Proceedings of the IASTED International Conference on Internet Multimedia Systems and Applications (IMSA ’99)
October 18-21, 1999, Nassau, Bahamas
Published by ACTA Press, Editor: B. Furht, ISBN: 0-88986-269-9

Fcast multicast file distribution: “Tune in, download, and drop out”

	Jim Gemmell

Microsoft Research

301 Howard St., #830

San Francisco, CA 94105 USA

Jgemmell@microsoft.com
	Eve Schooler

Computer Science, 256-80

California Institute of Technology

Pasadena, CA 91125 USA

schooler@cs.caltech.edu

	Jim Gray

Microsoft Research

301 Howard St., #830

San Francisco, CA 94105 USA

gray@microsoft.com

Abstract: Reliable data multicast is difficult to scale. Fcast, “file multicasting”, combines multicast with Forward Error Correction (FEC). Like classic multicast, Fcast scales to large audiences, and like other FEC schemes, it uses bandwidth very efficiently. Some of the benefits of this combination were known previously, but Fcast contributes new caching methods that improve disk throughput and new optimizations for small file transfers.

Keywords: Reliable multicast, forward error correction, file transfer, caching, scalability.

1 Introduction

Frenzied downloading that raises Internet traffic by an order of magnitude has been dubbed the Midnight Madness problem because the mad dash for files often takes place late at night or in the early morning when files are first made available. Spikes in activity have been due to a range of phenomena: popular product releases; important software updates; security bug fixes, the NASA Pathfinder vehicle landing on Mars, the Kasparov vs. Deep Blue chess match, and the Starr report. The danger of such traffic spikes lies not in the data type, but rather the distribution mechanism.

These problems are caused by the web's current unicast "pull" model. A TCP connection is established between a single sender and each receiver, then the sender transmits a copy of the data once over each connection. Each copy must traverse many of the same network links. Naturally, links closest to the sender can become heavily saturated. Nonetheless bottlenecks can occur anywhere over-subscription occurs. Furthermore, congestion may be compounded by long data transfers, either because of large files or slow links.

These problems could have been avoided by using the multicast file transfer technology (Fcast) described here. In fact, using Fcast, every modem user in the entire world could have been served by a single server machine connected to the Internet via a modem, rather than the 44 machines that serve microsoft.com via two 1.2 Gbps network connections.

This paper describes how Fcast combines erasure correction with a “data carousel” to achieve reliable multicast transfer as scalable as IP multicast itself. Multicast file transmission has been proposed before [1,2]. However, previous work focused on network efficiency. This paper extends previous work by describing how Fcast optimizes network bandwidth for small file transmissions, and how Fcast uses caching to optimize disk throughput at the receiver. For additional details not permitted by space in this paper, see [3].

2 Reliable Multicast of Files Using Erasure Correction

IP multicast provides a powerful and efficient means to transmit data to multiple parties. However, IP multicast is problematic for file transfers. It does not guarantee that packets will be received, nor does it ensure that packets will arrive in the order they were sent.

Many reliable multicast protocols have been built on top of multicast (see [4] for a brief review). However, scalability is difficult to achieve. The primary barrier to scalability of these protocols is feedback from the receivers to senders in the form of acknowledgements (ACKs) or negative acknowledgements (NACKs). If many receivers generate feedback, they may overload the source, or the links leading to it, with message “implosion”.

In the data carousel [5] approach, the sender repeatedly loops through the source data, without any receiver feedback. The receiver listens to as many loops as necessary to obtain all the packets. This can be made more efficient by including forward error correction (FEC) [6]. Most of the FEC literature deals with error correction, that is, the ability to detect and repair both erasures (losses) and bit-level corruption. However, in the case of IP multicast, lower network layers will detect corrupted packets and discard them. Therefore, an IP multicast application need not be concerned with corruption; it can focus on erasure correction only.

