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Abstract

We present methods for creating 3D graphical models of scenes from a limited numbers of images, i.e. one or two,
in situations where no scene co-ordinate measurements are available. The methods employ constraints available
from geometric relationships that are common in architectural scenes — such as parallelism and orthogonality —
together with constraints available from the camera. In particular, by using the circular points of a plane simple,
linear algorithms are given for computing plane rectification, plane orientation and camera calibration from a
single image. Examples of image based 3D modelling are given for both single images and image pairs.

1. Introduction

The task of reconstructing objects such as buildings from
photographs is receiving increased attention in the effort to
create models of valuable architectural sites. We are address-
ing here the key case where it is not possible to make mea-
surements of features of a scene to allow reconstruction —
for example cases where buildings are destroyed and only
archive images are available. In the absence of direct mea-
surement we wish to exploit geometric characteristics such
as the parallelism and orthogonality of lines and planes.
Such relationships are plentiful in manmade structures, and
often provide sufficient information to produce realistic re-
constructions.

The techniques presented here are aimed at metric recon-
struction; correct representation of angles and length ratios,
but not of absolute scale. This level of reconstruction is pre-
cisely that required for a graphical 3D model where the ab-
solute pose (rotation and translation) and scale are not neces-
sary for visualization. Computation of global scale provides
no theoretical difficulty, but requires knowledge of a single
length measurement in the scene.

Part of the novelty of the work lies in the direct applica-
tion of ideas from projective geometry?!, such as the circular
points. It will be seen that this allows simple linear equa-
tions to be formulated, and avoids the non-linear constraints
which typically arise in these types of applications when the
orthogonality properties of rotation matrices are used. It also
enables constraints from the scene and camera to be com-

(© The Eurographics Association and Blackwell Publishers 1999. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

bined effortlessly when computing reconstructions, allowing
the efficient use of all the available information.

We present methods to: metric rectify individual planes,
compute relative perpendicular distances from partially rec-
tified planes, calibrate cameras and reconstruct piecewise
planar objects from a single view. We also present a method
of metric rectifying 3D reconstructions from two views.

These techniques allow architectural models to be built
and rendered from single images in a similar manner to the
photogrammetric techniques of Debevec et al’. However,
in the Debevec system multiple images are necessary, scene
measurements are required to position the cameras, and the
camera internal calibration must be known. These are not
needed here. We use several vanishing points for scene mod-
elling from single images, and are therefore extending the
work of Horry et al.l5, where a single vanishing point is
used. The single view techniques are complementary to re-
construction methods applicable to multiple images, such as
an image sequence acquired by a video camera when walk-
ing around a buildingt- 2426,

In section 2 we begin with a description of planar rec-
tification from single view scene constraints. Section 3 de-
scribes 3D modelling when one plane is partially rectified.
This is followed by methods of camera calibration, in sec-
tion 4. Calibration is relevant in its own right and also as
an aid to the single view reconstruction of structures such
as buildings, which is detailed in section 5. We briefly dis-
cuss metric reconstruction from two views using vanishing
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points in section 6. Finally, some implementation details are
presented in section 7.

2. Planerectification

Given a perspective image of a world plane the goal is to
obtain a metric rectification of the plane. This is equivalent
to obtaining an image of the world plane where the camera’s
image plane and world plane are parallel.

One way to proceed is to determine the orientation of the
world plane. This requires some knowledge of the internal
parameters of the camera, which we return to in section 4.5.
The method described in this section requires no knowledge
of the camera and proceeds directly from geometric relation-
ships on the world plane, such as parallel lines.

As is well known the map between a world plane and
a perspective image is a homography (plane projective
transformation)!2 2123, This map can be determined from the
correspondence of four (or more) points with known posi-
tion. Once the homography is determined the image can be
warped onto the world plane and in this way a metric rectifi-
cation is obtained. However, it is not necessary to determine
the entire homography in order to obtain a metric rectifica-
tion — the plane rotation, translation and uniform scaling
which are a part of the homography map, and account for
four degrees of freedom, are irrelevant to the rectification.
This is the idea that is developed in this section: it is only
necessary to determine four of the eight parameters of the
homography. These four parameters are associated in pro-
jective geometry with the position of two points known as
the circular points?®.

To introduce some notation. A homography is represented
by a 3 x 3 homogeneous matrix H. Points on the image plane,
X, are mapped to points on the world plane, X, as x' = Hx,
where x is a homogeneous column 3-vector x = (x,y,1)"
with (x,y) the Euclidean position on the plane. Note, for
equations between homogeneous quantities ‘=" is equality
up to an overall scale factor. The homography matrix has
eight degrees of freedom — there are nine matrix elements,
but the overall scale is not significant. A line | is also rep-
resented by a homogeneous column 3-vector, such that if a
point x lies on | then I x = 0.

