PrevRp in lines 24 is always true. Therefore,
p loops forever in lines 22–23. Thus for some valuesp, p sends
(k, sp, report, request) to all processes infinitely often.

For every always-up processq, by the Per-Message Fair
Loss property,q receives (k, sp, report, request) from p
infinitely often. Sinceq k-reports a value, there is a timet after
whichreportq[k] = w for somew 6= ⊥. So after timet, every
time q receives (k, sp, report, request) from p, q sends
(k, sp, w, report) to p (line 32). Thusq sends(k, sp, w,
report) to p infinitely often. By the Per-Message Fair Loss
property, eventuallyp receives (k, sp, w, report) from q.
Therefore eventuallyp receives messages of the form(k, sp, ∗,
report) from all always-up processes. Since more thannb

processes are always up, eventuallyp receives messages of the
form (k, sp, ∗, report) from at leastnb + 1 processes.

For every eventually-up processq, it is clear that even-
tually p receives arecovered message fromq, since after
q’s last recoveryq sendsrecovered messages to all pro-
cesses infinitely often. Therefore, eventuallyRp contains all
eventually-up processes. Since there are at mostnb bad pro-
cesses, eventually the number of always-up processes is at
leastn−nb −|Rp|. Therefore eventuallyp receives messages
of the form(k, sp, ∗, report) from at leastn − nb − |Rp|
processes.

Hence, eventuallyp receives messages of the form(k, sp,
∗, report) from max(nb + 1, n − nb − |Rp|) processes, so
the guard in line 23 is true. Therefore processp does not loop
forever in lines 22–23 — a contradiction.

Lemma 35. If all always-up processesk-propose a value then
eventually they all reach the end of roundk.

Proof. Similar to the proof of Lemma 34.

Corollary 2. If all always-up processes propose, then for ev-
ery k ∈ {1, 2, 3, . . .}, eventually they all reach the end of
roundk.

Proof. If all always-up processes propose, they all start round
1. Lemmata 33, 34 and 35 show that if all always-up processes
start a roundr then eventually they all reach the end of roundr;
thus, they all start roundr+1. The proof follows by induction.

120 M.K. Aguilera et al.

Lemma 36. There exists a roundk such that all processes
thatk-report a valuek-report the same value.

Proof. Choose a timeT such that (1) all processes that are
not always-up have crashed at least once by timeT , (2) all
good processes remain up forever after timeT , and (3) for
some good processc, for every good processg, after timeT ,
g permanently trustsc and the epoch number ofc at g stops
changing (we can find such processc by the Accuracy property
of �Se). Choose a roundk such that no process starts roundk
by timeT , andc is the coordinator of roundk.

Letp be a process thatk-reports a value. Thenp eventually
exits the loop in lines 9–10. Moreover, by definition ofk, p
starts roundk after timeT . Only always-up processes can start
a round after timeT , because all other processes crashed at
least once by timeT and, after they crash, they never start any
round. Thus,p is an always-up process, and so in roundk, p
never suspectscand the epoch number ofcatpnever increases.
Thus,p can only exit the loop in lines 9–10 by receiving(k, w,
estimate) from c, for somew 6= ⊥. Sincep eventually exits
this loop, it receives(k, w, estimate) from c. Therefore,
there is a time at whichcoord estc[k] = w. Note thatc never
receives any message of the form(k, ∗, suggestion) by time
T , because no process starts roundk by timeT . Therefore, the
value ofcoord estc[k] is ⊥ before or at timeT . Thus,c sets
coord estc[k] to w after timeT . Sincec does not crash after
time T , oncec setscoord estc[k] to w, it never changes this
variable again. This implies that every process thatk-reports
a value receives(k, w, estimate) from c, and thenk-reports
w.

Lemma 37. If all always-up processes propose a value then
they all eventually decide.

Proof. Suppose that all always-up processes propose a value.
By Lemma 36, there exists a roundk such that all processes
thatk-report a valuek-report the same value. By Corollary 2,
all always-up processes reach the end of roundk. By Lemma
31, all always-up processes decide in roundk.

