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ABSTRACT

Because classical fast vector quantization(VQ) algorithms can't
be used in the L SF vector quantizers that use varying weighted
Euclidean distance, a novel fast VQ search algorithm —€RVQ-
CS (Condrained Range Vector Quantization based on
Component Searching) is presented in this paper. The CRVQ-CS
algorithm works well with the varying weighted Euclidean
distance and yieldsthe same result asfull search VQ with reduced
computational complexity does. Although the CRVQ-CS
algorithm is proposed for VQ using varying weighted Euclidean
distance measure, it is aso suitable for VQ using simple

Euclidean distance measure.

1. INTRODUCTION

In many speech coding systems, LPC coefficients are
transformed to the line spectrum frequency (LSF) parameters
which are very effective representation for the quantization of the
LPC information. F.K.Soong and B.H.Juang [1] proved that L SF
parameters have very good performance in terms of quantization
and interpolation. So, L SF parameters are widely used in speech

coding systems.

K.K.Paliwal and B.S.Atal [2] proposed a split-vector approach,
where the LSF vector is split into two parts and each part is

separately vector quantized with different quantizers.

But the heavy complexity constrains the usage of vector
quantization. So, there is great need to use fast search algorithm
to decrease the search complexity while maintaining the quality.
Many fast search algorithms, such as multi-stage VQ and tree-
search VQ, have been used to vector quantizethe L SF parameters.

But they increase the distortion while reducing the search

complexity. It is desired to have a fast search algorithm that
reduces the search compl exity while getting the sameresult asthe
origina full search agorithm. There are many fast search
agorithms of vector quantization that can achieve this goal.
R.L.Joshi and P.G.Poonacha[3] proposed a near-neighbor search
agorithm to reduce the search complexity in terms of near
neighbors. C.M.Huang, Q.Bi, G.S.Stiles and R.W.Harris [4]
proposed three fast search algorithms when the distance measure
could satisfy the triangle inequality and be previously sorted. But
all these algorithms can't be used in the LSF vector quantizers
that use varying weighted Euclidean distance.

2.LSF VECTOR QUANTIZATION

K.K.Paliwal and B.S.Atal [2] proposed a varying weighted
Euclidean distance measure in the LSF domain which tries to
assign weights to individual LSFs according to their spectral

sensitivity. The varying weighted Euclidean distance measure

d(f, f) between the input LSF vector f and the reference

vector f isgiven by d(f, f): é_[vi(fi - f,)}z , where f and

iy

f, arethei-th LSF componentsin theinput and reference vector,

and V; isthe weight assigned to the i-th L SF component.

The classical fast search algorithms in [3][4] use the character
that every vector has its near neighbor and the distance between
each pair of reference vectors can be previously computed and
arranged in order. According to the near neighbors previously
computed, fast search agorithms can be performed. The near

neighbors are computed only once before searching.

But these algorithms can't be used with the varying weighted



Euclidean distance. Because the weight v is not fixed and
changes from frame-to-frame, the predetermined near neighbors
also change from frame-to-frame. Because the computational
cost of near neighbors is heavy, they can only be computed once
before searching. In the course of searching, it is impossible to
compute the near neighbors in every frame, so the classical fast
search algorithms based on predetermined near neighbors are

invalid with the varying weighted Euclidean distance.

3. CONSTRAINED RANGE VECTOR
QUANTIZATION BASED ON COMPONENT
SEARCHING

We propose here a new fast search algorithm for LSF vector
quantization—€RVQ-CS  (Constrained
Quantization based on Component Searching). CRVQ-CS can
work well with the varying weighted Euclidean distance and

Range  Vector

yield the same results as that of full search with reduced

computational complexity.
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Considering d(f, f): é [vi (fi - fi)]2 ,itisavarying weighted
i=1
Euclidean distance in K-dimensiona space. We define

C:{fj,1£j£N} as a codebook of size N where

fj = (flj ,fzj Ko, fkj) isaK-dimensiona vector. The steps of
CRVQ-CSae

1) Sort the K-dimension codebook in every dimension in an

ascending order, get the order information and store it in the
indecmatrix Index=find) 1€ j £ N1£1 £ K}, Because
the Index stores the order information of every dimension,
we can get the following relationship
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2) Set COUNT :{countj 1£ j£ N} to indicate the count of

the j-th reference vector in the following steps. Clear

count! 1£ j £ N to be zero.

3) If theK-dimensional input vector is f = (fy, fox fx ). with

the method of half finding, we can easily find the index Ip
and up, 1E£i£K. In every dimension the following
relationship is satisfied:

~ind/™ < ind™

f, £fi £f, LEI£K,up =g +1. That is to

cind™ cind

say f; and f; are the closest components (lower

bound and upper bound) to f, in thei-th dimension.

. ind/Pi
4) In every dimension 1£i £ K, increase count"”  and
o —_ o
count™ ™ by 1. 1f count™" or count™ " isequal to
K, go to step 6).

5) Decrease |p by 1andincreasing up by 1, go to step 4).
6) Assuming count =K , wecan get aninitia reference vector
f'. The reference vector is the first reference vector whose

total index in all dimensionsis closest to the input vector.

