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ABSTRACT
We consider an architecture for a serverless distributed file system
that does not assume mutual trust among the client computers.
The system provides security, availability, and reliability by
distributing multiple encrypted replicas of each file among the
client machines. To assess the feasibility of deploying this system
on an existing desktop infrastructure, we measure and analyze a
large set of client machines in a commercial environment. In
particular, we measure and report results on disk usage and
content; file activity; and machine uptimes, lifetimes, and loads.
We conclude that the measured desktop infrastructure would
passably support our proposed system, providing availability on
the order of one unfilled file request per user per thousand days.
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1. INTRODUCTION
We present an architecture for a serverless distributed file system
and assess the feasibility of deploying this system on an existing
desktop infrastructure. The distinguishing feature of our proposed
system is that it does not assume the client computers to be
carefully administered or mutually trusting. Instead, the system
provides high availability (file access) and high reliability (file
persistence) by making multiple replicas of each file and
distributing them among the client machines. To determine how
well such a system might work, we gathered usage data from a
large number of client machines at Microsoft Corporation, and we
use this data to analyze the feasibility of our architecture.

Our proposed serverless distributed file system is intended to
provide a global name space for files, location-transparent access
to both private files and shared public files, and improved
reliability relative to a desktop workstation.

These goals can be achieved with a centralized, server-based file
system, but this has several disadvantages: Servers tend to be
expensive because they need special hardware, such as high-
performance I/O (to support multiple clients simultaneously) and
RAID disks (for reliability) [21]. They rely on system
administrators, in whom the users must place their faith [28], both
to authorize access and to perform reliability functions, such as

regular backups. Finally, they are vulnerable to geographically
localized faults, such as a failed router or a broken network link.

Serverless distributed file systems have been developed before
(§ 6), but these have all assumed that client machines are mutually
trusting. This assumption greatly eases the system design, but we
believe it is unrealistic, especially in a large-scale system. If we
can build a system that works without requiring trust, then the
system can function with no central administration: The owner of
each machine determines who can store files on it, and owners
establish contracts with other machine owners to collaboratively
share their resources. With no central administrator, any user can
add resources to the system. One can even add userless client
machines to function as dedicated servers.

The lack of trust between clients pervades our entire design. We
need to use cryptographic techniques to ensure data privacy and
integrity. We also need to create and securely distribute multiple
replicas of each file throughout the system, both to prevent a
malicious user from easily destroying all copies of any given file
and because we cannot expect users to significantly alter their
behavior with regard to keeping their machines on and available.

The need for multiple file replicas significantly increases the
storage demand. However, since disk space is inexpensive and
becoming more so all the time [25], we consider this an
acceptable trade-off. Also, previous research [7] has shown a
significant amount of free storage space on client machines. This
inspired us to investigate how well our proposed system would
work if deployed on an existing client-computing infrastructure,
without adding any new resources to support our system. This
question is the primary concern of the present paper, which we
answer by measuring file-system space, machine availability, and
machine load on client machines in a commercial environment.

The remainder of this paper describes our system architecture,
explains our measurement methodology, presents our results, and
analyzes these results in terms of our proposed architecture.

2. SYSTEM ARCHITECTURE
The principal construct of our proposed system is the global file
store, which is a logically monolithic file system indexed by a
hierarchical directory tree. Although logically monolithic, the
global file store is physically distributed among the disks of the
client machines participating in the distributed file system.

Each disk of a participating machine is partitioned into three
regions: a scratch area, a global storage area, and a local cache.
The scratch area holds ephemeral data, such as virtual-memory
paging files and temporary files. The global storage area houses a
portion of the global file store, which is accessible by other
machines in the distributed system. The local cache is of variable
size, caching all files accessed within a certain period of time (the
cache retention period), like some in-memory file-system buffer
caches [19, 22, 26] and unlike traditional fixed-size caches.

To provide high availability and reliability in a not-fully-trusted
environment, our proposed system makes multiple replicas of
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each file and distributes them among the global storage areas of
the client machines. We define the replication factor as the
number of distributed replicas of each file.

Since file availability and reliability are drastically affected by the
file replication factor, it is important to maintain a minimum
number of replicas for each file. To ensure sufficient disk space
for these replicas, our proposed system enforces quotas [16] on
the space available to the users of the file system. We propose
that each user’s space allotment depend on how much space the
user has contributed to the global store.

Part of the local cache and global storage area is reserved for a
highly available, reliable, global, distributed directory service,
much like that provided by xFS [1]. Each machine can use this
service to locate replicas of requested files. This directory must
be maintained in a strongly consistent fashion, to ensure that
clients see the latest version of each file.