2.1. Metricrectification

A homography can be decomposed into two transforma-
tions:

H=MN @)

The transformation M is the metric part of the homography
and is a similarity transformation

(o 1) @

where R is a rotation matrix, t a translation vector, and s an
isotropic scaling. There are four degrees of freedom in M.

The second component of H is the non-metric part, which
may be parametrized as

1 _a g
B B

N=| 0 1 o0 3)
PR PR |

This matrix also has four degrees of freedom.

We can ignore the metric part (rotation, translation and
uniform scaling) in rectifying a plane. The key point is that
rectification is thus reduced to a four parameter problem
since we only require N to metric rectify an image.

The transformation N is determined directly from projec-
tion of the circular points. The circular points on the world
plane are a complex conjugate point pair with co-ordinates
(1, i, 0)T lying on the line at infinity. Under the homog-
raphy from the world plane to the image, H L, the circular
points are imaged as

l=8711,0, 07 = (a—iB,1,—L—ol +iliB)T (4)

and J = conj(l). Clearly, the image of the circular points de-
pends only on the non-metric component, N, of the homog-
raphy. Furthermore, once the imaged circular points, I,J, are
identified in the image, the parameters o, 3, 1, I, are known
so that N may be computed.

Figure 1: An image with significant perspective distortion.
Four points, corresponding to the corners of the rectangular
window, fully define a rectification homography for the plane
of the building facade.

Consider, for example, figure 1. Suppose we know the rel-
ative positions of the four points shown on the building fa-
cade and we can measure their position in the image. From
these four correspondences we compute the homography re-
lating the facade plane to its image. We thus rectify the plane
as shown in figure 2. An alternative rectification method is
to project the circular points into the image using (4), and
obtain N from (3). Rectification of the plane by N alone gives
the result shown in figure 3. The metric information on the
plane is the same in both rectified images. They differ only in

(© The Eurographics Association and Blackwell Publishers 1999.
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Figure3: A metric rectified image of the plane using only the
non-metric part, N, of the rectification homography. Angles
and length ratios are the same as in the previous rectified
image.

orientation, origin and scale, determined by the metric com-
ponent of the transformation.

Since in this case H is known it is, of course, unnecessary
to compute the images of the circular points and thence N.
In the sequel, however, we will be presenting methods of de-
termining the image of the circular points where four points
cannot be measured.

The goal from hereon is to recover the image of the cir-
cular points, or equivalently the non-metric component of
the rectification homography. In the following section it is
shown that it is often convenient to recover these parameters
in two stages.

2.2. Stratified metric rectification

In this section it is shown that rectification can be achieved
without knowledge of four point correspondences, providing
a technique for those cases where coordinate measurements
on a world plane cannot be obtained. Geometric relation-
ships on the world plane, such as parallelism and orthog-
onality, are employed to compute the projective and affine
components of the homography.

The non-metric component N of the rectification homog-
raphy can be further decomposed into two matrices:

N = AP
The first of these is an affine transformation which en-
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codes two of the four rectification parameters:

5 ~p O
A=l 0 1 o0 )
0 0 1

The second component of N is a projective transformation

1.0 0
p=[ 0 1 0 6)
ol 1

The vector oo = (Ig,12,1) T is the vanishing line of the world
plane. This is the image of the line at infinity of the world
plane. It is homogeneous and has two degrees of freedom
which encode all the pure projective distortion of the plane.

Under a stratified rectification scheme the two projective
components, encoded by the vanishing line of the plane, are
recovered first. The two affine components, corresponding
to the co-ordinates of the imaged circular points on the van-
ishing line, are then computed. The term ‘stratified’ orig-
inates in the computer vision literature with the work of
Koenderink!’” and Faugeras?®.

From Projective to Affine

The first stage is to determine P, which requires identifying
the vanishing line | of the plane. Parallel lines on the world
plane intersect at vanishing points in the image, and the van-
ishing points lie on lc. Two or more such points determine
|0, as shown in figure 4. Once P is determined the image can
be affine rectified, as in figure 5. Note, the lines used to com-
pute the vanishing points must be parallel to the world plane,
but need not lie on that plane. Many other constraints may be
used to determine the vanishing line. For example, a single
set of equally spaced parallel lines on the plane is sufficient
to determine 150%; and vanishing points can be determined
from a known length ratio on a line.

Affine rectification is necessary if textures are to be ac-
quired from images and used in imaged based modelling.
Formats such as VRML specify the map between a plane
and texture image by three points (an affine map). If the tex-
ture is projectively distorted then the resulting rendering of
the texture mapped planes will be incorrect.

From Affineto Metric

Having recovered the plane geometry up to an affine trans-
formation by applying the matrix P, the final stage is the
recovery of metric geometry. This requires an affine trans-
formation of the plane, A, that will restore angles and length
ratios for non-parallel lines.