Proof of Theorem 7.Immediate from Lemmata 24, 32, and 37.
ut

We now explain how to remove the two limitations that we
mentioned at the beginning of this section. The first one is that
the algorithm in Fig. 6 does not guarantee that eventually-up
processes decide; moreover processes never stop executing
rounds. To fix these problems, we modify the algorithm as
follows. Once a processp decides, it stops executing the algo-
rithm. Then, every time thatp receives any message it replies
with the decision value. When a process receives the decision
value, it decides. With this modification, all good processes
decide and all processes eventually stop executing rounds.

The second limitation is that the algorithm does not work
with the Fair Loss property of Sect. 2.5. We first explain why,
and then we modify the algorithm to fix this problem.

There are two types of messages in the algorithm:active
messages, i.e., those that are actively sent by processes (sug-
gestion, request andrecovered messages), andpas-
sivemessages, which are sent in response to an active message
(estimate,report,proposal and “decide” messages). In
the algorithm, a processp proceeds by sending an active mes-
sage to other processes, until it gets responses; thenp sends a

different active message, and so on. The problem arises when
p repeatedly sends an active message toq, while q repeatedly
sends another active message top. Every timep receives the
active message fromq, p replies with a passive message, and
vice-versa. Thus,p repeatedly sends both an active and a pas-
sive message toq, and vice-versa. With the Fair Loss property,
it is possible that all the active messages are received and all
the passive ones are lost. Thus,p andq never receive a reply
from each other.

To fix this problem, we modify the algorithm as follows.
For allp andq, processp now keeps a copy of the last message
of each type (active or passive) that it wants to send toq.
Every timep sends an active or passive message toq in the
original algorithm, in the modified algorithm it actually sends
a tuple consisting ofboth the last active and the last passive
messages toq. Whenq receives such a tuple, it processes both
components separately (as ifq had received both messages
separately in the original algorithm). With this modification,
the algorithm will work with the Fair Loss property.

From the above, we have:

Theorem 8. Assume that at mostnb processes are bad and
more thannb processes are always up. Uniform consensus can
be solved without stable storage using�Se.

B. Implementation of �Se and �S ′
e in partially

synchronous systems

We show how to implement�Se and�S ′
e in the models of par-

tial synchrony of [5,3] (extended to systems with crashes and
recoveries). [5] considers two models of partial synchrony.
Roughly speaking, the first model, denotedM1 here, stipu-
lates that in every execution there are bounds on process speeds
and on message transmission times, but these bounds are not
known. In the second model, denotedM2, these bounds are
known, but they hold only after some unknown time (called
GSTfor Global Stabilization Time). [3] defines a weaker mod-
el of partial synchrony, denotedM3, in which bounds exist
but they are not knownandthey hold only after some unknown
GST. InM1 links do not lose messages, and inM2 andM3
links can only lose messages sent before the GST. Note that
every system that conforms toM1 or M2 also conforms to
M3.

All the above models assume that process crashes are per-
manent. A natural extension ofM3 to systems with crashes
and recoveries, which we also denoteM3, is as follows: after
some (unknown) GST, all the good processes are up forever,
and there are bounds on process speeds and on message trans-
mission times. In particular, all the messages sent to good
processes after the GST, including those sent by unstable pro-
cesses, are received within the (unknown) bound. Messages
sent to bad processes may be lost. Henceforth,M3 denotes
this extended model.

Figure 7 shows an implementation of�Se (and also of
�S ′

e) in M3. The algorithm is similar to one given in [3]. To
measure elapsed time, each processp maintains a local clock,
say, by counting the number of steps that it takes. After each
recovery, each processp first sends ani-recovered message
to all processes; then it periodically sends ani-am-alive
message. Ifp does not receive ani-am-alive message from

Failure detection and consensus in the crash-recovery model 121

1 For processp:

2 Initialization and upon recovery:
3 Dp.trustlist ← Π; trustlistp ← Π
4 for all q ∈ Π doDp.epoch[q]← 0; epochp[q]← 0; ∆p[q]← default time-out interval
5 sendi-recovered to all processes