The erasure correction used here is called an (n,k) code. k source blocks are encoded into n>k blocks, such that any k of the encoded blocks can be used to reconstruct the original k blocks (Figure 1). For example, parity can be used to implement (k+1, k) encoding. Many (n,k) codes based on Reed-Solomon codes are efficient enough to be used by personal computers [7,8,9]. Fcast uses a systematic encoding, in which the first k of the n encoded blocks are the original blocks. If these first k blocks are received, no decoding is necessary.

[image: image1.wmf]1

2

k

. . .

Original packets

1

2

k

. . .

k+1

n

. . .

encode

take any k

. . .

. . .

decode

1

2

k

. . .

Original packets

Figure 1. An example of (n,k) encoding and decoding: k original packets are reconstructed from any k of the n encoded packets.
In practice, k and n must be limited for Reed-Solomon based codes as large values make encoding and decoding expensive. (k,n) = (64, 255) are typical limits [1]. As most transmissions (e.g., files) are longer than k blocks, they must be divided into groups of k blocks each, with erasure correction (EC) performed on a group-by-group basis. Each block in the session is assigned to an EC group of k blocks, which is then encoded into n blocks. Each block is identified by an index specifying which of the n encoded blocks it is, as well as a group identifier associating it with an EC group.

To complete the reception, k distinct blocks (i.e., with different index values) must be received from each group. To ensure the minimum wait for a block from a particular group, all blocks with index i are sent before any blocks with index i+1. As shown in Figure 2, when block n of the last group of the last file is sent, the transmission cycles. One danger with this transmission order is that a pattern of periodic network losses may become synchronized with the transmission so as to always impact blocks from certain groups; in the worst case, a single group is always impacted. The impact of periodic losses may be eliminated through randomly permuting the order of groups sent for each index [10]. Thus, periodic losses are randomly spread among groups.

Fcast assumes that a single sender initiates the transfer of a single file to a multicast address. The sender loops continuously either ad infinitum, or until a certain amount of FEC redundancy has been achieved. Receivers tune in to the multicast address and cache packets in a temporary file name until they receive enough blocks to recreate the file. At that point, the file is then decoded, and the file name and attributes set. See Section 4 for more details of the reception algorithm.

[image: image2.wmf]Index

Group

1

1

2

2

3

k

G

k+1

n

Figure 2. Transmission order: Any k blocks must be received from each group to reconstruct the transmitted file

Each file sent is given a unique ID, and each group has an ID according to its offset from the start of the file. Thus, each block in the transmission is identified by a unique <File-ID, Group-ID, Index> tuple. Packets with indices 0 to k-1 are original file blocks, while the packets with indices k to n-1 are encoded blocks. The file ID, group ID, and index are included in the packet header.

Our implementation makes the assumption that all packets are the same fixed size.

3 Selecting a value for k

To complete the reception, k distinct blocks (i.e., with different index values) must be received from each group. For some groups, more than k blocks may be received, in which case the redundant blocks are discarded. These redundant blocks are a source of inefficiency, as they increase the overall reception time. Thus, the inefficiency is related to the number of groups G, which is the file size divided by k. Thus, larger k values generally result in more efficient transfers. However, implementation details prevent construction of a codec with arbitrarily large k. Let the maximum possible value of k be kmax. This section explains how to select an optimal k, given that k can be at most kmax.

