
Using Abstract State Machines at Microsoft:
A Case Study

Mike Barnett, Egon Börger�, Yuri Gurevich,
Wolfram Schulte, and Margus Veanes

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{mbarnett, boerger, gurevich, schulte, margus}@microsoft.com

Abstract. Our goal is to provide a rigorous method, clear notation and
convenient tool support for high-level system design and analysis. For
this purpose we use abstract state machines (ASMs). Here we describe a
particular case study: modeling a debugger of a stack based runtime en-
vironment. The study provides evidence for ASMs being a suitable tool
for building executable models of software systems on various abstraction
levels, with precise refinement relationships connecting the models. High
level ASM models of proposed or existing programs can be used through-
out the software development cycle. In particular, ASMs can be used to
model inter component behavior on any desired level of detail. This al-
lows one to specify application programming interfaces more precisely
than it is done currently.

1 Introduction

This paper describes a case study on the use of ASMs as support for design
and analysis of software at Microsoft. In order to use ASMs we needed a tool
for executing ASMs integrated with the Microsoft programming environment,
in particular with the Component Object Model or COM [5]. We developed a
prototype called AsmHugs [8] by extending the Hugs system [2] which is an
implementation of the lazy functional programming language Haskell. AsmHugs
is in many ways similar to AsmGofer [1] but Hugs enabled us to use H/Direct [6,
7] for integration with COM. A detailed technical report of this case study is in
preparation [3].

1.1 What is the case study about?

We present a model for a command-line debugger of a stack-based runtime envi-
ronment. The model was reverse-engineered from the debugger which is written
in C++ and which uses a particular application programming interface (API).
We have in fact three models of the debugger, each at a different level of ab-
straction. They form a refinement hierarchy where each refinement relationship
is a procedural abstraction.
� Visiting researcher from Università di Pisa, Dipartimento di Informatica, I-56125
Pisa, Italy, boerger@di.unipi.it



1.2 Why this particular case study?

Our motivation was to study the applicability (and integrability) of ASMs to
Microsoft software. Software at Microsoft is generally written in modules, or
components. These often form client/server relationships where a component
may function both as a server and as a client. A client and a server interact
solely through an established API. An API is a set of procedures to which all
communication is restricted. The debugger in question is an application program
for end-users. It is a client of the debug services.

Suppose you want to understand how the API works without reading the
code. You have a specification in the Interface Definition Language (IDL [5])
which gives you only the relevant signatures. The inner workings of the API’s
methods are hidden; the only additional information you may find is an informal
natural-language description. Such descriptions may be incomplete and become
often inconsistent with the code, as the code evolves over time. Obviously, there
is no way to formally enforce correspondence between code and its natural-
language description. The two main problems with using program code itself
as documentation are these. First, the code is usually huge and includes too
many irrelevant details. Second, the code might not be available for proprietary
reasons.

In this study, we model a particular program but our interests are broader:
how to use ASMs to better specify the APIs by which different components
interact. An ASM model provides the missing information at the appropriate
level of abstraction so that the user of a given component can understand both
the behavior of the component and the protocol that the user is supposed to
follow in order to exploit the behavior. Each method is specified as a rule, and
the valid patterns of calls are reflected in the state.

As part of a broader project, we also built an ASM model of the other side
of the API: the debug services (to be described in a forthcoming report); the
debugger model was a valuable source in that context.

1.3 COM

Microsoft software is usually composed of COM components. These are really
just static containers of methods. In your PC, you will find dynamic-link li-
braries (DLLs); a library contains one or more components (in compiled form).
COM is a language-independent as well as machine-independent binary standard
for component communication. An API for a COM component is composed of
interfaces; an interface is an access point through which one accesses a set of
methods. A client of a COM component never accesses directly the component’s
inner state, or even cares about its identity; it only makes use of the functionality
provided by different methods behind the interface (or by requesting a different
interface).