6 repeat forever
7 sendi-am-alive to all processes
8 for all q ∈ Π do
9 if q ∈ trustlistp andp did notreceivei-am-alive from q during the last∆p[q] ticks ofp’s clock then
10 trustlistp ← trustlistp \ {q} {suspectq}
11 Dp.trustlist ← trustlistp {update the failure detector output}
12 for all q ∈ Dp.trustlist doDp.epoch[q]← epochp[q]
13 upon receivei-am-alive from q do
14 if q 6∈ trustlistp then
15 trustlistp ← trustlistp ∪ {q} {trustq}
16 ∆p[q]← ∆p[q] + 1 {increase timeout}
17 upon receivei-recovered from q do
18 epochp[q]← epochp[q] + 1

Fig. 7. Implementing�Se and�S ′
e inM3

some processq for ∆p[q] time units on its clock,p removesq
from its list of trusted processes. Whenp receivesi-am-alive
from some processq, it checks if it currently suspectsq. If so,
p knows that its previous time-out onq was premature and so
p addsq to its list of trusted processes and increases its time-
out period∆p[q]. Whenp receivesi-recovered from some
processq, it increments the epoch number ofq. Note that this
implementation does not use any stable storage.

Following [3], it is easy to see that when this algorithm is
executed inM3, there is a time after which every good process
trusts every good process and suspects every eventually-down
process. It is also easy to see that at every good process, even-
tually the epoch numbers are nondecreasing (this occurs after
the process stops crashing). Moreover, good processes sendi-
recovered messages only a finite number of times, so that
the epoch numbers of each good process at every good process
eventually stop changing. It remains to show that for every un-
stable processu and every good processg, either eventually
g permanently suspectsu or u’s epoch number atg is un-
bounded. Indeed, ifg does not permanently suspectu, then it
trustsu infinitely often; in this case,g receivesi-am-alive
messages fromu infinitely often. Sou sendsi-am-alivemes-
sages tog infinitely often. Note that after each recovery,u
always sendsi-recovered message before sendingi-am-
alive messages. Therefore,u sendsi-recovered messages
infinitely often. Thus,g receivesi-recovered messages
from u infinitely often and sog incrementsu’s epoch number
infinitely often.

Hence we have:

Theorem 9. In any partially synchronous system that con-
forms toM3, the algorithm in Fig. 7 guarantees that (1) at
every good process, eventually the epoch numbers are nonde-
creasing, (2) for every bad processb and every good process
g, either eventuallyg permanently suspectsb or b’s epoch
number atg is unbounded, and (3) for every good process
g, eventuallyg is permanently trusted by every good process,
andg’s epoch number at every good process stops changing.

Corollary 3. In any partially synchronous system that con-
forms toM3, the algorithm in Fig. 7 implements�Se and
�S ′

e.

Note that the algorithm doesnot implement�Su in M3.
This is because an unstable processu resets its timeouts to a
default value infinitely often, and if this value is smaller than
the (unknown) bound on message delays, thenu may suspect
everyprocess infinitely often — a violation of the strong ac-
curacy property of�Su. In Sect. 10, however, we show how
to transform any implementation of�Se into �Su (this trans-
formation doesnot rely on partial synchrony assumptions).

C. Proof of Theorem 5

Theorem 5 The algorithm of Fig. 4 satisfies the Uniform Va-
lidity and Uniform Agreement properties of uniform consen-
sus. If a majority of processes are good then it also satisfies
the Termination property.

The proof follows.

Definition 10. We say thatp is in roundr at timet if the value
of variablerp in stable storage at timet is r. A processp starts
roundr whenp storesr as the value ofrp for the first time in
line 12. We say thatp updatesestimatep to est whenp stores
est as the value ofestimatep (in line 25 or 39). Similarly, we
say thatp updatestsp to t whenp storest as the value oftsp

(in line 25 or 39).

Lemma 38 (Uniform Validity). If a process decidesv then
some process previously proposedv.

Proof. Trivial. ut
Lemma 39. A process can updateestimatep andtsp at most
once in each round.