We are most concerned in this paper with rectification of
building facades - where rectangular structures exist, such
as the facade outline or windows (as in figure 1). Such struc-
tures generally uniquely determine the projective rectifica-
tion parameters, but only provide one constraint on the two
affine parameters o and B. Specifically, rectangles or two or-
thogonal directions such as vertical and horizontal (on the
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Figure 4: The images of parallel world lines determine van-
ishing points: The black lines are parallel in the world and
intersect in the vanishing point u. The white parallel lines
intersect in a vanishing point not shown because it is far
from the image boundaries. The two vanishing points deter-
mine the vanishing line I, and the projective rectification
parameters.

Figure5: The affine rectified image. Notice that parallelism
is restored, but angles and ratios of lengths are still incor-
rect.

world plane) provide a pair of vanishing points in orthogonal
directions. This single orthogonality constraint determines
the metric rectification up to a one parameter family - the
ambiguity corresponding to the relative scale of vertical and
horizontal directions. Figure 6 shows two of the possible rec-
tifications. The first is computed with an arbitrary selection
of relative scale of a window on the facade. This ambiguity is
removed if the aspect ratio (width to height) of the window
is known. Alternatively, in section 4.6 it is shown that the
one parameter ambiguity can also be resolved from partial
knowledge of the internal camera parameters. The stratified
rectification method is summarized in Algorithm 1.

(b)

Figure6: The aspect ratio ambiguity in relative scale of ver-
tical and horizontal directions. (a) An incorrectly scaled im-
age. (b) The correctly scaled image, from the known length
ratio of the sides of a window. A method to resolve the ambi-
guity without scene measurement is given in section 4.6

More generally, single constraints on the affine parame-
ters may be obtained from: a known angle between lines;

equality of two (unknown) angles; and, a known length ratio
(details of these appear elsewhere'8). The affine parameters
are also both determined from the image of a circle on the
world plane — a circle intersects the line at infinity in the two
circular points (hence their names); a circle is generally im-
aged as an ellipse, and the ellipse intersects the vanishing
line in two points, the images of the circular points.

Algorithm 1: Computing metric planerectification.

1. Intersect parallel line segments in two orthogonal direc-
tions to obtain the vanishing points u, v.

2. Compute the vanishing line for the plane:

loo = (l1, Iz, 1)T =uxV

3. Rectify the vanishing points by the homography P to give
affine plane geometry as in (6)

ua =Pu, vp=PvVv

ua and vy are points at infinity, and represent direction.

4. Rotate by R so that ua is aligned with the horizontal axis.
The angle between the directions of ux and vy is 6.

5. The affine transformation

1 —cot(®6) O
A= 0 1 0
0 0 1

restores metric geometry up to the unknown aspect ratio.
6. The aspect ratio is corrected by a second affine transfor-

mation
p 0 0
Ay = 0 1 0
0 0 1

where p is the correction required. The correction can be
found from a ratio of lengths in the directions of y and va
or using the method of section 4.6.

7. Rectify the image with the composed transformation
Ay A1RP

3. Single view reconstruction |

We show in this section how, given affine calibration of a
reference plane, metric measurements orthogonal to the ref-
erence plane can be computed. This allows reconstruction
of a ground plane and vertical walls from a single view. No
explicit calibration of the camera is necessary.

3.1. Measuring distances of pointsfrom planesusing
oneview

We describe the following result: Given the vanishing line of
a reference plane, the vanishing point for directions orthog-
onal to the plane and a reference distance orthogonal to the
plane, the orthogonal distance of any point from the plane
can be computed from the image of the point and the image
of the vertical intersection with the ground plane 5 619,

Note that no knowledge of the camera is necessary to ap-
ply the above technique. In fact, the position of the camera
relative to the reference plane can also be computed.

(© The Eurographics Association and Blackwell Publishers 1999.
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@) (b)

Figure 7: An example of measuring heights from a single
image. (a) The four pillars have the same height in the world,
although their images clearly are not of the same length due
to perspective effects. (b) As shown, however, all pillars are
correctly measured to have the same height.

Consider for example the image in figure 7(a). Sufficient
parallel lines are present to determine the vanishing line of
the ground plane and the vertical vanishing point (see fig-
ure 14(c)). The height of any object in the scene can then
be computed relative to a reference using the geometry of
figure 8. In this case the measured height of the top of the
window is used as reference and the height of the pillars is
computed. The heights are correctly found to all be the same,
as shown in figure 7(b). The method is summarized in Algo-
rithm 2.

Furthermore, if the reference plane can be metric recti-
fied, then the 3D position of points in space and therefore a
complete 3D model can be computed.

AV

@) (b)

Figure 8: Notation for Algorithm 2. (a) Real image. (b)
Schematic. Base points b and by for vertical distances lie
on the ground (reference) plane. Top point t is at a known
(or reference) distance Dr from the reference plane. The four
aligned points b, t, r, v and their corresponding world points
define a line-to-line homography. Distance D from t to the
ground is computed using Algorithm 2.