2.1 Efficiency Considerations
Our proposed system can increase the usable space in the global
file store through two techniques. First, it can compress files
before storing them and decompress them on the fly when they are
read [26]. Second, it can coalesce distinct files that happen to
have identical contents [5]; for example, many users may store
copies of a common application program in the global file store,
and these can be coalesced into a single instance, prior to
replicating this instance among multiple machines. For clarity, we
refer to logically distinct files with identical content as duplicates,
and we refer to the file copies our system generates as replicas.

We plan for our system to employ a lazy-update strategy, meaning
that the system waits for a short time after a file is written before
updating the file’s replicas. Since a large fraction of written files
are deleted or overwritten within a few seconds [29], lazy update
can significantly reduce file-update traffic. Lazy update also
allows a file to be written without requiring all (or even a quorum)
of the replicas to be immediately available. The disadvantage of
this approach is that the content of newly written files will briefly
reside on only one machine, so loss of that machine will result in
loss of the update. The directory service must keep track of which
replicas contain up-to-date data, so users will not accidentally
access out-of-date versions of files.

Since file replicas are distributed among multiple machines, our
system can select which machine should be accessed to service a
client request [30]. There are two primary considerations in this
decision: First, the selected machine should be topologically
close to the machine that is requesting the file, to minimize both
transmission delay and generated network traffic. Second, the
selected machine should be lightly loaded, to minimize both read
delay and performance impact on the sending machine. The
impact on the sending machine can also be reduced by performing
non-cached reads and writes, to prevent buffer cache pollution.

If remote reads of very popular files are targeted at a small
number of machines, those machines could become overloaded.
Our system can avoid creating these hotspots by allowing
machines to copy files from other machines’ on-disk local caches.
As a side benefit, this improves the availability of popular files,
since the effective number of replicas is substantially increased.

2.2 Replica Management
In our proposed system, the selection of machines for storing file
replicas is driven by the availability of those machines. The
system measures machine uptimes and distributes replicas so as to
maximize the minimum file availability. (§ 2.2.1 describes such a
replica-placement algorithm.)

In selecting locations for replicas of a given file, the system could
select a set of machines whose uptimes are negatively correlated,
thus reducing the likelihood that all machines containing a replica
will be down at the same time. However, our measurements
(described in § 3.2.2 and reported in § 4.2.3) suggest that this
would provide little marginal benefit.

Our system can improve the availability of sets of related files by
storing them in the same locations. If a user needs a given set of
files to accomplish a task, then if any of those files is inaccessible,
the task cannot be completed; therefore, it is beneficial to store
related files together, so that either all or none of the files are
available. Our system could attempt to determine relatedness of
files by observing file access patterns, but we propose a simpler
approach for at least the initial implementation: Since files
accessed together temporally tend to be grouped together
spatially, replicas for all files in a given directory are stored on the
same set of machines, and entire directories are cached together.

When a new machine joins the system, its files are replicated to
the global storage areas on other machines; space for those
replicas is made by relocating replicas of other files onto the new
machine. Similarly, when a machine is decommissioned, the
system creates and distributes additional replicas of the files
stored on that machine.

Machines join the system by explicitly announcing their presence;
however, machines can leave without notice, particularly if they
leave due to permanent failure, such as a disk-head crash. If the
system notices that a machine has been down for an extended
period of time, it must assume that the machine has been
decommissioned and accordingly generate new replicas;
otherwise, the possibility of another failure can jeopardize the
reliability of files with replicas on that machine.

2.2.1 Replica management – placement algorithm
Ideally, replicas should be assigned to machines so as to maximize
the minimum availability of any file, while also maximizing the
minimum reliability of any file. The latter goal merely requires
minimizing the variance of the replica count, whereas the former
is more involved. Measured logarithmically, the availability of a
file equals the sum of the availability of all machines that store a
replica of the file, assuming randomly correlated machine uptime.

The following heuristic algorithm yields a low availability
variance: Set the provisional availability of all files to zero; then,
iteratively select machines in order of decreasing availability; for
each selected machine, assign the files with the lowest provisional
availability to the selected machine, and update the provisional
availability of those files; repeat until all machines are full.

Unfortunately, the above algorithm does not minimize reliability
variance, so we modify it as follows: If an assignment of a file to
a machine would reduce the remaining free space to below that
necessary for any two files to differ in replica count by at most
one, abort the above iteration and begin the following procedure:
Iteratively select machines in order of increasing availability; for
each selected machine, identify the file with the highest
provisional availability from those with the lowest replica count,
assign it to the selected machine, and update the provisional
availability of that file; repeat until all machines are full.