Proof. Let r be a round andp be a process. In roundr, if p is
the coordinator of roundr thenp can only updateestimatep

122 M.K. Aguilera et al.

andtsp in line 25; else,p can only updateestimatep andtsp

in line 39. Whenp updatesestimatep andtsp, it updatestsp

to r. After it does so, it can not execute lines 25 and 39 in
roundr again (even if it crashes and later recovers) because
of the guard in lines 16 and 33, respectively.ut
Lemma 40. Let c be the coordinator of some roundr. (1) In
roundr, if c starts Phasenewestimate with estimatec =
est , thenc updatesestimatec to est ; and (2) in some round
r′ > r, if some processp s-sends (r′, est , r, estimate) in
line 34, then in roundr, c updatesestimatec to est .

Proof. To prove (1), assume that in roundr, c starts Phase
newestimate with estimatec = est . Clearly, beforec starts
Phasenewestimate, it updatesestimatec to some value
est ′. By Lemma 39,c updatesestimatec at most once in round
r. Thereforeest = est ′. This shows (1).

To prove (2), assume that in some roundr′ > r some
processp s-sends (r′, est , r, estimate) in line 34. We first
claim that in roundr, p updatesestimatep to est . Indeed,
sincetsp = r whenp executes line 34 in roundr′, p must
have executed line 24 or 38 in roundr to settsp to r, and
then storedtsp in line 25 or 39 in roundr. Let est ′ be the
value of estimatep that p stores in line 25 or 39 in round
r. We need to show thatest ′ = est . Indeed, it is clear that
whenp executes line 34 in roundr′, the values ofestimatep

and tsp in stable storage areest andr, respectively (this is
because every timep changesestimatep or tsp, it stores its
new value in stable storage — see lines 25 and 39). Moreover,
from the structure of the algorithm, the value oftsp in stable
storage is nondecreasing, so that afterp storestsp in roundr,
its value in stable storage does not change until roundr′. Note
thatestimatep andtsp are always updated together. So afterp
storesestimatep in roundr, the value ofestimatep in stable
storage also does not change until roundr′. Soest ′ = est ,
and this shows the claim.

Now there are two cases. Ifp = c (i.e.,p is the coordinator
of roundr), then part (2) follows immediately from the claim.
If p 6= c, thenp does not execute line 25 in roundr, and so by
the claimp storesest as the value ofestimatep in line 39 in
roundr. Thusp must have received (r, est , newestimate)
from c, which implies thatc must haves-sent this message
to p in line 27 in roundr. By part (1),c updatesestimatec to
est in roundr. ut
Lemma 41. Suppose that the coordinatorc of round r s-
sends (est , decide) in line 30. In every roundr′ ≥ r, if
the coordinatorc′ updatesestimatec′ to some valueest ′ then
est = est ′.

Proof. We prove this lemma by induction on the round number
r′. For the base case (r′ = r), note that ifc s-sends (est ,
decide) in line 30, thenc starts Phasenewestimate with
estimatec = est . The base case now follows directly from
Lemmata 39 and 40 (1).

Now assume that the lemma holds for allr′, r ≤ r′ < k.
Let c′ be the coordinator of roundk. We show that the lemma
holds forr′ = k.

Suppose that in roundk, c′ updatesestimatec′ to some
valueest ′. Sincec′ is the coordinator of roundk, this update
can only happen in line 25. Thenc′ received messages of the
form (k, ∗, ∗, estimate) from d(n + 1)/2e processes in the

wait statement in line 18. Sincec executes line 30 in round
r, c receives(r, ack) from d(n + 1)/2e processes. Thus,
there is some processp such that (1) in roundr, c receives(r,
ack) from p, and (2) in roundk, for someest ′′ andts ′′, c′
receives (k, est ′′, ts ′′,estimate) fromp in the wait statement
in line 18. By (1),p s-sends (r, ack) to c in roundr. By (2),
p s-sends (k, est ′′, ts ′′, estimate) to c′ in roundk. Before
doing that,p starts roundk. Afterp starts roundk,p never starts
a round lower thank. This implies thatp s-sends(k, est ′′, ts ′′,
estimate) to c′ in roundk afterp s-sends (r, ack) to c in
roundr. Befores-sending (r, ack) to c in roundr, p updates
tsp to r (line 25 or 39). Since the value oftsp in stable storage
is non-decreasing, we must havets ′′ ≥ r. It is easy to see
that no process evers-sends a message of the form(k, ∗, ts,
estimate) with ts ≥ k. So, the valuet thatc′ selects in line 20
in roundk is such thatr ≤ t < k. Let q be the process whose
estimate valueest ′ is selected in line 22 in roundk. Then in
roundk, q s-sends(k, est ′, t, estimate). By Lemma 40 (2),
the coordinatorc′′ of roundt updatedestimatec′′ to est ′. By
the induction hypothesis, we haveest ′ = est . ut
Lemma 42. If processesc andc′ s-send (est , decide) and
(est ′, decide) in line 30 in roundsr andr′, respectively, then
est = est ′.