An example of this technique is presented in figure 9,
which shows an image of the painting “La Flagellazione di
Cristo” by Piero della Francesca (1416 - 1492). Figures 9(b-
d) show rendered views of the 3D model reconstructed from
the scene.

The reconstruction is possible as a result of strict ad-
herence to Renaissance perspective rules by the artist. The

(© The Eurographics Association and Blackwell Publishers 1999.

painting represents scene geometry almost exactly as it
would be captured by a perspective camera, so the tech-
niques we have described are valid. The ground plane is
chosen as reference and is metric rectified from the square
floor patterns as described in section 2. The vertical vanish-
ing point follows from the intersection of the vertical lines
and consequently the heights of people and columns can be
computed relative to a chosen height in the scene. Once the
position on the ground of each vertical object is estimated
the 3D model is complete.

Figure 9(b) shows a view of the reconstructed model. Note
that the people are represented simply as flat silhouettes
since it is not possible to recover volume from one image.
The columns have been approximated with cylinders.

A significant area of the floor is occluded by the fore-
ground figures. However, the pattern on the floor exhibits
considerable symmetry which is apparent in the rectified
view, and therefore it is possible to touch up the texture map,
as we have done in figures 9(c) and 9(d).

Algorithm 2: Computing distances of pointsfrom aplane:
1. Compute the reference plane vanishing line k.

2. Compute the orthogonal vanishing point v.

3. Notation from here on refers to figure 8. Select the top and
base reference points. The top reference point t is the image
of a point T, off the reference plane; the base reference point
br is image of the point B, the orthogonal projection of Ty
onto the reference plane.

4. Measure the world reference distance O+ between the ref-
erence points Ty and By.

5. Select the point t, image of the point T whose distance D
from the plane has to be measured.

6. Select the corresponding base point b.

7. Compute the point r

r=(vxb)x(tr x (Il x (br xb)))
8. Compute the 2 x 2 line-to-line homography Q as

_/ Dr(d(v,b) —d(r,b)) 0
Q_( —d(r,b) d(v,b)d(r,b) )

where d(p1, p2) is distance between two image points p and

p2.
9. Compute the world distance D of the input point T from
the reference plane as

D=s1/s;

where s; and s, are components of the 2-vector s defined by

. Q( d(tl,b) )

4. Cameracalibration

There are several reasons why camera calibration, i.e. de-
termining the internal parameters (interior orientation) of a
camera, is an important step in single view reconstruction.
The first is that it allows complete rectification of planes
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(@) (b)

© (d)

Figure 9: La Flagellazione di Cristo. (a) The painting (1460, Urbino, Galleria Nazionale delle Marche). (b) A view of the
reconstructed 3D model where the roof has been removed and the floor is partly occluded by the foreground figures. People are
represented as flat silhouettes and the columns have been approximated with cylinders. (c) A view of the 3D model where the
floor has been touched up by making use of the symmetry of its pattern. The partially seen ceiling has been reconstructed too.
(d) Another view of the model with the roof removed to show the relative positions of people and columns in the scene. Notice
the repeated geometric pattern on the floor in the area delimited by the columns. These figures appear in the colour section as

figures 20 and 21.

given only their vanishing line. Secondly, with known in-
ternal parameters and vanishing line, the orientation of a
plane relative to the camera may be computed; and thirdly
from two vanishing lines the relative orientation between
two planes can be computed.

Furthermore we will show that a camera may be cali-
brated using the type of rectification constraints (parallel
lines, orthogonality) described in the previous section for
planes. Again, it is not necessary for scene measurements to
be available. Thus in contrast to standard photogrammetry
methods for camera calibration?2 25, where 3D points in a
world co-ordinate system are required, we will employ the
constraints which are plentifully available in architectural
scenes. Indeed, it will be shown that a camera can be cali-
brated directly from the rectification parameters of a set of
planes. First we define the camera model and notation.

4.1. Camera model

The camera calibration matrix is specified by a five parame-
ter upper triangular matrix

f k u
K= 0 rf v )
0 0 1

An image point X is related to a point in the camera’s coor-
dinate system x¢ as X = KXc.

Parameter f is the focal length of the camera. The aspect
ratio of the camera r depends on the relative scaling of the
vertical and horizontal camera axes. The line from the cam-
era centre perpendicular to the image intersects the image at
the principal point with co-ordinates (uo,vo)T. The skew, k,
is a factor dependent on the physical angle 6 between the u
and v axes in the sensor array, given by k = f cot(8). Note

that radial lens distortion is ignored, but can be corrected in
cases where it is significants.