1.4 Integration with COM

Writing an executable model for a client of a COM component requires that
either you model also the server side of the interfaces (and then maybe the COM
components for which that server is a client, and so on) or you integrate your
model into the COM environment and thus make it possible for your model to
actually call the COM component. We do the latter. H/Direct provides a means
for a Haskell program to communicate with COM components both as a client
and as a server. For the debugger model, both modes (the client and the server)
are needed. The server mode is needed because the debug services API specifies
the callback interface that the client must implement. The debug services use the
callback interface to make asynchronous procedure calls to the model. However,
Hugs is a sequential system. In order to use it in an asynchronous multi-threaded
COM environment, a modification of the Hugs runtime was required. Other
modifications of the Hugs runtime were needed to allow the outside world to
invoke Hugs functions.

All three of the debugger models in the case study, even the most refined one
(the ground model), are sequential ASMs (enriched with some Haskell function-
alities). The ground model communicates with the outside world. The question
arises how to view that communication in ASM terms. Calls from the ground
model to the debug services are invocations of external functions. Calls in the
other direction (the callbacks) happen to be more specific: callbacks are updates
of nullary monitored functions.

2 The Case Study

The case study is to model a sample debugger of a particular runtime environ-
ment. The main goal of this debugger is to illustrate a correct way to use the
debugging services provided by that runtime. See Figure 1. Nonetheless, the de-
bugger has more than 30k lines of C++ code and exhibits complex behavior,
partly due to the involvement of several asynchronous agents (the user, the run-
time and the operating system), but mostly because of the complexity of the
debug services that expose about 50 interfaces and 250 methods.

A careful analysis of the debugger, mainly by analyzing the source code, led
us to a refinement hierarchy consisting of three models. By analyzing the causal
dependencies of different actions we realized that the complications due to the
seemingly asynchronous behaviour could be completely avoided, which enabled
us to model the debugger by a sequential ASM. The design decisions which are
reflected by the resulting debugger model were later validated by running the
model as a replacement of the actual debugger.

1. Control model. The abstraction level of this model is at the control level.
The user can enter a command if the debugger is in a mode where the user
has a prompt. The runtime environment can issue a callback to the debugger
only if the latter is expecting a callback. At this level, the only effect of a
callback or user command is to change the control state.



Debugger IDL
Debug
Services

Runtime

Fig. 1. Debugger and the runtime debug services.

2. Object model. This model reflects the compile time or static structure of
the underlying architecture, namely that modules contain classes, classes
contain functions, functions contain code, etc. Furthermore, it provides a
restricted view of the run time structure, namely that processes contain
threads, threads contain frames, etc. At this level exactly those commands
are modeled that are intimately connected to the compile time structure and
to the restricted view of the run time structure, such as execution control,
breakpoint control, and stepping commands.

3. Ground Model. This model has the same core functionality as the debugger.
It provides a more detailed view of the run time structure than the object
model. User commands dealing with inspection of the run time stack, and
contents of individual frames, like inspection of specific object fields, are
modeled here.

Control
Model

Object
Model

Ground
Model

AsmHugs

H/Direct

Runtime
Debug Services

Fig. 2. Connections between the models and the runtime.



In principal, all models are executable, either without the runtime or through
the refinements using the actual runtime (see Figure 2). However, in the former
case, a proper simulation harness has to be provided. An example of a test
harness by using a “wizard” is illustrated in Section 3.2. In a related project, we
constructed an ASM model that approximates the runtime. This model could
be used here to embody the runtime in the harness.

When executing the control model using the runtime, each action is inter-
preted by AsmHugs via the indicated refinements; COM connectivity is provided
by H/Direct.

3 Control Model of the Debugger

In this model we consider the main control modes of the debugger. These modes
reflect who has the control: the user, the runtime, or the debugger itself. When
the user has control, the debugger presents a prompt and waits for input. The
debugger waits for a response from the runtime when the runtime has the control.
Once the runtime has responded with an event, the debugger has control and
has to decide what mode to transit to. As we will see, this decision is based on
particular properties of the event and further input from the runtime.

Although the communication between the real debugger and the runtime is
asynchronous, the documentation of the debug API specifies that the runtime
issues at most one asynchronous event at a time; before issuing the next event
the runtime must receive an acknowledgement from the debugger. Furthermore,
the communication protocol between the debugger and the runtime ensures that
at most one of them may have control. Therefore, sequential ASMs suffice for
our modeling purposes.