Proof. Assume without loss of generality thatr′ ≥ r. Since
line 30 is executed only by the coordinator,c andc′ are the
coordinators of roundsr andr′, respectively. Sincec′ s-sends
(est ′, decide) in line 30 in roundr′, c′ starts Phasenewes-
timate with estimatec′ = est ′. By Lemma 40 (1),c′ updates
estimatec′ to est ′. By Lemma 41,est = est ′. ut
Lemma 43 (Uniform Agreement).No two processes decide
differently.

Proof. Suppose that processesp andp′ decide on valuesest
andest ′, respectively. Processp decidesest in line 53 after re-
ceiving message(est , decide). By a simple induction, some
process must haves-sent message(est , decide) in line 30.
Similarly, processp′ decidesest ′ in line 53, and so some pro-
cess must haves-sent message(est ′, decide) in line 30. By
Lemma 42,est = est ′. ut
Lemma 44. A process can start only finitely many rounds.

Proof. In order to obtain a contradiction, suppose that there are
processes that start infinitely many rounds. LetP be the set of
all such processes. Clearly,P contains only good or unstable
processes. For any processp ∈ P and any roundr ≥ 1, p
eventually starts a round higher thanr. Let r+

p be the lowest
round higher thanr thatp starts and letr−

p be the highest round
lower than or equal tor thatp starts. Then1 ≤ r−

p ≤ r < r+
p .

By the Strong Accuracy property of�Su, we can find a time
T and a good processK such that afterT ,K is never suspected
by any good or unstable process and the epoch number ofK
at every good or unstable process stops changing.

Letr be a round such that (1)K is the coordinator of round
r, and (2) no process inΠ \P starts a round higher thanr, and
(3) for everyp ∈ P , p starts roundr−

p after timeT . Such round
clearly exists because processes inΠ \ P start only finitely
many rounds and processes inP start infinitely many rounds.

Let p be the first process to start a round higher thanr.
By (2), p ∈ P and by the definition ofr−

p andr+
p , p selects

Failure detection and consensus in the crash-recovery model 123

roundr+
p when it executes line 49 in roundr−

p . This implies
thatr−

p = r: indeed, ifr−
p < r thenp does not select round

r+
p in line 49; instead, it selects a round number that is at

mostr since (a)p trusts the coordinatorK of roundr (by (3)
and the definitions ofT andK), and (b)p does not receive
any messages of a round higher thanr (sincep is the first
process to start a round higher thanr). So r−

p = r. By (3),
p starts roundr after timeT . By (1) and the definition ofT
andK, while p is in roundr, conditionK ∈ d.trustlist in
line 44 evaluates to true and condition(K 6∈ d′.trustlist or
d.epoch[K] < d′.epoch[K]) in line 46 always evaluates to
false. Sincep starts a round higher thanr, it does not loop
forever in lines 45–46. Sop eventually receives a message of
a round higher thanr while in roundr. This contradicts the
fact thatp is the first process to start a round higher thanr.
ut
Definition 11. We say that a good processp blocks in round
r if p starts roundr butp does not start a higher round, andp
never decides.

Lemma 45. If a good processp blocks in roundr, then in this
round its skipround task loops forever in lines 45–46.

Proof. Clearly, while processp is in roundr, its taskskip
round must loop forever in lines 45–46 or in line 48 (other-
wisep starts a round higher thanr). By the Strong Accuracy
property of�Su, p eventually trusts some process forever and
sop cannot loop forever in line 48. Thereforep loops forever
in lines 45–46. ut
Definition 12. We say that an eventually-up processstabilizes
at timet if it recovers at timet and does not crash afterwards.
By convention, we say that an always-up process stabilizes at
time0.