In many cases a simplified camera model may be used. A
CCD camera, for example, has zero skew (k = 0) and unit as-
pect ratio (r = 1). The resultant simplified or natural camera
is

f o0 Up
K= 0 f Vo (8)
0 0 1

The more general camera model (7) does apply in certain
situations however. For example if a photographic negative
is enlarged, and the paper is not parallel to the plane of the
negative. In many situations the principal point is located
near the centre of the image, and often can be approximated
by the image centre. However, it cannot be assumed that
this is always the case because photographs (and images)
are sometimes cropped before display.

Before describing the method of computing internal pa-
rameters from orthogonal vanishing points and rectified
planes, we require one more shot of projective geometry,
which is an understanding of the image of the absolute conic.
The applications are explored in the sections that follow.

4.2. Theimage of the absolute conic

The absolute conic is an esoteric entity lying on the plane
at infinity in 3D. Its image is important here because it pro-
vides a simple object for reasoning about orthogonality in
the image and is simply related to the camera calibration.

The image of the absolute conic is a conic w defined ast®

o=K 'Kk 1! 9)

(© The Eurographics Association and Blackwell Publishers 1999.
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It is a homogeneous 3 x 3 symmetric matrix with 5 degrees

of freedom — the 6 independent elements of the matrix less

one for overall scale. A point x lying on the conic satisfies
xTwx=0

Points on o are complex, but this presents no difficulty since

the matrix itself is real valued. A conic is defined by five

points.

The calibration matrix X may be computed from o by
Cholesky decompositioni3, a factorisation method that de-
composes a symmetric matrix into the product of a lower
triangular and upper triangular matrix of the form of (9). De-
termining w in an image, then, is equivalent to knowing the
camera internal parameters.

There are two important properties of : first, the im-
aged circular points of any plane lie on ® — thus each rec-
tified plane provides two points on ® and so provides two
of the five constraints necessary to determine ; second, ®
determines orthogonality of rays back projected from image
points. A pair of vanishing points u and v arising from or-
thogonal directions in the world satisfy

u'wv=0 (10)

and are said to be conjugate with respect to «?’.
We now have a geometric entity with which to reason
about the internal parameters of the camera and their rela-
tionship to constraints between scene objects such as planes.

It will be seen that these relationships are represented con-
cisely and are linear.

4.3. Calibration from orthogonal vanishing points
The image of the absolute conic is a matrix with elements

W W 4
o=| o 03 os (12)
W4 W5 e

Writing u = (ug, Uz, u3) " and v = (v, V2, v3) T, (10) takes
the form
UgV1m1 + (UgVa 4 UpV1 )@p 4 UpVo 3 12)
+(U1V3 + U3V1 )04 + (UpV3 + UgVa ) @5 + UgVawg = 0
Writing the elements of ® as a vector
Wy = (0‘)17 2, 03, W4, W5, (DG)T

and the coefficients of the elements of @, in (12) as
Kuv = (U1Vg, UgVa + UgVy, UpVz, UpVa + UgVi, UzVa +
UaVy, Usva) | ; then (12) becomes

KUVTO)V =0 (13)

This is a linear constraint on the 5 parameters of . For each
pair of orthogonal vanishing points, an additional constraint
of this form is obtained. Five such constraints determines ®
and thence K. The five constraints are a simple linear system

(© The Eurographics Association and Blackwell Publishers 1999.

that may be written as a 5 x 6 matrix, and w, computed as
the null-vector of this matrix. K follows from w by Cholesky
decomposition.

A typical real world application such as an image of a
building provides three orthogonal directions, and thus three
constraints on . Therefore there are insufficient constraints
to solve for the full five parameter model, but there are suffi-
cient to determine the three parameter natural camera model
(8) if this is applicable. The extra camera constraints of zero
skew and unit aspect ratio provide additional constraints on
.

The constraints provided by the fact that the camera is
natural are that the known circular points of the image plane
lie on ®. The image plane is thus treated as a rectified plane
(see section 4.4). Equivalently, if we expand the elements of
o in terms of the parameters of K, it is apparent that zero
skew and unit aspect ratio imply

w;=0 and w1 —w3=0 (14)

The camera computation algorithm applicable to three or-
thogonal vanishing points is summarized in Algorithm 3. As
shown by Caprile and Torre3, the orthogonality equations for
a natural camera are equivalent to a simple construction: the
triangle with the three orthogonal vanishing points as ver-
tices has the principal point as its orthocentre. Figure 10 (a)
shows an image of a building with lines in three orthogonal
directions. The vanishing points of each of these three direc-
tions, shown in figure 10 (b), provide the three constraints on
the internal parameters, and define the triangle with principal
point at its orthocentre.