The remainder of the section is structured as follows. First, we will lay out
the control model ASM in full detail, introducing the necessary state components
and the rules as needed. Second, we will run a particular user scenario that will
indicate a possible discrepancy between the runtime and the model. Finally, we
will remedy the model.

This example shows a typical use of a high level model during the design
phase in a software development cycle.

3.1 Control Model ASM

The debugger can be in one of four modes. In Init mode the debugger either
hasn’t been started yet, or it has been terminated. In Break mode the user
has the control. In Run mode the runtime has the control. In Break? mode the
debugger has the control. The dynamic ASM function, dbgMode, records the
mode of the debugger in the current state; it has the initial value Init. The top
level rule of the debugger is dbg. Below, do is short for do in-parallel.

dbgMode = initVal Init
dbg = do



if dbgMode == Break or dbgMode == Init then handleCommands
if dbgMode == Run then handleResponses
if dbgMode == Break? then handlePendingEvents

There are two monitored functions, command and response, that are updated
by the user and the runtime, respectively. Initially, both monitored functions
have a value that indicates that no input has been entered by either.

command = initVal "nothing"
response = initVal "nothing"

User commands We can partition user commands into three groups: com-
mands for starting and quitting the debugger, commands that hand the control
over to the runtime (e.g. execution control and stepping commands), and com-
mands that do not affect the control mode (e.g. state inspection and breakpoint
setting).

The user can issue commands only if the debugger is either in Init mode
or in Break mode. In the first case, the only meaningful action is to start the
debugger.

handleCommands = do onStart
onExit
onBreakingCommand
onRunningCommand
command := "nothing"

onStart = if dbgMode == Init and command == "start"
then do doCommand("start")

dbgMode := Break

In Break mode the debugger handles normal debugging commands and it
may switch to Run mode or back to Init mode, depending on the command.

onExit = if dbgMode == Break and command == "exit"
then do doCommand("exit")

dbgMode:= Init

onBreakingCommand = if dbgMode == Break and isBreakingCommand(command)
then do doCommand(command)

onRunningCommand = if dbgMode == Break and isRunningCommand(command)
then do doCommand(command)

dbgMode:= Run

Firing of execution control commands and stepping commands implies that
the control is handed over to the runtime.

isRunningCommand(x) = x in? {"run <pgm>", "continue", "kill",
"step into", "step over", "step out"}



Other commands have no effect on the control mode.

isBreakingCommand(x) =
not(isRunningCommand(x)) and x != "exit" and x != "start"

As mentioned above, in the control model, handling of commands is a skip
operation. This rule is refined in the object model.

doCommand(x) = skip

Callbacks The debugger can handle callbacks or responses from the runtime
only in the Runmode. The value of the monitored function response is a callback
message from the runtime notifying the debugger about a runtime event. In the
debugger, each event is classified either as a stopping event or as a non-stopping
event.

handleResponses = do onStoppingEvent
onNonStoppingEvent
response := "nothing"

onStoppingEvent =
if isStoppingEvent(response) then do dbgMode:= Break?

doCallback(response)

onNonStoppingEvent =
if not(isStoppingEvent(response)) then doCallback(response)

Breakpoint hit events, step complete events, and process exit events are al-
ways stopping events. Initially isStoppingEvent is the following unary relation
(unary Boolean function).

isStoppingEvent(x) = x == "step completed" or x == "breakpoint hit" or
x == "process exited"

However, the relation is dynamic and may evolve during a run as a result of
a specific user command or a specific runtime event.

In the control model the actual handling of callbacks is a skip operation. This
rule is refined in the object model.

doCallback(x) = skip

Pending Events In Break? mode a stopping event has happened and the
debugger should hand the control over to the user. This happens only if there
are no pending events in the runtime. Otherwise the control goes back to the
runtime and the debugger continues the current process



handlePendingEvent = do onPendingEvent
onNoPendingEvent

onPendingEvent = if isEventPending then do dbgMode := Run
isEventPending := False
doCommand("continue")

onNoPendingEvent = if not(isEventPending) then do dbgMode := Break

The boolean function isEventPending is monitored by the runtime.
The control model is summarized by a state diagram in Figure 3.