Lemma 46. Suppose a good processp proposes but never
decides. Ifp receives a message of roundr after p stabilizes,
then eventuallyp starts some roundr′ ≥ r.

Proof. In order to obtain a contradiction, suppose thatp never
starts any roundr′ ≥ r. Sincep proposes,p starts some round
(namely, round1). Sincep does not decide,p blocks in some
roundr′′ < r. By Lemma 45, while in roundr′′, theskip round
task ofp loops forever in lines 45–46. Sincep receives a mes-
sage of roundr afterp stabilizes,p eventually exits the loop
in lines 45–46. This is a contradiction.ut
Lemma 47. Let p and q be two good processes. If (1)p s-
sends m to q after p stabilizes, (2)m is the last messagep
s-sends to q, and (3)p never decides, thenq receivesm from
p infinitely often.

Proof. By (1), (2) and (3),p sendsm to q infinitely often in
taskretransmit(line 7). By the Fair Loss property of links,q
receives messages fromp infinitely often. Note thatm is the
only message thatp sends toq infinitely often: this is because
(1) in taskretransmit, p eventually sends no message different
from m to q, and (2) outside taskretransmit, p can only send
messages of the form(∗, decide) (line 56); however, such
messages are never sent sincep never decides. Therefore, by
the No Creation and Finite Duplication properties of links,q
receives fromp only finitely many messages different fromm.
Sinceq receives messages fromp infinitely often, it follows
thatq receivesm from p infinitely often. ut

Lemma 48. If a good processp blocks in a roundr, then the
coordinatorc of this round is also a good process. Moreover,
if p 6= c thenc receives messages of roundr from p infinitely
often.

Proof. Let p by a good process that blocks in roundr and let
c be the coordinator of roundr. We now prove thatc is a good
process. In order to obtain a contradiction, suppose thatc is
bad. Sincep blocks in roundr, by Lemma 45, while in round
r′′ theskip roundtask ofp loops forever in lines 45–46. By the
Completeness and Monotonicity properties of�Su, eventually
eitherp permanently suspectsc or c’s epoch number atp is
nondecreasing and unbounded. Therefore,p eventually exits
the loop in lines 45–46. This is a contradiction. Soc is a good
process.

Now, assumep 6= c. After p stabilizes, its-sends a mes-
sage toc for the last time in roundr, either in line 34 or in
line 41. By Lemma 47,c receives this message fromp infinitely
often. ut
Lemma 49. Let p andq be good processes. Ifp decides and
p receives non-decide messages fromq infinitely often, then
eventuallyq decides.

Proof. After p decides, every timep receives a non-decide
message fromq, p sends adecide message toq (line 56).
Thereforep sendsdecide messages toq infinitely often.
Moreover, this is the only message thatp sends toq infinitely
often (since afterp decides, it terminates all tasks). This im-
plies thatq receivesdecide messages fromp infinitely often.
Thus, eventuallyq decides. ut
Lemma 50. Suppose all good processes propose. If some
good process decides then eventually all good processes de-
cide.

Proof. In order to obtain a contradiction, suppose that every
good process proposes and some good processp decides, but
there is some good processq that never decides. LetQ be the
set of good processes that do not decide. By Lemma 44, for
everyq ∈ Q, q can start only finitely many rounds. Sinceq
proposes,q blocks in some roundrq. Let r = max{rq | q ∈
Q}, and letq ∈ Q be a process that blocks in roundr.

• Case 1:q is the coordinator of roundr. Processq never
decides, so in roundr eitherq waits forever at line 18 or at
line 28 (otherwiseq s-sends adecide message to itself in
line 30 and then decides in line 53). Beforeq waits forever,
it s-sends a non-decide message top (line 17 or 27). By
Lemma 47,p receives this message infinitely often. By
Lemma 49,q eventually decides. This contradicts the fact
thatq ∈ Q.