With this limit on k, larger files are transmitted less efficiently (see [3] for more analysis). However, at the other end of the spectrum, small transfers also require a careful consideration of k value. For instance, transmitting a 17 block file with k = 32 would require 15 padding blocks to fill out the single group Recall, however, that larger k values only improve efficiency by reducing the number of groups. Therefore, using k=17, avoids the overhead of padded blocks, and has the same efficiency as k=32, since there is still be only one group. Therefore, any transmission of S (kmax should use k=S.
Transmissions of slightly larger values are also problematic. Assume for the moment that k must be fixed over all groups in a file. Consider a transfer of kmax + 1 blocks. Using k= kmax would give one full group of k blocks, and a second group containing only one data block with k-1 empty padding blocks. The overhead of the transfer would be close to 50% with k values that are larger than 10. For example, if kmax =8 and 9 blocks are to be transmitted, then 7 padding blocks would be required (see Figure 3). Again, larger k values are not necessarily better. Rather than having 2 groups of 8 each, with 7 padding blocks, there should be 2 groups of 5 blocks (i.e., k=5), with only one padding block. This is just as efficient in terms of erasure correction (it still uses only 2 groups) but greatly reduces the number of padding blocks.

[image: image3.wmf]Index

Group

1

1

2

2

k=8

9

n

3

4

5

6

7

=

normal block

=

padding block

=EC block

Index

Group

1

1

2

2

8

9

n

3

4

k=5

6

7

Figure 3. Avoiding padding overhead by selecting smaller k.
In general, when transmitting S blocks with kmax<S< kmax2, k should be set to the smallest value, while still retaining the same number of groups as would be obtained by using kmax. Suppose S = d kmax + r, with 0<d<kmax and 0<r(kmax. The number of groups using k= kmax would be d+1. To maintain d+1 groups, while minimizing k to reduce the padding overhead, k can be set to:

[image: image4.wmf]ú

ú

ù

ê

ê

é

+

+

=

1

d

r

dk

k

.

Figure 4 shows the C code for determining the optimal k value.

Let the wasted transmission due to padding be w. Naively using k= kmax can yield w as high as kmax -1, regardless of the transmission size. Minimizing k, as above, means that w will be at most d. As a fraction of the file length, this is:

[image: image5.wmf]d

r

k

r

dk

d

S

d

/

1

max

max

+

=

+

=

Therefore, the fraction of waste due to padding will always be less than 1/ kmax. Figure 5 shows the padding overhead for files from size 0 to 2500 blocks, with kmax=32.

Int OptimalK(int nBlocks, //#blocks to xmit

 int nMaxK) //max value for k

{

 int nGroups; //#groups if we use nMaxK

 nGroups = ceiling(nBlocks/nMaxK);

 if (nBlocks <= nMaxK)

 return nBlocks;

 if (nGroups >= nMaxK)

 return nMaxK;

 return ceiling(nBlocks/nGroups);

}

Figure 4. Selection of optimal k value.

[image: image6.emf]0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

0 500 1000 1500 2000 2500

File Size (blocks)

Padding

Figure 5. Wasted space due to padding vs file size (k=32).
So far, we have assumed k must be the same for all groups in the file. However, as we carry k in each packet, we have the option to vary k for each group. Suppose that we have discovered the optimal k=k0, as above and that S = (d+1)k0 – p, where p<d+1 is the number of padding blocks needed. We can re-write this as S = (d+1-p)k0 + p(k0-1). So the transmission could be sent as (d+1-p) groups using k=k0 and p groups using k=k0-1, and no padding blocks are required. Sending will still look much the same: there are the same number of groups, and one packet can be sent from each group in turn. There will be a slightly higher probability of receiving more redundant packets for the groups that use k=k0-1 than for those that use k=k0, but the difference is so slight that no changes in the send order would be worthwhile.

4 Disk Performance Issues

To our knowledge, disk performance of reliable multicast has not been addressed in the literature before. When work on Fcast began, we did not consider disk performance; thinking of an Internet application, one does not imagine the network outpacing the disk. However, when Fcast was applied to an enterprise application (distributing a 100+ MB software update over a LAN) we quickly discovered that the disk could indeed become the bottleneck when performing many small (1KB) random I/Os. If packets cannot be written to disk quickly enough, they must be discarded. As there is no mechanism to slow down the sender, having the transmission rate outpace disk writes means wasted network bandwidth.

