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ABSTRACT

Because classical fast vector quantization(VQ) algorithms can't

be used in the LSF vector quantizers that use varying weighted

Euclidean distance, a novel fast VQ search algorithm —CRVQ-

CS (Constrained Range Vector Quantization based on

Component Searching) is presented in this paper. The CRVQ-CS

algorithm works well with the varying weighted Euclidean

distance and yields the same result as full search VQ with reduced

computational complexity does. Although the CRVQ-CS

algorithm is proposed for VQ using varying weighted Euclidean

distance measure, it is also suitable for VQ using simple

Euclidean distance measure.

1. INTRODUCTION

In many speech coding systems, LPC coefficients are

transformed to the line spectrum frequency (LSF) parameters

which are very effective representation for the quantization of the

LPC information. F.K.Soong and B.H.Juang [1] proved that LSF

parameters have very good performance in terms of quantization

and interpolation. So, LSF parameters are widely used in speech

coding systems.

K.K.Paliwal and B.S.Atal [2] proposed a split-vector approach,

where the LSF vector is split into two parts and each part is

separately vector quantized with different quantizers.

But the heavy complexity constrains the usage of vector

quantization. So, there is great need to use fast search algorithm

to decrease the search complexity while maintaining the quality.

Many fast search algorithms, such as multi-stage VQ and tree-

search VQ, have been used to vector quantize the LSF parameters.

But they increase the distortion while reducing the search

complexity. It is desired to have a fast search algorithm that

reduces the search complexity while getting the same result as the

original full search algorithm. There are many fast search

algorithms of vector quantization that can achieve this goal.

R.L.Joshi and P.G.Poonacha [3] proposed a near-neighbor search

algorithm to reduce the search complexity in terms of near

neighbors. C.M.Huang, Q.Bi, G.S.Stiles and R.W.Harris [4]

proposed three fast search algorithms when the distance measure

could satisfy the triangle inequality and be previously sorted. But

all these algorithms can't be used in the LSF vector quantizers

that use varying weighted Euclidean distance.

2. LSF VECTOR QUANTIZATION

K.K.Paliwal and B.S.Atal [2] proposed a varying weighted

Euclidean distance measure in the LSF domain which tries to

assign weights to individual LSFs according to their spectral

sensitivity. The varying weighted Euclidean distance measure

( )ffd ˆ,  between the input LSF vector f  and the reference

vector f̂  is given by ( ) ( )[ ]∑
=

−=
K

i
iii ffvffd

1

2ˆˆ, , where 
i

f  and

if̂  are the i-th LSF components in the input and reference vector,

and iv  is the weight assigned to the i-th LSF component.

The classical fast search algorithms in [3][4] use the character

that every vector has its near neighbor and the distance between

each pair of reference vectors can be previously computed and

arranged in order. According to the near neighbors previously

computed, fast search algorithms can be performed. The near

neighbors are computed only once before searching.

But these algorithms can't be used with the varying weighted
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Euclidean distance. Because the weight 
i

v  is not fixed and

changes from frame-to-frame, the predetermined near neighbors

also change from frame-to-frame. Because the computational

cost of near neighbors is heavy, they can only be computed once

before searching. In the course of searching, it is impossible to

compute the near neighbors in every frame, so the classical fast

search algorithms based on predetermined near neighbors are

invalid with the varying weighted Euclidean distance.

3. CONSTRAINED RANGE VECTOR
QUANTIZATION BASED ON COMPONENT

SEARCHING

We propose here a new fast search algorithm for LSF vector

quantization —CRVQ-CS (Constrained Range Vector

Quantization based on Component Searching). CRVQ-CS can

work well with the varying weighted Euclidean distance and

yield the same results as that of full search with reduced

computational complexity.

Considering ( ) ( )[ ]∑
=

−=
K

i
iii ffvffd

1

2ˆˆ, , it is a varying weighted

Euclidean distance in K-dimensional space. We define

{ }NjfC j ≤≤= 1,ˆ  as a codebook of size N where

( )j
k

jjj ffff ˆ,,ˆ,ˆˆ
21 Κ=  is a K-dimensional vector. The steps of

CRVQ-CS are:

1) Sort the K-dimension codebook in every dimension in an

ascending order, get the order information and store it in the

index matrix { }KiNjindIndex j
i ≤≤≤≤= 1,1, .  Because

the Index  stores the order information of every dimension,

we can get the following relationship
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2) Set { }NjcountCOUNT j ≤≤= 1,  to indicate the count of

the j-th reference vector in the following steps. Clear

Njcount j ≤≤1,  to be zero.

3) If the K-dimensional input vector is f ( )Kfff ,,21, Κ= . with

the method of half finding, we can easily find the index 
i

lp

and 
i

up , Ki ≤≤1 . In every dimension the following

relationship is satisfied:

1,1,ˆˆ +=≤≤≤≤ ii
ind

ii
ind

i lpupKifff
iup

i
ilp

i . That is to

say 
ilp

iind
if̂  and 

iup
iind

if̂  are the closest components (lower

bound and upper bound) to 
i

f  in the i-th dimension.

4) In every dimension Ki ≤≤1 , increase 
ilp

iindcount  and

iup
iindcount  by 1. If 

ilp
iindcount  or 

iup
iindcount  is equal to

K, go to step 6).

5) Decrease 
i

lp  by 1 and increasing 
i

up  by 1, go to step 4).