• Case 2:q is not the coordinator of roundr. Letc 6= q be the
coordinator of roundr. By Lemma 48,c is a good process
andc receives messages of roundr from q infinitely often.
If c decides, then by Lemma 49,q eventually decides too
and this contradicts the fact thatq ∈ Q. Soc never decides.
By Lemma 46, eventuallyc starts a roundr′ ≥ r. Since
c ∈ Q, by the definition ofr, we have thatr′ ≤ r. Thus
r′ = r and soc blocks in roundr. By Case 1,c eventually
decides — a contradiction. ut

Lemma 51. Suppose there is a majority of good processes.
If every good process proposes a value, then eventually some
good process decides.

124 M.K. Aguilera et al.

Proof. In order to obtain a contradiction, suppose that no good
process decides. By Lemma 44, each good processp can start
only finitely many rounds. Sincep proposes,p blocks in some
roundrp. Let r = max{rp | p is good} and letp be a good
process that blocks in roundr.

• Case 1:p is the coordinator of roundr. Processp never
decides, so in roundr eitherp waits forever at line 18 or
at line 28.

• Case 1.1:p waits forever at line 18
We claim that for every good processq, p eventually re-
ceives (r, estimateq, tsq, estimate) from q afterp sta-
bilizes. Then by the assumption that there is a majority
of good processes,p does not wait forever at line 18 — a
contradiction.
To show the claim, note that sincep waits forever at line 18
of roundr, we havetsp 6= r. Thus,p never updatestsp

to r, and sop never updatesestimatep in round r. By
Lemma 40 (1),p never starts Phasenewestimate. Sop
nevers-sendsnewestimate messages in roundr.

• Case 1.1.1:q = p. Sincetsp 6= r, in roundr, afterp stabi-
lizes and forks taskparticipant, p s-sends (r, estimatep,
tsp, estimate) to itself (line 34). Thusp receives this
message after it stabilizes.

• Case 1.1.2:q 6= p. Beforep waits forever at line 18, it
s-sends (r, newround) to q (line 17) afterp stabilizes,
and this is the last messagep s-sends toq. By Lemma 47,
q eventually receives (r, newround) after q stabilizes.
By Lemma 46,q eventually starts a roundr′ ≥ r. By the
definition ofr, we have thatr′ ≤ r. Thusr′ = r and soq
starts roundr. In roundr, we have thattsq 6= r (otherwise,
q setstsp to r in line 39, which implies thatq received
a newestimate message fromp — contradicting the
fact thatp nevers-sendsnewestimatemessages). Then
q s-sends message (r, estimateq, tsq, estimate) to p
(line 34). Processq waits forever in line 35 sincep never
s-sends a newestimate message toq. Therefore (r,
estimateq, tsq, estimate) is the last messageq s-sends
to p. By Lemma 47,p eventually receives (r, estimateq,
tsq, estimate) from q afterp stabilizes.
This concludes the proof of the claim.

• Case 1.2:p waits forever at line 28
We claim that for every good processq, p eventually re-
ceives (r, ack) from q afterp stabilizes. Then by the as-
sumption that there is a majority of good processes,p does
not wait forever at line 28 — a contradiction.
We now show the claim.

• Case 1.2.1:q = p. Beforep waits forever at line 28, it
s-sends anewestimate message to itself (and it does
so afterp stabilizes). Thusp receives this message from
itself. So in taskparticipant, p finishes Phaseestimate
ands-sends (r, ack) to itself. Thereforep receives this
message from itself after it stabilizes.

• Case 1.2.2:q 6= p. Beforep waits forever at line 28, it
s-sends (r, estimatep, newestimate) to q and this is
the last messagep s-sends to q. By Lemma 47,q even-
tually receives this message fromp afterq stabilizes. By
Lemma 46,q eventually starts a roundr′ ≥ r. By the def-
inition of r, we haver′ ≤ r. Thusr′ = r and soq blocks
in round r. In roundr, after q stabilizes and forks task
participant, q finishes Phaseestimate (sinceq receives

anewestimate message fromp) ands-sends message
(r, ack) to p in Phaseack. This is the last messageq
s-sends top, sinceq blocks in roundr. By Lemma 47,p
eventually receives (r, ack) from q afterp stabilizes.
This shows the claim.