The Fcast sender application assumes that the files for the bulk data transfer originate on disk. To send blocks of data to the receivers, the data must be read and processed in memory. However, for a large bulk data transfer, it does not make sense to keep the entire file in memory.

If the next block to send is an original block (Index<k), the sender simply reads the block from disk and multicasts it to the Fcast session address. If the next block is meant to be encoded (Index(k), the sender must read in the associated group of k blocks, encode them into a single FEC block, and then send the encoded block. There is no point caching the k blocks that helped to derive the outgoing FEC block because the entire file cycles before those particular blocks are needed again.

Storing encoded blocks would save repeated computation and disk access (disk access is the dominant factor). For peak performance, all blocks could be pre-computed, and stored in a file in the order they will be sent. Sending would simply involve looping through the file and sending the blocks. However, as n>>k, keeping FEC blocks in memory or on disk may consume much more space than the original file. Furthermore, in some cases the time penalty to pre-compute and write this file may not be acceptable. Fcast does not support this pre-computation feature, but may support it as an option in a future release.

The Fcast receiver has a more complicated task than the sender does. Blocks may not arrive in the order they were sent, portions of the data stream may be missing, and redundant blocks must be ignored. Because the receiver is designed to reconstruct the file(s) regardless of the sender’s block transmission order, the receiver does not care to what extent the block receipt is out of order, or if there are gaps in the sender’s data stream. The receiver keeps track of how many blocks have been received for each group and what the block index values are.

In designing Fcast we considered five possible schemes to deal with received packets: In-Memory, Receive-Order, Group-Area, Crowd-Bucket, and Bucket-per-Crowd.

The In-Memory scheme supposes that the receiver has enough RAM to hold the entire file (plus metadata). Blocks are received, sorted and decoded all in main memory. Finally, it is written to disk. Naturally, this approach cannot scale to large files.

Receive-Order simply writes all blocks to disk in the order they are received. When reception is complete (i.e., k blocks have been received for each group) the file is sorted into groups prior to decoding. This scheme allows fast reception (sequential writing to disk is fast) but suffers delays in the sorting and decode phases. Such sorting delays can be significant for large transfers. Note also that in-place sorting typically requires disk space of twice the file size. All the other schemes presented here require only the disk space of the transmitted file (plus the metadata trailer).

[image: image7.wmf]Send file

Receive file

…

while the

other bucket is

written to the

next empty slot

in the group

area at receiver

block (encoded or

original) from the

group…

group

group

group

…

is stored in one of the

buckets…

bucket

bucket

Figure 6. Group-Area reception method.

The Group-Area scheme writes blocks to the area of the file corresponding to their group (i.e., for group g, the k blocks beginning at block kg). Blocks are received into one of two single-block buckets in RAM. While one bucket is receiving, the other is written to disk. The block is stored in the next empty block position within the group, which may not be its final location within the file (see Figure 6). Once reception is complete, each group is read into memory, decoded, and then written back in-place. This scheme avoids sorting delays in the decode phase, but must perform a random disk seek to write each block (in a perfect reception it will be seeking from one group to the next to write each block). The round-robin transmission order challenges file caching mechanisms. In fact, disk caching may slow down writing. For example, if a disk cache uses 4KB pages, then a 1 KB write operation may involve a 4KB read (to get the page) followed by a 4KB write. To prevent such problems, blocks are written in unbuffered mode during reception.
 However, even in unbuffered mode, 1 KB writes are so small as to allow disk latencies to dominate total writing time, making writing inefficient.

The Crowd-Bucket scheme assigns multiple groups of blocks to “crowds” (Figure 7). Blocks are written as in the Group-Area scheme, but rather than writing to the next available position in the group, they are written to the next available position in the crowd. In order to write several blocks as a single sequential write, blocks are buffered in several buckets, each of size b, before writing. The crowd size is set to be b groups. As long as a bucket is not full, and the incoming block is from the same crowd, no writes are performed. When the bucket is full, or the crowd has changed, then the bucket are written out to the next available free space in the appropriate crowd position in the file.