Init

Break Run

Break?

onRunningCommand

onExitonStart

onStoppingEvent

onPendingEvent

onNoPendingEvent

onNonStoppingEventonBreakingCommand

Fig. 3. Control model of the debugger.

3.2 A Wizard-of-Oz Experiment

We want to explore the behavior of the model on a given set of user scenarios,
without having access to the real runtime, and possibly expose contradictions in
the model. Since we reverse-engineered the debugger, we cannot claim that our
model is truly faithful to it. In fact, any error that might show up may very well
have sneaked into the model without being in the debugger. The point we want
to make is that this form of testing would be useful if used during the design
phase.

Since the actual runtime is missing, we will ask a “wizard” to play its role.
Table 1 shows a run, with row i indicating the part of the state that has changed
after the i’th ASM step of the model.



dbgMode command response isEventPending
0: Init start
1: Break bp hello.cpp:7
2: Break run hello.exe
3: Run created process
4: Run loaded module
5: Run created thread
6: Run hit breakpoint
7: Break? True
8: Run loaded class
9: Run ...

Table 1. A run of the control model.

The run shows that after we hit a breakpoint there is a pending event in
the runtime. According to the model, the current process is continued and the
control is passed to the runtime. It turns out that the pending event was a
non-stopping event (class was loaded). Obviously, this behaviour contradicts the
expected consequence of reaching a breakpoint, namely that the user should
get the control. At this point we have two options to solve the problem: if we
can constrain the runtime to meet the restriction that only stopping events can
cause the isEventPending flag to become true, then the current model is correct;
otherwise we have to modify the model. We choose the latter, see Figure 4.

Init

Break Run

Break?

Run’

onRunningCommand

onExitonStart

onStoppingEvent

onPendingEvent’

onAnyEvent

onNoPendingEvent

onNonStoppingEventonBreakingCommand

Fig. 4. New control model of the debugger.



4 Object Model

The static and the dynamic structures of the runtime architecture are reflected
in the object model with just enough detail so that one can model features
that deal with execution control, breakpoints, and stepping, and explore their
interaction.

Let us consider some examples. The first example is the refinement of the
user command that starts the debugger. The next two examples specify what
happens in the object model when a module is loaded or unloaded in the runtime.
Recall that all those rules are just skip rules in the control model.

4.1 User commands

Starting the debugger

doCommand("start") = do in-sequence
coInitialize
shell := newShell(services = newServicesInterface(...),

callback = newCallbackInterface(...),
modules = {},
breakpoints = {},
debugee = undef)

shell.services.setCallback(shell.callback)

The first rule initializes the COM environment. The second rule creates a new
debugger shell with a pointer to the services and a new callback. The third rule
invokes the setCallback method of the debug services with the new callback
interface pointer as argument, thus providing the services access to the client’s
callback methods.

4.2 Callbacks

Loading of modules

doCallback(<"load module",mod>) = do
shell.modules := shell.modules ++ {mod}
do in-sequence

forall bp in shell.breakpoints do bp.bind(mod)
shell.debugee.continue()

The new module is recorded in the shell. The shell attempts to bind each of
its set of breakpoints to that module. Once all new bindings have been made (if
any), the debugee is continued through an external call.

We have omitted the bind rule that checks if the location that the breakpoint
refers to indeed exists in the module. If the location exists, a real breakpoint
is created at that location through an external call to the services; otherwise,
nothing is done.



Unloading of modules

doCallback (<"unload module",mod>) = do
shell.modules := shell.modules \ {mod}
do in-sequence
forall bp in shell.breakpoints do bp.unbind(mod)
shell.debugee.continue()

The effect of unloading a module is to update the shell and to remove all the
breakpoints from that module.