2.3 Data Security
Distributing multiple replicas of a file protects not only against
accidental failure but also against malicious attack. To destroy a
file, an adversary must compromise all machines that hold replicas
of that file. To prevent an adversary from coercing the system
into placing all replicas of a given file on a small set of machines



under the adversary’s control, the system must use secure methods
for selecting machines to house file replicas.

File-update messages are digitally signed by the writer to the file.
Before applying an update to a replica it stores, each machine
verifies the digital signature on the update and compares the
writer’s identity to a list of authorized writers associated with the
file. This prevents an adversary from forging and distributing file
updates.

To prevent files from being read by unauthorized users, the
contents of files are encrypted before they are replicated.
However, encryption could interfere with the automatic detection
and coalescing of duplicate files, since different users may encrypt
identical plaintext files with different keys, which would normally
produce different ciphertext files. We have developed a
cryptographic technology, called convergent encryption, that
allows the detection and coalescing of identical files even when
these files are encrypted with separate keys. Rather than
enciphering the contents of a user’s files directly with the user’s
key, the contents of each file are one-way hashed, and the
resulting hash value is used as a key for enciphering the file
contents. The user’s key is then used to encipher the hash value,
and this enciphered value is attached to the file as meta-data. The
user decrypts a file by first deciphering the hash value and then
deciphering the file using the hash value as a key. With this
approach, two files with identical plaintext will also have identical
ciphertext, irrespective of the secret keys used to encrypt them.

3. METHODOLOGY
To analyze the feasibility of deploying our proposed system on an
existing computing infrastructure, we collected usage data from a
large number of desktop personal computers at Microsoft
Corporation. We measured contents of file systems, availability
of machines, and load on machines.

To judge the breadth of applicability of our results, we partitioned
our measurements into six categories by the job function of each
machine’s owner: administration (clerical), business (marketing,
accounting, legal), management, non-technical development
(writers, artists), technical development (programmers, testers),
and technical support. Roughly half of all machines belong to
technical developers; the other half are distributed approximately
equally among the remaining categories.

3.1 File System Measurement
We measured a set of file systems to determine the amount of disk
space that is free and the amount of disk space that would be free
if all duplicate files were eliminated. We also use the measured
data to estimate the rate of cache misses, the size of local system
caches, and the rate of file writes.

3.1.1 Disk usage measurement
We collected two data sets for our analysis of disk usage. In
September 1998, we asked Microsoft employees to run a scanning
program on their Windows and Windows NT computers that
collected directory information (file names, sizes, and timestamps)
from their file systems [7]. By this means, we obtained
measurements of 10,568 file systems [8].

In August 1999, we remotely read the performance counters (free
disk space, total disk space, and logon name of the primary user)
of every Windows NT computer we could access. By this means,
we obtained measurements of 8669 file systems.

3.1.2 Disk content measurement
In February 1999, we asked a random subset of the participants in
the 1998 study to run a scanning program that computed and

recorded hashes of all the files on their file systems. By this
means, we obtained data from 550 file systems, which we used to
determine the amount of duplicate file content.

3.1.3 File access rate estimation
We used the timestamps in the 1998 data set to estimate the rate at
which files are read and written. We determined each file’s last
read time as the most recent timestamp (create, update, or access)
on the file, and its last write time as the most recent of the create
and update timestamps.

There are three aspects of file access rate that are relevant to our
design: the miss rate of the local file cache, the size of the local
file cache, and the amount of write traffic sent to file replicas on
other machines. We consider only files that would be stored in
the global file store, so we excluded inherently local files,
including the system paging file and those files in temporary
directories or the Internet browser cache, all of which account for
2% of the bytes in the data set.

Cache miss rate is a function of the cache retention period. We
estimate miss rate as follows: For a cache retention period of n
days, the files in directories last accessed n+1 days ago will exit
the cache on the current day. Over the long term, the rate at
which files exit the cache must match the rate at which they enter
the cache, so the rate of file exit approximates the rate of file
entry. Since a file enters the cache only in response to a miss, the
cache entry rate equals the cache miss rate.

We estimate the cache size similarly. For a cache retention period
of n days, the size of the local cache is equal to the sum of the file
sizes in all directories accessed in the last n days.