7) After getting theinitial reference vector f! , We can determine

the constrained range with thisinitial reference vector f' and

theinput vector f . First, Clear count’ 1£ j £ N tobezero.

Theninevery dimension 1£i £ K, if ﬂ' £ f;, set the count
of the reference vectors whose i-th component is in the range
|_f-|,2fi - ﬂ'J to be 1; if ﬂ' > f;, set the count of the
reference vectors whose i-th component is in the range
[Zfi - ﬂ' ,ﬂ' ] tobe 1. Thereference vectorsin these ranges

are al possible to be the best vector that is closest to the input
vector. With the index matrix Index we can easily
determine the ranges.

8) According to Step 4), 5), 6) and 7), the constrained range is

determined. The count of the reference vectors in the



constrained range is equal to 1. Compute the weighted
Euclidean distance between the input vector and the reference

vectorsin the constrained range. The reference vector " that

has the minimum weighted Euclidean distance to the input

vector is selected as the quantization result.

4. DISCUSSION AND EXPERIMENT OF
CRVQ-CS

Theidea of CRVQ-CSisto find a constrained range of reference
vectors in the codebook. Only the reference vectors in the
constrained range are searched. The constrained range is
determined according to step 4), 5), 6) and 7). Only the reference
vectorsin the constrained range can be the candidates of the best

vector that is closest to the input vector.

The operation of step 1) ispreviously done. Thematrix Index is

determined according to the codebook, and will not change with
the varying weight v, .

Step 2) initializes the counter of every reference vector, step 3)
finds the upper and lower boundary of the input vector in every
dimension using the method of half finding. Both step 2) and 3)
have very small computational cost.

Step 4) 5) 6) and 7) determine the constrained range. After these

steps, assuming the counter of the reference vector fm iszero, it

is obvious that the relationship between the initial reference

vector f' and f™ is |fi - 1:i'|£|fi - £"[1£i £K . Thenthe

relationship of the weighted Euclidean distanceis:

dr.i)=ar - 7 f

0 i=K

£a L/i(fi - ﬂ’“]z :d(f, fm).So, if the count of areference

i=1
vector is zero, it must not be the best vector that is closest to the
input vector in the case of weighted Euclidean distance. Through
these steps, the constrained range is determined. In the

constrained range, the count of reference vectorsis 1.
Step 8) computes and compares weighted Euclidean distance

between the input and each reference vector in the constrained
range. The computational cost of searching the constrained range

in step 8) is the majority of the full computational cost of
CRVQ-CS. Because f' is the first reference vector that

terminates the loop of step 4) and 5), it is obvious that the
constrained range is much smaller than the whole codebook. In
addition, it has been proved that any reference vector outside the
constrained range won’t be the best vector that is closest to the
input vector. So, CRVQ-CS can yield the same result as that of
the full search VQ with reduced computational complexity.

Although the weight v, changes from frame-to-frame, the order

of the reference vectors i-th component doesn't change. That is

to say, thematrix Index doesn't change with the varying weight
V, . The algorithm of determining the constrained range is based

on the component order matrix Index and the codebook, so the
determination is not affected by the varying weight V..

According to this, CRVQ-CS can work well with the varying
weighted Euclidean distance measure.
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figure 1. CRVQ-CS performance with codebook size changing
Experiments have been done on CRVQ-CS performance with
changing codebook size and changing vector dimension. We
figure out the computational cost ratio of CRVQ-CSto full search



VQ. In figure 1, dimension K is fixed to be 2 and 4, and the
computational cost ratio changes aong with the change of
codebook size. In figure 2, codebook size N is fixed to be 4096
and 8192, and the computational cost ratio changes along with the
change of vector dimension. From the figures, we know that the
performance of CRVQ-CS is perfect when the codebook size is
large or vector dimension is small. But when the codebook size
becomes smaller or vector dimension becomes larger, the

performance of CRV Q-CS decreases.
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figure 2. CRVQ-CS performance with vector dimension

changing

5. CONCLUSION

Because classical fast vector quantization(VQ) algorithms can't
be used in the L SF vector quantizers that adopt varying weighted
Euclidean distance, a novel fast VQ search algorithm —€RV Q-
CS is presented in this paper. Based on the order of the
components of the reference vectorsin every dimension, CRV Q-
CS determines the constrained range. It is proved that only the
reference vectors in the constrained range can be the best vector
that is closest to the input vector in the case of weighted
Euclidean distance. Because the number of the reference vectors

in the constrained range is much smaller than the codebook size,
the computational cost of CRVQ-CSis much smaller than that of
full search VQ. So, CRVQ-CS yields the same result as that of
full search VQ with reduced computational complexity.

Because the determination of the constrained rangeis not affected
by the change of weight, the CRVQ-CS agorithm works well
with the varying weighted Euclidean distance. According to the
experiments, the performance of CRVQ-CS is perfect when the
codebook sizeislarge or vector dimension is small. But when the
codebook size becomes smaller or vector dimension becomes
larger, the performance of CRVQ-CS decreases.

Although the CRVQ-CS algorithm is proposed for VQ using
varying weighted Euclidean distance measure, it is also suitable

for VQ using simple Euclidean distance measure.
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