6) Assuming Kcountl = , we can get an initial reference vector

lf̂ . The reference vector is the first reference vector whose

total index in all dimensions is closest to the input vector.

7) After getting the initial reference vector lf̂ , we can determine

the constrained range with this initial reference vector lf̂  and

the input vector f . First, Clear Njcount j ≤≤1,  to be zero.

Then in every dimension Ki ≤≤1 , if i
l

i ff ≤ˆ , set the count

of the reference vectors whose i-th component is in the range

[ ]l
ii

l
i fff ˆ2,ˆ −  to be 1; if i

l
i ff >ˆ , set the count of the

reference vectors whose i-th component is in the range

[ ]l
i

l
ii fff ˆ,ˆ2 −  to be 1.  The reference vectors in these ranges

are all possible to be the best vector that is closest to the input

vector. With the index matrix Index  we can easily

determine the ranges.

8) According to Step 4), 5), 6) and 7), the constrained range is

determined. The count of the reference vectors in the



constrained range is equal to 1. Compute the weighted

Euclidean distance between the input vector and the reference

vectors in the constrained range. The reference vector nf̂  that

has the minimum weighted Euclidean distance to the input

vector is selected as the quantization result.

4. DISCUSSION AND EXPERIMENT OF
CRVQ-CS

The idea of CRVQ-CS is to find a constrained range of reference

vectors in the codebook. Only the reference vectors in the

constrained range are searched. The constrained range is

determined according to step 4), 5), 6) and 7). Only the reference

vectors in the constrained range can be the candidates of the best

vector that is closest to the input vector.

The operation of step 1) is previously done. The matrix Index  is

determined according to the codebook, and will not change with

the varying weight 
i

v .

Step 2) initializes the counter of every reference vector, step 3)

finds the upper and lower boundary of the input vector in every

dimension using the method of half finding. Both step 2) and 3)

have very small computational cost.

Step 4) 5) 6) and 7) determine the constrained range. After these

steps, assuming the counter of the reference vector mf̂  is zero, it

is obvious that the relationship between the initial reference

vector lf̂  and mf̂  is: Kiffff m
ii

l
ii ≤≤−≤− 1,ˆˆ . Then the

relationship of the weighted Euclidean distance is:

( ) ( )[ ]∑ =
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∑ =

=
=−≤ . So, if the count of a reference

vector is zero, it must not be the best vector that is closest to the

input vector in the case of weighted Euclidean distance. Through

these steps, the constrained range is determined. In the

constrained range, the count of reference vectors is 1.

Step 8) computes and compares weighted Euclidean distance

between the input and each reference vector in the constrained

range. The computational cost of searching the constrained range

in step 8) is the majority of the full computational cost of

CRVQ-CS. Because lf̂  is the first reference vector that

terminates the loop of step 4) and 5), it is obvious that the

constrained range is much smaller than the whole codebook. In

addition, it has been proved that any reference vector outside the

constrained range won’t be the best vector that is closest to the

input vector. So, CRVQ-CS can yield the same result as that of

the full search VQ with reduced computational complexity.

Although the weight 
i

v
 
changes from frame-to-frame, the order

of the reference vectors’ i-th component doesn't change. That is

to say, the matrix Index  doesn't change with the varying weight

i
v . The algorithm of determining the constrained range is based

on the component order matrix Index  and the codebook, so the

determination is not affected by the varying weight 
i

v .

According to this, CRVQ-CS can work well with the varying

weighted Euclidean distance measure.

figure 1. CRVQ-CS performance with codebook size changing

Experiments have been done on CRVQ-CS performance with

changing codebook size and changing vector dimension. We

figure out the computational cost ratio of CRVQ-CS to full search



VQ. In figure 1, dimension K is fixed to be 2 and 4, and the

computational cost ratio changes along with the change of

codebook size. In figure 2, codebook size N is fixed to be 4096

and 8192, and the computational cost ratio changes along with the

change of vector dimension. From the figures, we know that the

performance of CRVQ-CS is perfect when the codebook size is

large or vector dimension is small. But when the codebook size

becomes smaller or vector dimension becomes larger, the

performance of CRVQ-CS decreases.

figure 2. CRVQ-CS performance with vector dimension

changing

5. CONCLUSION

Because classical fast vector quantization(VQ) algorithms can't

be used in the LSF vector quantizers that adopt varying weighted

Euclidean distance, a novel fast VQ search algorithm —CRVQ-

CS is presented in this paper. Based on the order of the

components of the reference vectors in every dimension, CRVQ-

CS determines the constrained range. It is proved that only the

reference vectors in the constrained range can be the best vector

that is closest to the input vector in the case of weighted

Euclidean distance. Because the number of the reference vectors

in the constrained range is much smaller than the codebook size,

the computational cost of CRVQ-CS is much smaller than that of

full search VQ. So, CRVQ-CS yields the same result as that of

full search VQ with reduced computational complexity.

Because the determination of the constrained range is not affected

by the change of weight, the CRVQ-CS algorithm works well

with the varying weighted Euclidean distance. According to the

experiments, the performance of CRVQ-CS is perfect when the

codebook size is large or vector dimension is small. But when the

codebook size becomes smaller or vector dimension becomes

larger, the performance of CRVQ-CS decreases.

Although the CRVQ-CS algorithm is proposed for VQ using

varying weighted Euclidean distance measure, it is also suitable

for VQ using simple Euclidean distance measure.
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