• Case 2:p is not the coordinator of roundr.
Let c 6= p be the coordinator of roundr. By Lemma 48,
c is a good process andc receives messages of roundr
from p infinitely often. By Lemma 46,c eventually starts
a roundr′ ≥ r. By the definition ofr, we have thatr′ ≤ r.
Thusr′ = r and soc blocks in roundr. In Case 1, we
showed that the coordinator of roundr does not block in
roundr — a contradiction. ut

Corollary 4 (Termination). Suppose there is a majority of
good processes. If all good processes propose a value, then
they all eventually decide.

Proof. From Lemmata 50 and 51.ut
Proof of Theorem 5.Immediate from Lemmata 38 and 43, and
Corollary 4. ut

Acknowledgements.We would like to thank Rachid Guerraoui, Mi-
chel Raynal and André Schiper for introducing us to the problem of
consensus in the crash-recovery model, and for explaining their own
work on this problem. We are also grateful to Borislav Deianov and
the anonymous referees for their helpful comments and suggestions
on how to improve the presentation of the results.

References

1. Aguilera MK, Chen W, Toueg S: Heartbeat: a timeout-free fail-
ure detector for quiescent reliable communication. In Proceed-
ings of the 11th International Workshop on Distributed Algo-
rithms, Lecture Notes on Computer Science. Springer-Verlag,
September 1997. A full version is also available as Technical
Report 97-1631, Computer Science Department, Cornell Uni-
versity, Ithaca, New York, May 1997

2. Chandra TD, Hadzilacos V, Toueg S: The weakest failure detec-
tor for solving consensus. Journal of the ACM, 43(4):685–722
(1996)

3. Chandra TD, Toueg S: Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267 (1996)

4. Dolev D, Friedman R, Keidar I, Malkhi D: Failure detectors
in omission failure environments. Technical Report 96-1608,
Department of Computer Science, Cornell University, Ithaca,
New York, September 1996

5. Dwork C, Lynch NA, Stockmeyer L: Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288–323 (1988)

6. Guerraoui R, Oliveira R, Schiper A: Stubborn communica-
tion channels. Technical report, Département d’Informatique,
Ecole Polytechnique F́ed́erale, Lausanne, Switzerland, Decem-
ber 1996

7. Hurfin M, Mostefaoui A, Raynal M: Consensus in asynchronous
systems where processes can crash and recover. In Proceedings
of the 17th IEEE Symposium on Reliable Distributed Systems,
pages 280–286, October 1998

8. Lynch NA: Distributed Algorithms. Morgan Kaufmann Pub-
lishers, Inc., 1996

9. Neiger G, Toueg S: Automatically increasing the fault-tolerance
of distributed algorithms. Journal of Algorithms, 11(3):374–419
(1990)

Failure detection and consensus in the crash-recovery model 125

10. Oliveira R, Guerraoui R, Schiper A: Consensus in the
crash-recover model. Technical Report 97-239, Département
d’Informatique, Ecole Polytechnique Féd́erale, Lausanne,
Switzerland, August 1997

Marcos Kawazoe Aguilera is currently a Ph.D. candidate in the
Department Computer Science at Cornell University. He received
his B.Eng. in Computer Science from the Universidade Estadual de
Campinas in Brazil. His research interests include distributed algo-
rithms and fault-tolerant computing.

Wei Chen received his B.Eng. and M.Eng. degrees from the Depart-
ment of Computer Science and Technology, Tsinghua University,
Beijing, China. He received his M.S. and Ph.D. degrees from the De-
partment of Computer Science, Cornell University in 1998 and 2000,
respectively. He is now a senior member of the technical staff at Or-
acle Corporation. His research interests include distributed systems
and fault-tolerant computing.

Sam Touegreceived his B.Sc. from the Technion Israel Institute of
Technology, and his Ph.D. from the Computer Science Department at
Princeton University. He is a professor in the Department Computer
Science of Cornell University, which he joined in 1981. He also
serves as the Chair of the Departement d’Informatique, at the Ecole
Polytechnique in France. His research area is distributed computing.