Algorithm 3: Computing the internal parameters from
three orthogonal vanishing points:

1. Intersect parallel line segments in three orthogonal direc-
tions to obtain the vanishing points u, v and w.

2. Compute the coefficient matrix A from (13) and (14):

upvy Uy wq ViWq 0 1
UpVp +UgVy  UgWp +UpWwy  vqiwp +vowg 1 0
T upvp UpWp VoW 0o -1
Upvg+Ugvy  UpWg+Ugwp  Viwg+vawy 0
UV +UgVy  UpWg+UgWp  VpWg +vawp 0
0

0
0
usgv3 ugws V3Ws3 0

3. Compute @y as a null vector:
Aoy =0

4. Form the symmetric matrix @ from ey as in (11).

5. Compute the Cholesky decomposition: o = GG
6.xk=G6"T

Note: if o is negative definite, it must be rescaled by -1 before
Cholesky decomposition. If it is neither positive definite or
negative definite, it will not decompose to a real matrix, and
indicates an error.

Note that in cases where parallel line segments are imaged
parallel, that is the vanishing point is at infinity, degeneracies
occur. The nature of these degeneracies is regrettably beyond
the scope of this paper, and a warning will have to suffice.
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(b)

Figure 10: Internal parameter estimation. (a) Image of the
Radcliffe Observatory, Oxford, with sets of parallel line seg-
ments defining vanishing points of three orthogonal direc-
tions. (b) The triangle with the vanishing points as vertices.
The principal point of the camera lies at the orthocentre of
the triangle. f = 1041.3, up = 384.1 and vy = 543.3. The
image size is 768 by 1024.

4.4. Rectified planes

If the four rectification parameters for a scene plane are
computed, then the imaged circular points for that plane are
known. These points lie on ® and, for | = (oo —iB,1,—b —
aly +iliB) "

ITel =0
The real and imaginary parts of | give
(B? — o )ooy — 20100 — o + 2(13 (0 — B?) + k) g
+2(0dy + 1) w5 + (12B2 — (g +12)%)wg = O
2030y + 2Bz — 2(Blz + 2011 )og — 2By w5
+2(aIf + Blul2)ws = 0

Each rectified plane thus provides two linear constraints
on . We may, of course, write the constraints in the matrix
form used for orthogonal vanishing points above, and com-
bine constraints from both sources.

With three rectified planes there are six points on o and
the camera internal parameters are over constrained. With
only two rectified planes, four points on ® are known, and
thus there are four constraints on ®. Additional constraints
on aspect ratio or skew may then be included exactly as in
the previous section. Note that the world planes need not be
orthogonal.

4.5. Rectification with known internal parameters

Given the internal parameters of the camera K, any plane for
which the vanishing line is known can be rectified. This is
because the vanishing line of a given plane intersects w in the
circular points corresponding to that plane. So, the circular
points can be computed from the intersection of ® and Il

as shown below, and thence the metric rectification is deter-
mined as in section 2. The rectification ambiguity described
in section 2.2 can thus be resolved if the camera is known.
Note, that the rectification is a simple linear procedure and
does not require computation of rotation matrices.

The circular points at the intersection of @ and loo may be
calculated from the first component of | = (I, Iy, I3)T
(—iB,1,—l, —aly +il1B) " by solving the quadratic

(14 2ugly + 13 (U§ + V3 + £2))17 (15)
+2(lpug + I + 112 (U + V5 + 7)1y
2o+ (U5 +VE+ 5 +1 = 0

for the case of a natural camera. The affine parameters are
then the real and imaginary parts of |;.

The vanishing line and camera also determine the orien-
tation of the world plane relative to the camera*. The normal
to the plane in camera centred co-ordinates X is

N=K'lw
where | is the vanishing line of the plane.

The relative orientations of two planes may be computed
from their vanishing lines as

|001T0371|002 (16)
(loolTw_llool)l/z(looZTw_llooZ)l/Z

with 6 the angle between the planes.

cos(0) =

4.6. Single planerectification with partial internal
parameters

It is common to require the rectification of a plane where
the aspect ratio ambiguity of section 2.2 exists, but there are
no other constraints available from the scene from which to
compute the camera calibration using a technique such as the
vanishing point method above. However, the ambiguity can
be resolved for a natural camera for which the principal point
is known approximately, for example as the image centre.
The only remaining internal parameter is then f.

Consider figure 11. The building facade has two dominant
directions which are orthogonal. These provide three of the
four plane rectification parameters and result in a rectifica-
tion with an aspect ratio ambiguity. The internal parameters
of the camera are also not fully constrained, since only one
orthogonal pair of vanishing points is present to apply (10).
However, using a natural camera with principal point at the
centre of the image, f can be computed from the single con-
straint, and hence K is also fully determined. A complete
rectification for the planes can be computed, and is shown
in figure 11 (b).

5. Singleview reconstruction |1

The goal of this section is to build 3D models which require
the rectification of 2 or more planes. In general, the task is to

(© The Eurographics Association and Blackwell Publishers 1999.
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Figure 12: 3D reconstruction from a single image. (a) Fellows quad, Merton College, Oxford. (b) and (c) Views of the 3D model
created from the single image. The vanishing line of the roof planes is computed from the repetition of the texture patter®. The

figures appear in the colour section as figure 22.

