
Logic with Equality: Partisan Corroboration,

and Shifted Pairing�

Yuri Gurevich and Margus Veanes

February 18, 1999

Yuri Gurevich: Microsoft Research, One Microsoft Way, Redmond,

WA 98052-6399, USA

gurevich@microsoft.com

Margus Veanes: Max-Planck-Institut f�ur Informatik, Im Stadtwald,

66123 Saarbr�ucken, Germany.

veanes@mpi-sb.mpg.de

�Preliminary versions of this paper have appeared as: UPMAIL Technical Report 138,

Uppsala University, 1997, and Research Report MPI-I-98-2-014, Max-Planck-Institut f�ur In-

formatik, 1998. Yuri Gurevich has been partially supported by the NSF grant CCR 95-04375.

1

Proposed running head: Partisan Corroboration, Shifted Pairing

Corresponding author: Margus Veanes,

Max-Planck-Institut f�ur Informatik,

Im Stadtwald,

66123 Saarbr�ucken,

Germany.

email: veanes@mpi-sb.mpg.de

phone: +49-681-9325 218

fax: +49-681-9325 299

2

Abstract

Herbrand's theorem plays a fundamental role in automated theorem proving

methods based on tableaux. The crucial step in procedures based on such

methods can be described as the corroboration problem or the Herbrand skeleton

problem, where, given a positive integer m, called multiplicity, and a quanti�er

free formula, one seeks a valid disjunction of m instantiations of that formula.

In the presence of equality, which is the case in this paper, this problem was

recently shown to be undecidable.

The main contributions of this paper are two theorems. The �rst, the Parti-

san Corroboration Theorem, relates corroboration problems with di�erent mul-

tiplicities. The second, the Shifted Pairing Theorem, is a �nite tree automata

formalization of a technique for proving undecidability results through direct

encodings of valid Turing machine computations.

These theorems are used in the paper to explain and sharpen several recent

undecidability results related to the corroboration problem, the simultaneous

rigid E-uni�cation problem and the prenex fragment of intuitionistic logic with

equality.

3

List of symbols

character explanation

 a \blank" symbol: \texttt{\char32}

� arrow symbol from AMS-TEX: \restriction

All other symbols used in this document are standard symbols from LATEX.

4

1 Introduction

We study classical �rst-order logic with equality but without any other relation

symbols. The letters ' and are reserved for quanti�er-free formulas. The

signature of a syntactic object X (a term, a set of terms, a formula, etc.) is the

collection of function symbols in X augmented, in the case when X contains no

constants, with a constant c. The language of X is the language of the signature

of X .

Any syntactic object is ground if it contains no variables. A substitution

is ground if its range is ground, and it is said to be in a given language if the

terms in its range are in that language. A set of substitutions is ground if each

member is ground.

Given a positive integer m, a set of m ground substitutions f�1; : : : ; �mg

is an m-corroborator for ' if the disjunction '�1 _ � � � _ '�m is provable. A

ground substitution � corroborates ' if f�g 1-corroborates '; such a � is called

a corroborator for '.

One popular form of the classical Herbrand theorem [e.g. Herbrand 1972] is

this:

An existential formula 9~x'(~x) is provable if and only if there exists

a positive integer m and an m-corroborator for ' in the language of

'.

The minimal appropriate number m will be called the minimum multiplicity

for '. The minimum multiplicity for a formula may exceed one. Here is a

formula for which the minimum multiplicity is two, suggested by Erik Palmgren

5

in a di�erent but similar context; we use `�' for the formal equality sign.

(c � c0) x � c1) ^ (c � c1) x � c0)

The Herbrand theorem plays a fundamental role in automated theorem prov-

ing methods known as the rigid variable methods [Voronkov 1997]. We can iden-

tify the following procedure underlying such methods. Let 9~x'(~x) be a closed

formula that we wish to prove.

The principal procedure of rigid variable methods

Step I: Choose a positive integer m.

Step II: Check if there exists an m-corroborator for '.

Step III: If Step II succeeds then 9~x'(~x) is provable, otherwise

increase m and return to Step II.