Write traffic rate is a function of the lazy-update propagation lag.
We estimate write traffic rate as follows: For a propagation lag of
n hours, files last written between 2n hours ago and n hours ago
will have been propagated during the past n hours.

3.2 Machine Availability Measurement
To determine file availability in our proposed system, we need to
know machine uptimes, whether these uptimes are consistent over
time, and whether the uptimes of different machines are
correlated. When our proposed system sees a machine go down,
it needs to predict how long the machine will stay down. Our
reliability calculations require knowing machine lifetimes.

3.2.1 Machine uptime measurement
We measured machine availability by pinging 64,610 machines
every hour for five weeks, from July 6 through August 9, 1999.
To disregard any staleness of the name database as well as the
attrition of machines during the sample period, we restricted our
analysis to the 51,662 machines that responded to at least one
ping during the week of August 10 through August 16, 1999.

3.2.2 Machine uptime correlation calculation
To determine whether the uptimes of different machines are
correlated, we computed, for every pair of machines, a temporal
correlation value by adding one for every ping snapshot that the
machines were both up or both down, and subtracting one for
every snapshot that one machine was up and the other was down.
We normalized the result by dividing by the count of snapshots.

3.2.3 Machine downtime prediction calculation
We can use the time tp a machine has been off to predict the
amount of additional time tf it will remain off, using the formula:
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In this equation, f(x) is the distribution of downtime as a function
of the enclosing interval, which we determine from our data.

3.2.4 Machine lifetime measurement
To analyze machine attrition rates, we pinged 64,610 machines
several times per day for 100 days, from July 6 through October
13, 1999. We scanned backwards through the data to determine
the last time each machine responded to a ping. If machines have
deterministic lifetimes, then the rate of attrition is constant, and
the count of remaining machines decays linearly. The expected
machine lifetime (meaning the lifetime of the machine name, not
the physical hardware) is the time until this count reaches zero.

3.3 Machine Load Measurement
We measured CPU and disk load by running a program on six
data-collection computers that iteratively selected a random
machine and remotely read the performance counters (CPU load
and disk load) of that machine. Over 18 days in October 1999,
we collected 178,801 measurements from 3908 machines.

CPU load was measured as the fraction of cycles expended in
processes other than the idle process. Disk load was measured as
the number of disk operations performed per second.

3.4 Measurement Errors and Biases
Our data-collection techniques are vulnerable to many sources of
experimental error and measurement bias. In general, we are not
able to quantify the effects of these errors on our results, but we
can at least enumerate them, so their presence will not be ignored.

Since each machine’s owner determined whether to run the file-
system scanning program (§ 3.1), these results could be affected
by self-selection bias.

The file timestamps we collected (§ 3.1.1) and analyzed (§ 3.1.3)
can be reset by user-level software; therefore, they may be
unreliable. In addition, it took several minutes to perform the
scan of each file system, so this limits the granularity with which
we can assess the elapsed time since file accesses.

Our use of static timestamps to determine dynamic access rates
prevents us from observing burstiness in file accesses. We
therefore confine ourselves to mean-value analysis.

The file access times derived from the file timestamps are biased
towards integral multiples of one week, for the following reason:
Individual users ran the scanning program at times of their own
choosing, so they were disproportionately likely to do so on a
weekday. Since files are more likely to be accessed on a weekday,
the time since last access reflects this congruence.

Our remote reads of performance counters were restricted to a
subset of the Windows NT/2000 machines on our corporate
network, since performance counters are not present in Windows
95/98, a machine’s owner can restrict access to them in Windows
NT, and they are restricted by default in Windows 2000.
Windows 2000 is most likely to be running on newer machines,
which are likely to have larger-than-average disks. We used
remote performance counters not only for file-system and
machine-load measurements (§ 3.1 & 3.3) but also to determine
each machine’s primary user (and thereby job category) for
machine-lifetime measurements (§ 3.2).

Each hourly ping snapshot (§ 3.2.1) took between 19 and 28
minutes to perform. This fuzziness slightly weakens our analysis
of the correlation among different machines’ uptimes.

For the machine-lifetime measurements (§ 3.2.3), we did not
determine the machines’ users until August 27, so we have no
job-specific data for the first half of the observation period.

The machine-load measurements (§ 3.3) overestimate the CPU
and disk loads, because the monitoring itself increases these
loads: The operating system dynamically loads the performance
counter libraries when interrogated, and it unloads them after a
period of non-use that is smaller than our mean time between
same-machine samples. Therefore, sampled machines commonly
loaded some amount of monitoring code before responding to our
query, thus increasing their workload. The exact amount of code
loaded depends on the particulars of each machine and on whether
any other application or system component is already using some
part of the monitoring subsystem.