4.3 Some comments

There are a couple of things worth noticing about the above rules. First, the
design decision to bind a breakpoint that may already be bound implies that if
there is a breakpoint referring to a location that exists in two or more distinct
modules, then the breakpoint is associated to all of them. Second, all breakpoints
are handled simultaneously; there are no ordering constraints between them.
This is a typical situation: in the actual (C++) code there is a linearly ordered
structure maintaining the elements that are then processed sequentially in the
order determined by the structure.

When constructing the object model we detected a mismatch between the
way loading and unloading of module callbacks was implemented. Namely, al-
though loading followed the specification above, during unloading of a given
module, if a breakpoint was bound to this module, then that breakpoint was
not only removed from this module but from all other modules as well. We did
not discover this when studying the code, but only when constructing the object
model. In fact, it is hard to see it from the code, but readily apparent from the
model.

5 Ground Model

The ground model has the same core functionality as the debugger and can be
executed as an AsmHugs program that communicates with the runtime by using
the H/Direct generated glue code. It gives a more detailed view of the run time
structure than the object model. All the user commands, such as inspection of
specific object fields, are modeled here. The ground model is fully described in
the technical report [3].

6 Conclusion

The case study illustrates some particular ways that ASMs can help the system
designer:



– Concisely describe complex systems. The debugger involves several asyn-
chronous agents and involves about 50 interfaces and about 250 methods.
The size of the debugger is about 30K lines of C++ code. The size of the
ASM specification (which can be run, though not as fast, and which pro-
vides essentially the same functionality) is only 4K lines. Due to built-in
parallelism, the runs of our ASM are shallow. In fact it takes only bounded
many steps (less than 10) to process one user command in contrast to the
C++ code which may require unbounded many steps for the purpose (the
number of steps may depend on the program being debugged). The paral-
lelization was obtained, e.g., by abstraction from irrelevant sequentialization
in the C++ code (see Section 4.3).

– Abstract away the environment as needed. We could easily separate the mod-
els, but still formally tie them via refinements, without losing executability.

– Interactively explore the design on all abstraction levels. It is very difficult
to detect at the source code level such high level bugs as the ones that we
detected with relative ease with the Wizard-of-Oz experiment. The object
model enabled us to detect inconsistencies in the callback management.

To repeat, our goal is to provide a rigorous method, clear notation and con-
venient tool support for high-level system design and analysis. Our main tool
will execute ASMs (and will help you to write ASMs). Several issues that arose
during the case study have influenced the design of that tool.

– We found the parallel synchronous construct forall very useful. Similar
conclusions were drawn from the Falko project [4].

– Set and list comprehensions turned out to be very convenient.
– We found object oriented notation useful to structure specs, to improve their

readability, and to link their execution to the object-oriented programming
paradigm.

– We realized that in order for ASMs to be useful in Microsoft (or indeed any-
where COM is used), ASM models must achieve full COM interoperability.

The first and the third point are illustrated by the examples in Section 4.2.

Acknowledgments

We thank Sigbjorn Finne for helping us with H/Direct during the course of this
work.

References

1. AsmGofer. http://www.tydo.de/AsmGofer/.
2. Hugs98. http://www.haskell.org/hugs/.
3. Mike Barnett, Egon Börger, Yuri Gurevich, Wolfram Schulte, and Margus Veanes.

Using ASMs at Microsoft: A case study. Technical report, Microsoft Research,
Redmond, USA, 2000.



4. Egon Börger, Peter Päppinghaus, and Joachim Schmid. Report on a practical ap-
plication of ASMs in software design. In This Volume.

5. Don Box. Essential COM. Addison-Wesley, Reading, MA, 1998.
6. Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. H/Direct: A

binary foreign language interface for Haskell. In Proc ACM Sigplan International
Conference on Functional Programming (ICFP’98), Baltimore, pages 153–162, 1998.

7. Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. Calling hell
from heaven and heaven from hell. In Proc ACM Sigplan International Conference
on Functional Programming (ICFP’99), Paris, France, 1999.

8. Foundations of Software Engineering, Microsoft Research. AsmHugs.
http://www.research.microsoft.com/foundations/.