The kernel of the principal procedure is of course Step II or:

The Corroboration Problem

Instance: A quanti�er free formula ' and a positive integer m.

Question: Is the minimum multiplicity for ' bounded by m?

Corroboration for a �xed m is called m-corroboration. A detailed discus-

sion of corroboration and related problems is given by Degtyarev, Gurevich &

Voronkov [1996]. It is important to us here that corroboration is intimately re-

lated to existential intuitionistic provability and simultaneous rigidE-uni�cation

[Gallier, Raatz & Snyder 1987]. The �rst of these problems is easy to formulate:

The Existential Intuitionistic Provability Problem

Instance: An existential formula 9~x'(~x).

Question: Is the formula provable in intuitionistic logic with equal-

ity?

6

The second requires auxiliary de�nitions. A rigid equation is an expression

E `r e where E is a �nite set of equations and e is an equation. A ground

substitution � solves a rigid equation E `r e if e� is a logical consequence of

E�. A system (that is a �nite set) of rigid equations is solvable if there is one

substitution that solves all rigid equations in the system.

The Simultaneous Rigid E-Uni�cation Problem (SREU)

Instance: A system of rigid equations.

Question: Is the system solvable?

The SREU problem has an interesting history [e.g. Degtyarev, Gurevich &

Voronkov 1996]. Several false decidability claims have been published until, �-

nally, Degtyarev & Voronkov [1995] proved SREU to be undecidable. Moreover,

Plaisted [1995] has shown that the fragment of SREU with ground left-hand

sides is already undecidable (the left-hand side of a rigid equation E `r e is E).

It is easy to see that SREU is essentially a special case of 1-corroboration

for Horn formulas. Hence, the result of Degtyarev & Voronkov shows that

corroboration is undecidable already in this very special case. Voronkov [1997]

has suggested the following generalization of the corroboration problem. Let

f be a function that assigns a positive integer to every pair (k; ') where k is

a positive integer and ' a formula in our logic. Moreover, it is assumed that

k < l implies that f(k; ') � f(l; '). Such a function is called a strategy for

multiplicity. The intended meaning of the �rst argument of a strategy is the

number of times that Step II of the principal procedure has been executed.

The Corroboration Problem with Strategy f

Instance: A quanti�er free formula ' and a positive integer k.

Question: Is the minimum multiplicity for ' bounded by f(k; ')?

7

Corroboration with a strategy that does not depend on it arguments, i.e.,

takes a constant value m for all arguments, is simply m-corroboration. Voda &

Komara [1995] have proved that, for each positive integerm, them-corroboration

problem is undecidable. One important conclusion for automated theorem prov-

ing, drawn by Voda & Komara, is that there is no m for which one can e�ectively

determine whether m bounds the minimum multiplicity for a given formula. The

proof of Voda & Komara is very technical, and we wondered if there is a way

to derive their result from the Degtyarev{Voronkov theorem. It turns out that

indeed there is such a way.

In order to formulate our results, we need to recall a few de�nitions and give

de�nitions of our own. Recall that a Horn clause is a disjunction of negated

atomic formulas and at most one non-negated atomic formula; a Horn clause

is often represented as a set of its disjuncts. Here we restrict attention to

Horn clauses that contain exactly one non-negated atom. A Horn formula is a

conjunction of Horn clauses. Since the equality sign is the only relation symbol

in our logic, every Horn clause is equivalent to an implication E) s � t

where E is a conjunction of equalities.

We say that a collection of formulas is constant-disjoint if there is no constant

that occurs in two or more of the given formulas. Call a Horn formula ' guarded

if, for every variable x that occurs in ', there exists a clause E) s � t in '

where E and s are ground and x occurs in t. Finally, call a corroborator � of a

disjunction ' partisan if already � corroborates one of the disjuncts of '. Now

we are ready to formulate our �rst result.

Partisan Corroboration Theorem

Every corroborator for a disjunction of constant-disjoint guarded

8

Horn formulas is partisan.

This theorem is proved in Section 3. We believe it is of independent interest.