4. RESULTS
4.1 File System Results
From the file-system data we collected as described in § 3.1, we
determined the amount of disk space that is free and the amount of
disk space that could be freed by eliminating duplicate files. We
also constructed an analytical model to show the relationship
between content duplication and population size. From the
recorded file timestamps, we estimate the rate at which directories
of files are accessed and the rate at which files are written.

4.1.1 Free disk space
The self-selected September 1998 data show 53% of overall disk
space in use. The remotely read August 1999 data show 50% of
overall disk space in use. Since these two data sets incur different
types of bias, it is reassuring that their results are quite similar.

4.1.2 Duplicate file content
From the February 1999 measurement of disk content, we
calculate the space savings from removing duplicate files from the
population of file systems, as illustrated in Figure 1.

The open circle on the graph shows that removing duplicates from
the whole population of 550 file systems reclaims 47% of used
file space. The small dots show the space reclamation for random
subsets of the total population; we selected ten subsets in each
power-of-two size from 1 to 512 file systems, with the selection
probability weighted by file-system size.

The diamonds, squares, and triangles in Figure 1 show the effect
of removing duplicate files within each subset of file systems
corresponding to one of our six job categories. In general, the
job-specific subsets contain a larger fraction of duplicated content
than do comparably sized random populations. This indicates a
greater commonality of content among members of a specific job
category than among arbitrary sets of file systems.

Most of the space savings comes from eliminating duplicates of
files with small duplication factors. Figure 2 shows the space
reclaimed by eliminating duplicates of only those files with a
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minimum number of duplicates, based on the entire population of
550 file systems. Only about 5% of file space is reclaimed by
eliminating duplicates of files with at least 100 duplicates, less
than 30% with a minimum of 10, and 47% when considering files
with at least one duplicate.

4.1.2.1 Duplicate file content – analytical model
We have developed a model to describe how recoverable space
relates to the population size. The solid line in Figure 3 shows the
measured distribution of content popularity from the February
1999 data. The x-axis indicates the likelihood that any given file
system will contain an item of file content (one file, where the
distribution is weighted by file size), and the y-axis indicates the
cumulative fraction of all content. For example, 90% of all file
content has popularity of less than 0.1, so it will be found on no
more than 1 out of 10 file systems.

Since the distribution of content popularity is a distribution of
likelihood, we approximate it with a beta distribution [10], Β(x),
(α = 0.12, β = 4.2), shown by the dotted line in Figure 3. We use
a beta distribution rather than the more commonly considered Zipf
distribution [6] for two reasons: First, the Zipf distribution is
discrete and applies to a specific count of objects, whereas we
want a continuous distribution that applies to an indeterminate
count of objects. Second, we are not hypothesizing a distribution
for content popularity; we know the actual distribution (as shown
by the solid line in Figure 3), and we merely want an analytical
function to approximate it, to facilitate our analysis.

When adding a new file system to an existing population of k file
systems, the amount of new content (content not already present
in the existing population) added by the new file system is:
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The constant c accounts for files that are duplicated within a
single file system. From our data, we calculated that the mean
fraction of unique data within a single file system is c = 0.88.

The solid line in Figure 1 plots R(n) versus population size n.
Note the sigmoid shape of the graph and the fairly good
correspondence to the results for random subsets of the actual
population. The values predicted by the model pass Wilcoxon
signed-rank tests [10] for each power-of-two-size group of 10
random subsets, at a 0.01 level of significance.

4.1.3 File access activity
From the September 1998 measurements, Figure 4 shows the
cumulative amount of data in accessed directories, as a fraction of
total disk space, versus the elapsed time since that data was last
accessed. Most of the separation among job categories is due to
variation in the fraction of disk space in use. For example,
administration systems generally have a smaller fraction of disk
space in use than other job categories have, so although the
fraction of used disk space they access in a given time is
comparable to that of other categories, this represents a smaller
fraction of total disk space, which is what is plotted in Figure 4.

Figure 5 shows the count of directories that were last accessed on
each day prior to the day each measurement was taken. Figure 6
shows the volume of data in the accessed directories on each day
prior to the measurement date. Overall, 35 directories totaling 50
megabytes of data were touched per file system during the 24
hours preceding the measurement snapshot. There is noticeable
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variation among job categories, with administrators touching only
12 directories totaling 14 megabytes of data per file system. As
described in § 3.4, our measurement technique biases the access
times towards integral multiples of one week, as is shown by the
weekly periodicity in Figures 5 and 6.