@) (b)

Figure 11: Plane rectification via partial internal param-
eters. (a) Original image. (b) Rectification where the rela-
tive scaling of vertical and horizontal directions assumes a
natural camera with the principal point at the centre of the
image. The focal length is computed from the single orthog-
onal vanishing point pair. Measurement of the aspect ratio
of a window indicates a difference of 3.7% between true and
computed values. Note that the two parallel planes, the up-
per building facade and the lower shopfront, are both cor-
rectly rectified, but scene planes not parallel to these two are
distorted by the rectification homography. This distortion is
visible on the area of overhang of the upper facade.

reconstruct a scene from recognisable scene primitives such
as lines, planes and spheres by computing their spatial lay-
out. The plane rectification techniques we have presented are
ideal for the task of reconstructing models of buildings that
have planar surfaces, so we will restrict the discussion to
planes.

In practice it is often not possible to completely rec-
tify any planes until the camera calibration has been esti-
mated, using, for example, the vanishing point method of
section 4.3. One common situation is where there are two
or three mutually orthogonal planes with lines in orthogonal
directions on the planes, as in figure 12(a). There are three
dominant planes in the scene; the building facades on the left
and right and the ground plane. The parallel line sets in three
orthogonal directions define three vanishing points and thus
the natural camera may be computed. From the vanishing
lines of the three planes, likewise determined by the vanish-
ing points, and o, we can rectify each of the planes (from

(© The Eurographics Association and Blackwell Publishers 1999.

(15)). Another situation that often arises is where the rectifi-
cation of two planes can be computed from the scene. This
then determines the natural camera (as in section 4.4).

Having computed the camera, the relative orientation of
planes in the scene that are not orthogonal can be computed
if their vanishing lines can be found. Their relative positions
and dimensions can be determined if the intersection of a
pair of planes is visible in the image, so that there are points
common to both planes. Relative size can be computed from
the rectification of a distance between common points using
the homographies of both planes.

There are two ways of proceeding: one is to sequentially
build the model from a reference plane, much like building
a staircase from the bottom up. There is of course a problem
with accumulated error in this sequential approach; a second
approach is where all the planes intersect the reference. Then
accumulated error can be avoided because all the planes can
be specified relative to the rectified reference.

Taking the left facade as reference in figure 12(a), its cor-
rectly proportioned width and height are determined by the
rectification. The right facade and ground planes define 3D
planes orthogonal to the reference (we have assumed the or-
thogonality of the planes in computing the camera, so rela-
tive orientations are defined). Scaling of the right and ground
planes is computed from the points common to the planes
and this completes a three orthogonal plane model. Recon-
struction of the roof planes is achieved by determining their
orientation from their respective vanishing line. Views of the
model, with texture mapped correctly to the planes, appear
in figures 12(b) and (c). The method is summarized in Algo-
rithm 4.

A second example appears in figure 13. Four planes are
visible in the scene, three of which are orthogonal. In addi-
tion, sufficient parallel line sets are available to determine
camera internal parameters and vanishing lines for each
plane. The planes can thus all be rectified, and the relative
orientation of the non-orthogonal plane determined. The re-
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construction appears in plan view in figure 13(b), and a view
of the model in 13(c).

(b) ©)

Figure 13: Single view reconstruction. (a) Original image.
(b) Plan view of the 3D model, showing the four planes re-
constructed. (c) A view of the textured reconstruction. The
angle between the non-orthogonal plane and the facade
planes has been computed from (16) to be 46°. The true an-
gle is 45°,

Algorithm 4: Computing a 3D reconstruction of a single
view of two or three mutually orthogonal planes:

1. Intersect parallel line segments in three orthogonal direc-
tions to obtain the vanishing points u, v and w.

2. Compute K as in Algorithm 3.

3. Compute vanishing lines for each plane from two vanish-
ing points, eg

loo = (|;|_7 |27 1)T =uXxyVv

4. Compute affine rectification parameters from (15) and pla-
nar rectification homographies as in (3).

5. Select a reference plane and construct the corresponding
model plane such that it is has rectified dimensions.

6. Compute relative orientations of rectified planes from (16).
From the common points with the other planes and the rec-
tification homographies of the planes, compute relative scale
factors.

6. Reconstruction from two views

If the internal parameters and pose of two or more cameras
is unknown, a reconstruction from matched scene features is
possible up to a homography of 3D° 14, This means that the
initial reconstruction exhibits 3D projective deformation, so
that parallel lines do not appear parallel, angles are incorrect,
and so on. From the two views in figure 14, for example, a
projective reconstruction can be computed, and is shown as
a wireframe model in figure 15.