When the Crowd-Bucket scheme has completed reception, each crowd is then read into memory and sorted into its constituent groups. The groups are decoded and then written back to the file. This requires no more disk I/O than is minimally required by decoding (one read/write pass). As sorting time should be small compared to decoding time, performance will be good. The cost is in memory: kb blocks of memory are required to read the crowd into memory to perform the sort. Note that Group-Area is a special case of Crowd-Bucket, with b=1.

[image: image8.wmf]Send

file

…

is stored in next empty slot

in one of the buckets

block (encoded or

original) from the

crowd

crowd

crowd

group

group

group

group

bucket

bucket

When a bucket is full, or a new

crowd is received, the bucket is

written to the next empty space

in the crowd area

Receive

file

crowd

crowd

bucket

Third bucket

is used for a

crowd split up to be sent

first and last in a round

Figure 7. Crowd-Bucket reception method.

If groups are always sent in order starting with the first group, then Crowd-Bucket only requires two buckets while receiving: one to receive into while the other is written. However, as mentioned previously, the group order should be randomized in order to prevent periodic loss leading to correlated group loss. The sender could randomly permute crowds rather than groups, but as crowds are a receiver concept and would have their size adjusted by receiver disk speed and memory availability, it is not suitable to have the sender select a crowd size. A better choice would be to have the sender randomly select the first group to send, and then proceed in order, modulo the number of groups. That is, it could randomly select x in the interval [1,G], and send groups x through G, followed by groups 1 through x-1. The position of a group in a round is random, so correlated loss of the same group due to periodic losses is prevented.

If the sender only randomizes the selection of the first group in a round, then the Crowd-bucket scheme can operate with 3 buckets. If the first block sent in a round is from the first group of a crowd, then only two of the buckets need be used, and writing can operate as described above (receive into one while the other writes). If the first block is not from the first group of its crowd, then the crowd will be split up so some of its blocks are sent at the start of the round, and some at the end. In this case, one bucket is dedicated to receiving blocks from that crowd. The third bucket is only written when the round is complete. All other crowds are received and written as described above using the other two buckets. (Note: as kb blocks of memory are required to decode and sort, and typically k>2, using 3 buckets instead of 2 has no impact on overall memory requirements – in fact, k buckets might as well be used to allow for variations in disk performance).

Testing on a Gateway Pentium 300 running Windows NT 4, with a block size of 1 KB, and k=32 yielded the following results: Using the Group-Area method, the fastest that data can be written (and, hence, received) is 1674 kbps. Using Crowd-Buckets, with a crowd size of 4 groups (i.e., b=4), data can be written at 4715 kbps, approximately a 3 times speedup. This requires 3k extra memory, but with k=32, this is only 96KB.

The Crowd-Pool scheme also arranges groups into crowds. Like the crowd-buckets scheme, it writes blocks to the next available position in the crowd, and performs a single pass sort and decode when all receiving is complete. However, rather than having 2 buckets, it maintains a pool of block-sized buffers. With the Crowd-Pool method there need not be b groups per crowd – more or less are possible. Also, the Crowd-Pool scheme does not constrain the randomization of group order as the Crowd-Bucket scheme does. In fact, it does not make any assumptions about the send order.

There are two ways to implement crowd-pool. One uses “gather” writing, i.e. the ability to “gather” a number of discontiguous blocks of memory into a single contiguous write. The other way, “non-gather”, does not assume this capability, so discontiguous memory blocks must be copied to a contiguous write buffer before writing.