Figure 7 indicates the total size of all files written within each
hourly period preceding the measurement snapshot. For files
written within one hour of the snapshot, the overall rate was about
32 MB / hour / file system. The various job types ranged from 65
MB / hour / file system for business to 24 MB / hour / file system
for technical developers. Merely 7 MB / hour / file system is
written between one and two hours before the snapshot, which
implies that most written data is overwritten fairly soon,
consistent with several other studies [4, 20, 29]. As described in
§ 3.4, the granularity of the measurement data prevents assessing
write rates for periods substantially less than one hour.

4.2 Machine Availability Results
From the machine-availability data we collected as described in
§ 3.2, we analyzed the uptime distribution of machines on our
network, the consistency of those uptimes over time, and the
correlation of the uptimes of different machines. We also
estimated the length of time that a down machine will remain
down. Lastly, we calculated the expected lifetime of machines.

4.2.1 Machine uptimes
From the July–August 1999 ping measurements, Figure 8 shows a
time plot of machine availability. The count varies by about 2500
machines over a one-day period and about 5000 machines over a
one-week period. We do not know what caused the negative

spike on July 31 at 15:00; this sample does not contain a large,
contiguous series of non-responses, so it does not obviously
appear to be a network problem.

The solid line in Figure 9 plots the fraction of time each machine
is up, where the machines are sorted by their uptimes. Half of all
machines are up over 95% of the time. The dotted line in Figure
9 shows machine availability measured in nines, calculated as the
negative decimal logarithm of the fraction of downtime. It is
interesting to note that this curve is approximately a straight line.

4.2.2 Machine uptime consistency
Figure 10 is a density plot, with logarithmically scaled shading,
that shows the number of hours per week each machine is up
during the second through fifth weeks of our sample period versus
the number of hours it is up during the first week. Since most
machines are up more than 95% of the time, this figure is heavily
weighted toward the upper right corner.

There are three noticeable groups of machines in this figure: First
are the machines that are turned off nightly, which are seen as a
loose cluster in the region of 45 hours per week; the uptimes of
these machines are fairly consistent from week to week. Second
are the machines that are on for the first week but turned off for
the first weekend, which form a vertical band around 105 hours
per week; the vertical spread indicates that these are somewhat but
not strongly likely to be turned off on subsequent weekends.
Third are the machines left on for nearly all of the first week,
which form a dense stripe along the upper part of the right edge;
the very dark point at the upper right corner indicates that these
tend to be on for most of the remaining time, but the tail down the
right edge shows that this tendency is not absolute.
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Figure 6: Directory-data size vs. last access time
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Figure 7: Write rates
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Figure 8: Count of available machines versus time
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Figure 9: Uptime and availability vs. sorted machine index



4.2.3 Machine uptime correlation
We computed a temporal correlation value ρ for each pair of
machines using the method described in § 3.2.2. The dark curve
in Figure 11 shows the cumulative distribution of this correlation
value for all pairs of machines. 73% of all pairs of machines
exhibit positive uptime correlation, and 20% of all pairs exhibit
very strong positive correlation (ρ > 0.95).

Figure 11 also plots what this cumulative correlation curve would
be if uptimes for all machines were randomly correlated and if
they were perfectly correlated, in each case using the measured
distribution of machine uptimes from Figure 9. The actual curve
is much closer to the random curve than to the perfect curve,
indicating that the vast majority of the observed positive
correlation is due to the fact that most machines are up most of the
time, and the uptimes are not otherwise very correlated.

The degree of uptime correlation varies by job function.
Administrator and business systems are more correlated than
others; however, they are much closer to random than to perfect.

4.2.4 Machine downtime interval prediction
Figure 12 shows the distribution of machine downtime versus
downtime interval length, including only downtime intervals that
began and ended within our 5-week observation interval,
accounting for 83% of all observed downtime. The distribution
shows a daily periodicity, since changes in machine on-or-off
state tend to happen during workdays. There are two large spikes
near the left edge, indicating downtime due to nightly turnoffs and
two-day (presumably weekend) turnoffs.

We can use the time tp a machine has been off to predict the
amount of additional time tf it will remain off, using Equation 1
defined in § 3.2.3. To estimate f(x), we use a mix of three
distributions: a normal distribution [11] (µ1 = 14, σ1 = 1.9) for
nightly 14-hour intervals, a normal distribution (µ2 = 64, σ2 = 2.1)
for weekend 64-hour intervals, and a gamma distribution [10] (α =
0.68, β = 180) for the remainder. The mixing coefficients are
0.11, 0.18, and 0.71, respectively. This curve is shown by the
dotted line in Figure 12.