The homography relating the projectively distorted model
of the scene to a metric reconstruction can be decomposed
in an identical manner to the planar projective distortion
case described in section 2. If the similarity component
is disregarded an eight parameter rectification homography
remains, three projective parameters corresponding to the
plane at infinity and five affine parameters describing the ab-
solute conicll. Again, we wish to employ parallel and or-

thogonality relationships in the scene to compute first pro-
jective and then affine rectification parameters. Space limi-
tations mean that this method can only be sketched.

Figure 14: Images used in a two view reconstruction. (a)
and (b) two views of the scene. (c) Some of the parallel line
segments in the first view. These define three vanishing points
for which there are corresponding vanishing points in the
second view.

@) (b)

Figure 15: Two views of the projective reconstruction com-
puted from the image pair of figure 14.

A 3D point on the plane at infinity is computed by triangu-
lation for corresponding vanishing points in the two images.
Three such points determines the plane. Once the plane at
infinity is computed, the structure can be affine rectified, as
shown in figure 16, where parallelism is restored.

@) (b)

Figure 16: Two views (orthographic projections) of the
affine rectified structure. The affine rectification is deter-
mined from three sets of parallel lines in the scene.

The five affine rectification parameters associated with the

(© The Eurographics Association and Blackwell Publishers 1999.
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@)

(b)

Figure 18: Texture mapped views of metric rectified structure.

@ (b)

Figure 17: Two views of the metric rectified structure. The
metric rectification is determined from the orthogonality of
the three vanishing point directions, together with the known
aspect ratio and zero skew of the camera.

absolute conic must now be found. If the vanishing points are
orthogonal, we can apply orthogonality constraints on the
absolute conic in 3D using the directions defined by the van-
ishing points. These constraints are identical in form to those
applied to the image of the absolute conic ® in section 4.3.
With three orthogonal vanishing points and the natural cam-
era constraints of zero skew and unit aspect ratio, the affine
rectified structure can be metric rectified. As shown in fig-
ures 17 and 18, parallelism, angles and relative lengths are
all correct. Texture is mapped onto the model planes from
the most appropriate image.

7. Implementation details

Line segments are detected by: Canny edge detection at sub-
pixel accuracy?; edge linking; segmentation of the edgel
chain at high curvature points; and finally, straight line fitting
by orthogonal regression to the resulting chain segments.

Due to ‘noise’ a set of imaged parallel line segments will
generally not intersect in a point. Often the vanishing point
is then computed by finding the closest point to all the mea-
sured lines. However, this is not optimal. The maximum like-
lihood estimate (MLE) of the vanishing point is found by

(© The Eurographics Association and Blackwell Publishers 1999.

fitting a set of lines that do intersect in a single point, and
which minimise the sum of squared orthogonal errors from
the endpoints of the measured line segments, as shown in fig-
ure 19. The MLE is computed by non-linear minimisation.

/S~

Figure 19: MLE vanishing point estimation: The vanishing
point u is estimated as the intersection of the fitted lines |;
(in gray), which minimise the orthogonal distances from the
endpoints of measured imaged parallel line segments (shown
in black).

8. Conclusions

We have demonstrated methods which correctly model and
take account of perspective distortion — though of course the
methods work equally well if there is little or no perspective
distortion of the scene. There are a number of extensions to
this work:

1. Iftwo or more views of an object are available, but under
conditions which prevent computation of corresponding
points matches, single view reconstructions can be cre-
ated and joined. This might be necessary, for example,
when two views of an object have very limited overlap.

2. Although we have concentrated on planes, other surfaces
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may be reconstructed from a single view in a similar man-
ner, for example parametrized surfaces, such as quadrics
(e.g. spheres for domes, cylinders for columns).

. Surfaces which repeat (e.g. by symmetry) in a single view

may be fully reconstructed. This is because the single
view of the surface is equivalent to two images of the
symmetric half of the surface, each image from a differ-
ent viewpoint. This means that two view reconstruction
methods can be employed in a single view.

. Once the camera is calibrated using orthogonality of van-

ishing points and rectification of planes, it may then be
used in the reconstruction of other surfaces.

. For an optimal reconstruction the final 3D model should

be ‘polished’ by minimizing reprojection errors in the
image subject to the parallelism and orthogonality con-
straints obtained from the scene.
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Figure 20: 3D model reconstructed from a painting. (a) “La Flagellazione di Cristo” by Piero della Francesca (1460, Urbino,
Galleria Nazionale delle Marche). (b) A 3D model reconstructed from the painting. The blank areas on the ground plane are
occluded by the foreground figures.

(a) (b)

Figure 21: Further views of the model with the floor touched up in order to deal with the occlusions caused by the foreground
figures. Note the texture map of the ground plane, showing the tile pattern between the pillars barely visible in the original
image.

(b) ©

Figure 22: 3D model reconstructed from a single image. (a) Fellows Quad, Merton College, Oxford. (b) and (c) Two views of
the 3D model reconstructed from the single image.
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