The gather implementation works as follows: Let the number of crowds be c, and the number of groups per crowd be g. Thus, g=S/ck. Let the buffer pool consist of bc + b – c + 1 blocks. Whenever a crowd has more than b blocks buffered in the pool, it writes b blocks to disk. The write is performed as a single contiguous write in the next available space in the crowd. Whenever all crowds have less than b blocks buffered, then any crowd may be chosen arbitrarily, and its blocks are written to disk. Figure 8 illustrates the gather implementation of Crowd-Pool. bc+b-c+1 blocks of memory are sufficient for the gather implementation of Crowd-Pool (see [3] for a proof).

Now suppose gather writing is not possible. Let a write buffer of size b blocks be used along with a pool of bc-c+1 blocks, for a total that is still bc+b-c+1 blocks of memory. Whenever any crowd has at least b blocks in the pool, b blocks are copied to the write buffer and a write is initiated. Whenever all crowds have less than b blocks buffered in the pool, then a crowd is chosen arbitrarily to have its blocks copied to the write buffer, and the write is initiated. Thus, it is possible to avoid requiring gather writing at the expense of extra memory-to-memory copies (which should not be significant). For a proof of the sufficiency of the memory for the non-gather Crowd-Pool algorithm, see [3]

[image: image9.wmf]Send

file

…

is stored in an empty block

in the buffer pool

block (encoded or

original) from the

crowd

crowd

crowd

group

group

group

group

When a crowd has at least b blocks in the pool, b

blocks are written to the next empty space in the

crowd area. If no crowd has at least b, then any

crowd is chosen to have its blocks written

receive

file

crowd

crowd

buffer pool

Figure 8. Crowd-Pool reception method (gather implementation).

The memory required to implement Crowd-Pool is, as we have stated, bc+b-c+1. However, in order to sort and decode a crowd in one pass, there must also be sufficient memory to hold an entire crowd. A crowd consists of S/c blocks. Therefore, the memory required to cache, sort and decode is m(max(S/c, bc+b-c+1). As a function of c, S/c is decreasing, while bc+b-c+1 is increasing. Therefore, the minimum memory required is found at their intersection, which is at

(b-1)c2 + (b+1)c – S = 0 .

This can be solved for c to obtain:

[image: image10.wmf])

1

(

2

)

1

(

4

)

1

(

)

1

(

2

-

-

+

+

+

+

-

=

b

b

S

b

b

c

Substituting into m=bc+b-c+1 yields

[image: image11.wmf])

1

(

4

)

1

(

2

1

2

-

+

+

+

+

=

b

S

b

b

m

So we see that as S gets very large m can be approximated by (S(b-1))1/2, which grows with the square root of the file size.

The above uses continuous functions, but, of course, all the variables must have integer values. In practice, g should calculated as

[image: image12.wmf](

)

k

b

S

b

b

b

S

g

)

1

(

4

)

1

(

)

1

(

)

1

(

2

2

-

+

+

+

+

-

-

=

Now g must be an integer and be at least one. Let gc=max(1,(g() and gf max(1,(g(). Then calculate

[image: image13.wmf]ú

ú

ù

ê

ê

é

=

k

g

S

c

c

and m=max(gck, bc-c+b+1, S/c). Perform the same calculations using gf in place of gc, and then select gf or gc according to which one requires less memory.

Table 1 compares the memory, disk space and I/O requirements of the five methods. It is clear that both Crowd-Bucket and Crowd-Pool achieve low I/O costs, while maintaining low disk space and reasonable memory requirements. To compare their memory requirements, one must look at the parameter values. Figure 9 illustrates this for k=64 and b set to 16 or 128. Note that when b=16, Crowd-Pool uses more memory for all but the smallest files. With b=128, Crowd-Pool uses less memory for files up to about 0.5 GB. Therefore, “low” bandwidth applications that need a relatively small b value can use the simpler Crowd-Bucket scheme, while higher bandwidth applications sending relatively small files would save memory by using Crowd-Pool. For modern PC’s, b=8 should suffice to handle transfers on the order of several Megabits per second.