Figure 13 shows the result of applying Equation 1 to the fitted
distribution. After 72 hours of downtime have been observed, the
expected remaining downtime increases monotonically with
increasing observed downtime. Prior to this point, the curve is
non-monotonic due to the high probability that the downtime is
part of a nightly or weekend turnoff.

4.2.5 Machine lifetimes
From the July–October 1999 ping measurements, Figure 14 shows
a plot of the count of remaining machines versus time. This curve
is approximately a straight line, which is the expected result if
machines have deterministic lifetimes (§ 3.2.4). The expected
machine lifetime is the x-intercept of the line, which is 290 days.

As described in § 3.4, we have no job-specific data for the first
half of the ping period. For the second half, fitting lines to the
curves for different job categories yields x-intercepts that vary
from 270 days (for business) to 380 (for technical development).
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4.3 Machine Load Results
From the machine-load data we collected as described in § 3.3, we
analyzed the CPU load on machines, the disk loads on machines,
the correlation of these two loads to each other, and – with the
availability data described in § 3.2 – the correlation of CPU load
to machine uptime.

4.3.1 CPU load
From the October 1999 load measurements, we examined CPU
load versus time of week, as shown in Figure 15. Mean CPU load
ranges from about 13% load during the night to about 18% during
the day, and the median CPU load varies from about 1% to 2%.
This figure also shows the fraction of sampled machines that are
100% loaded, which varies from about 7% to 13%, and which is
weakly correlated to time of week, showing slightly higher values
on nights and weekends.

4.3.2 Disk load
Figure 16 shows disk load versus time of week. Mean disk load
ranges from about 9 operations per second to about 25, with one
notable spike of 59 at midnight on Sunday evening. We
conjecture that the spike corresponds to a common, periodic
maintenance task, such as file-content indexing or backup. As
with CPU load, the median disk load is much more uniform and
varies from about 8 to 10 operations per second, which represents
an essentially idle machine, since a typical modern machine has a
peak performance of several hundred disk operations per second.

Figures 17 and 18 are cumulative distributions of CPU load and
disk load, respectively. The variation due to job category is
relatively small. The CPU distribution is bimodal: 9% of samples
reflect 100% load, and most other samples reflect near idleness.

4.3.3 Machine load correlation
CPU loads are somewhat correlated with disk loads. We
computed a Spearman rank-correlation coefficient [10] of 0.27 for
these two values across all samples.

The fraction of time that a machine is up is not correlated to the
mean CPU load of the machine while it is up. We computed a
Spearman rank-correlation coefficient of –0.0087 for these two
values across all machines.
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Figure 14: Machine attrition
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5. FEASIBILITY ANALYSIS
In this section, we analyze the feasibility of deploying our
proposed system on the desktop infrastructure measured in § 3.
We determine how well our system would work if we added no
new hardware resources to the environment. For this analysis, we
use the September 1998 file-system data, but we conservatively
assume only 47% space reclamation from duplicate elimination,
which is the value obtained from the much smaller February 1999
data set. Since we have no data on file compressibility, we ignore
this potential source of additional reclaimed space, although it
may dramatically improve the feasibility results.

A critical design parameter is the cache retention period.
Increasing the cache retention period increases the expected size
of the cache, which decreases the space available for the global
file store, thus decreasing the file replication factor. Figure 4,
showing cumulative data size in accessed directories versus
elapsed time since access, can be interpreted as cache size versus
the cache retention period. The solid line in Figure 19 shows the
file replication factor as a function of the cache retention period.

5.1 Availability Analysis
Figure 20 shows median file availability, as a function of
replication factor, when files are placed as described in § 2.2.1.
The y-axis is scaled in nines, which is the negative decimal
logarithm of the fraction of time that a file is unavailable. Figure
5, showing directory count versus last access day, can be
interpreted as the cache miss rate versus cache retention period,
following the argument in § 3.1.3.

Given file availability a (nines) and cache miss rate m (directories
per day), the probability of access failure for any given file
system’s files on any given day is:

( )ma
Fp −−−= 1011 (4)

The dotted line in Figure 19 shows this probability expressed
reciprocally as mean time between failures, versus the cache
retention period. The fluctuation is due to measurement artifact in
the access times, as discussed in § 3.4. The order of magnitude is
one unfilled file request per file system per thousand days.

5.2 Reliability Analysis
If machines always notify the system before being permanently
decommissioned, overall file reliability is governed by the disk
failure rate [25]. In particular, the likelihood of permanently
losing a file is exponentiated by the replication factor.

However, if machines do not always notify the system, reliability
is substantially degraded. To determine a lower bound on
reliability, we assume that machines always disappear without

warning. The mean time between loss of one machine full of
replicas is equal to the mean machine lifetime, l. A directory full
of files will be permanently lost if all machines containing the
other replicas of these files are decommissioned before the system
recognizes the loss and creates new replicas. Given d directories
per machine, r replicas, and lag τ between a machine’s turnoff and
the creation of replacement replicas, the mean time between
losing a directory of files per machine is:

1−







=

r

L

l

d

l

τ
µ (5)

As an example, for r = 3 (Figure 19), l = 290 days (§ 4.2.5), τ = 3
days (§ 4.2.4), and d = 1700 [7], the lower bound on the mean
time between one directory loss per machine is µL = 1600 days.

5.3 Performance Analysis
Figure 6, showing data-access volume versus last access day, can
be interpreted as the cache fill rate versus cache retention period,
following the argument in § 3.1.3. For an example cache
retention period of one week, the average network traffic from
cache fills is a very modest 10 MB / day / file system.

Figure 7, showing data-write volume versus last write hour, can
be interpreted as the update propagation rate versus lazy-update
propagation lag. For an example propagation lag of one hour, the
average network traffic from update propagation is 7 MB / hour /
replica / file system, which is also quite modest.

Although these rates ignore burstiness in file activity (§ 3.4), they
are so low that a typical modern desktop PC needs only a few
seconds to service the entire traffic it would see in a typical day.

6. RELATED WORK
Most distributed file systems are implemented on centralized
servers [23]. Performance is enhanced by local caching of files
[13] on client machines. High availability is achieved with fault-
tolerant hardware, replication across clustered servers [26, 30],
and access to locally cached files when the server is inaccessible
[14, 24]. High reliability is achieved through RAID [21] or
replication [12].

Previous serverless distributed file systems include xFS [1] and
Frangipani [27]. The xFS file system, part of the Berkeley NOW
project [2], focused on providing support to distributed
applications on workstations interconnected by a very high-
performance network. Frangipani is a file system built on the
Petal [15] distributed virtual disk, which is implemented in a
decentralized fashion. Both systems provide high availability and
reliability through distributed RAID semantics. Whereas xFS did
not focus on administration issues, Petal provided support for
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transparently adding, deleting, or reconfiguring servers. Both
systems assume trusted machines and are intended primarily for
use within a centrally administered machine cluster.

There have been many published studies of file systems and
desktop workstations [3, 4, 9, 17, 18, 20], focusing mostly on
Unix systems. Only two prior studies have examined PCs [7, 29].

7. SUMMARY AND CONCLUSIONS
We presented an architecture for a serverless distributed file
system that does not assume mutual trust among the client
computers. The system provides security, availability, and
reliability by distributing multiple encrypted replicas of each file
among the client machines.

To assess the feasibility of this system if deployed on an existing
desktop infrastructure, we collected data from client machines at
Microsoft Corporation.

We found that only half of all disk space is in use, and by
eliminating duplicate files, this usage can be significantly reduced,
depending on the population size. Half of all machines are up and
accessible over 95% of the time, and machine uptimes are
randomly correlated. Machines that are down for less than 72
hours have a high probability of coming back up soon. Machine
lifetimes are deterministic, with an expected lifetime of around
300 days. Most machines are idle most of the time, and CPU
loads are not correlated with the fraction of time a machine is up
and are weakly correlated with disk loads.

Using our measurement data, we determined that if our proposed
system were deployed on our measured desktop infrastructure, file
availability is on the order of one unfilled file request per
thousand days. The lower bound on reliability is around one
directory loss per couple thousand days, but actual reliability
should be much higher if machines generally notify the system
before being permanently decommissioned.

Since availability and reliability are exponentially sensitive to the
number of distributed replicas, small increases in disk space can
profoundly increase availability and reliability. For example,
adding an average of one dollar’s worth of disk space per machine
can nearly double the mean time between failures. Thus, in actual
deployment of our proposed system, it would be wise to increase
the available storage, either by increasing client-disk sizes or by
adding userless client machines to the system. This is particularly
true for small installations, which can reclaim little space through
duplicate elimination. However, our measurements suggest that
even deployed on an existing set of desktop computers in a large
corporation, our proposed system would work fairly well.
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