	Method
	Memory
required
(blocks)
	Disk space
required
(blocks)
	Total Disk I/O required
	Experimental rate (Mbps)

	In-Memory
	S
	S
	S sequential
	Network speed

	Receive-Order
	1
	2S
	S random + 4S sequential

	29.1

	Group-Areas
	1
	S
	S random (size 1) +
2S sequential
	1.2

	Crowd-Buckets
	Kb
	S
	S/b random (size b) +
2S sequential
	2.7

	Crowd-Pool
	 (Sb)½
(approx)
	S
	S/b random (size b) +
2S sequential
	2.7

Table 1. Comparison of receive methods.

To support Crowd-Bucket, the sender must restrict randomization of send order to crowds, meaning the sender must select a crowd size. However, for Crowd-Pool, the receiver selects the crowd size, and the sender may send in any order. A receiver with memory m could determine the receiving strategy as follows:

· If m(S then use In-Memory.

· Otherwise, find the largest b that m can support using Crowd-Pools; call it bp. Let the maximum b that m can support (m/k) using Crowd-Bucket be bb. If bb> bp and bb>1 use Crowd-Buckets. Otherwise, if bp>1 use Crowd-Pools.

· Otherwise, use Group-Area.

· If the receive method selected above cannot keep up with the receive rate, switch to Receive-Order.

Finally, we note that decoding a group could begin as soon as k packets have been received for the group, in parallel with reception of other packets. However, disk I/O is required to fetch the packets for the decode and to write the results; such I/O may interfere with the writes required for new packets received. In the current version of Fcast, decoding is deferred until all groups have completed. In the future we may add parallel decoding, but only as a lower priority I/O activity to writing newly received packets.

[image: image14.emf]0

2

4

6

8

10

12

14

0 500 1000

File Size (MB)

Memory required (MB)

crowd-pool

b=128

crowd-buckets

b=128

crowd-pool

b=16

crowd-buckets

b=16

Figure 9 - Memory requirements for crowd-buckets and crowd-pool schemes; k=64, block size 1KB.

5 Conclusion and Future Work

Fcast file transfer is as scalable as IP multicast. Fcast handles receivers with heterogeneous loss characteristics. It requires no feedback-channel communication, making it applicable to satellite transmissions. We have discussed how Fcast optimally selects the k parameter to minimize transmission overhead while maintaining the best loss resilience. We have also explained how to efficiently use the disk at the sender, and, more critically, at the receiver.

We are considering several enhancements to Fcast, including layered transmission [2] to address congestion control.

Fcast has been used on the Microsoft campus to distribute nightly updates of Windows 2000 – a 336 MB download. It has also been incorporated into a Multicast PowerPoint Add-in, to distribute “master slide” information in one-to-many telepresentations [11]. By the time this paper appears, Fcast should be freely available on the World Wide Web to allow distributors of software and other popular content to avoid the catastrophes associated with the “midnight madness” download scenario.

Acknowledgements

The authors wish to acknowledge the helpful comments of Dave Thaler and Shreedhar Madhavapeddi.

References

[1]
Rizzo, L, and Vicisano, L., Reliable Multicast Data Distribution protocol based on software FEC techniques, Proceedings of the Fourth IEEES Workshop on the Architecture and Implementation of High Performance Communication Systems, HPCS’97, Chalkidiki, Greece, June 1997.

[2]
Vicisano, L., and Crowcroft, J., One to Many Reliable Bulk-Data Transfer in the Mbone, Proceedings of the Third International Workshop on High Performance Protocol Architectures, HIPPARCH ’97, Uppsala, Sweden, June 1997.

[3]
Gemmell, Jim, Schooler, Eve, and Gray, Jim, Fcast Scalable Multicast File Distribution: Caching and Parameters Optimizations, Microsoft Research Technical Report, MSR-TR-99-14, June 1999.
[4]
Gemmell, J., Scalable Reliable Multicast Using Erasure-Correcting Re-sends, Technical Report MSR-TR-97-20, Microsoft Research, Redmond, WA, June 1997.

[5]
Acharya, S., Franklin, M., and Zdonik, S., Dissemination-Based Data Delivery Using Broadcast Disks, IEEE Personal Communications, Dec 1995, pp.50-60.

[6]
Blahut, R.E., Theory and Practice of Error Control Codes, (Addison Wesley, MA 1984).

[7]
Nonnenmacher, J., Biersack, E., and Towsley, D., Parity-Based Loss Recovery for Reliable Multicast Transmission, Proceedings ACM SIGCOMM '97, Cannes, France, Sept 1997.

[8]
Rizzo, L., and Vicisano, L., Effective Erasure Codes for Reliable Computer Communication Protocols, ACM SIGCOMM Computer Communication Review, Vol.27, No.2, Apr 1997, pp.24-36.

[9]
Rizzo, L., On the Feasibility of Software FEC, DEIT Tech Report, http://www.iet.unipi.it/~luigi/softfec.ps, Jan 1997.

[10]
Vicisano, L., Notes On a Cumulative Layered Organization of Data Packets Across Multiple Streams with Different Rates, University College London Computer Science Research Note RN/98/25, Work in Progress (May 1998).

[11]
Gemmell, J., Schooler, and E., Kermode, R., A Scalable Multicast Architecture for One-to-Many Telepresentations, Proceedings IEEE International Conference on Multimedia Computing Systems, ICMCS'98, Austin, TX, June 1998, pp. 128-139.

� Naturally, to support higher-speed downloads, a higher speed connection would be required.

� It is easy to prove from the derivation of k0 that k0 (kmax/2. With kmax = 32, k0 (16. The difference between k=15 and k=16 will be very slight (at least until the loss rate approaches 100%).

� Unbuffered I/O requires writes that are multiples of the disk sector size – often 512 bytes. We use a fixed block size of 1024 bytes in this first version of Fcast.

� Using a Pentium 266 running Windows 98 with IDE hard drive. Crowd methods used a crowd size of 4. Receive order did sequential unbuffered 8 KB writes. See [� REF gem99 �3�] for more detailed experimental results.

� This assumes an -2pass sort which uses order sqrt(Sb) memory for the sort to generate the runs and them merge them.

298-216

-1-
7
-2-

_990625443.unknown

_991036663.doc

…is stored in next empty slot in one of the buckets

bucket

Send file

block (encoded or original) from the crowd

crowd

crowd

group

group

group

group

bucket

bucket

When a bucket is full, or a new crowd is received, the bucket is written to the next empty space in the crowd area

Third bucket is used for a crowd split up to be sent first and last in a round

crowd

crowd

Receive file

_993644021.doc
[image: image1.bmp]

Index

Group

1

1

2

2

3

k=8

=normal block

9

n

=padding block

7

6

k=5

4

3

=EC block

7

6

5

4

n

9

8

2

2

1

1

Group

Index

_990969705.doc

…is stored in an empty block in the buffer pool

Send file

block (encoded or original) from the crowd

crowd

crowd

group

group

group

group

buffer pool

When a crowd has at least b blocks in the pool, b blocks are written to the next empty space in the crowd area. If no crowd has at least b, then any crowd is chosen to have its blocks written

crowd

crowd

receive file

_990973022.unknown

_990973701.unknown

_990939182.unknown

_977299288.doc

Original packets

. . .

k

2

1

decode

. . .

. . .

take any k

encode

. . .

n

k+1

. . .

k

2

1

Original packets

. . .

k

2

1

_986891245.doc

…while the other bucket is written to the next empty slot in the group area at receiver

Receive file

Send file

block (encoded or original) from the group…

group

group

group

bucket

bucket

…is stored in one of the buckets…

_973932709.unknown

_977298886.doc

Index

Group

1

1

2

2

3

k

G

k+1

n

_973931860.unknown