It allows us an easy derivation of Voda & Komara's [1995] result from Degtya-

rev & Voronkov's [1995] theorem in Section 4. Moreover, we strengthen the

theorem of Voda & Komara in several ways. For each m, we e�ectively reduce

SREU to the m-corroboration problem in such a way that the positive-arity part

of the signature remains unchanged. In particular, for every m, the monadic

(all function symbols are of arity at most one) SREU reduces to monadic m-

corroboration; this reduction is of interest because the decidability of monadic

SREU is an open problem.

In Section 5 we use �nite tree automata theory to describe a powerful tech-

nique, named shifted pairing by Plaisted [1995], for proving undecidability re-

sults via encodings of valid Turing machine computations. The main compo-

nents are two �nite tree automata Amv, Aid and two ground term rewrite sys-

tems �1 and �2 that are obtained (e�ectively) from a given Turing machine M

and are used to check the existence of a valid computation of M . See Figure 1.

Shifted Pairing Theorem

There are two �nite tree automata Amv and Aid and two ground

rewrite systems �1 and �2 such that, it is undecidable whether, given

a ground term t0, Amv recognizes a term s and Aid recognizes a term

t, such that s reduces in �1 to t and f(t0; s) reduces in �2 to t.

A more precise version of the theorem is stated in Section 5. The shifted

pairing technique, and in particular the Shifted Pairing Theorem, that is an

improvement upon [Plaisted 1995, Veanes 1997], has recently been applied suc-

cessfully to settle several open decidability questions [Ganzinger, Jacquemard

9

& Veanes 1998, Levy & Veanes 1998, Veanes 1997, Veanes 1998].

In Section 6, we use the Shifted Pairing Theorem to show the undecidability

of a fragment of SREU with only two variables and three rigid equations with

ground left-hand sides, which constitutes the currently known least undecidable

fragment of SREU. Using this result and the Partisan Corroboration Theorem,

we show, for each positive integer m, the undecidability of m-corroboration

when each formula is a conjunction of 3m Horn clauses with 2m variables and

ground negative literals.

In Section 7 we obtain some undecidability results related to the prenex

fragment of intuitionistic logic with equality and proof search in intuitionistic

logic with equality. Finally, in Section 8 we describe the current status of SREU

and related results and mention some open problems.

2 Preliminaries

We will �rst establish some notation and terminology. We follow Chang &

Keisler [1990] regarding �rst-order languages and structures. For the purposes

of this paper it is enough to assume that the �rst-order languages that we are

dealing with are languages with equality and contain only function symbols

and constants, so we will assume that from here on. We will in general use �,

possibly with an index, to stand for a signature, i.e., � is a collection of function

symbols with �xed arities. A function symbol of arity 0 is called a constant. We

will always assume that � contains at least one constant.

10

2.1 Terms and formulas

Terms and formulas are de�ned in the standard manner and are called �-terms

and �-formulas respectively whenever we want be precise about the language.

We refer to terms and formulas collectively as expressions. In the following let

X be an expression or a set of expressions or a sequence of such.

We write �(X) for the signature of X : the set of all function symbols that

occur in X , FV (X) for the set of all free variables in X and Con(X) for the

set of all constants in X . We write X(x1; x2; : : : ; xn) to express that FV (X) �

fx1; x2; : : : ; xng. Let t1; t2; : : : ; tn be terms, then X(t1; t2; : : : ; tn) denotes the

result of replacing each (free) occurrence of xi in X by ti for 1 � i � n. By

a substitution we mean a function from variables to terms. We will use � to

denote substitutions. We write X� for X(�(x1); �(x2); : : : ; �(xn)).

We say that X is closed or ground if FV (X) = ;. By T� or simply T we

denote the set of all ground �-terms. A substitution is called ground if its range

consists of ground terms.

A closed formula is called a sentence. Since there are no relation symbols

all the atomic formulas are equations, i.e., of the form t � s where t and s are

terms and `�' is the formal equality sign.

Atomic formulas and negated atomic formulas are called positive and nega-

tive literals respectively. A clause is a disjunction of literals. By a Horn clause

we mean a clause with exactly one positive literal (i.e., a strict Horn clause). A

Horn clause can be written as E) s � t where E is a (possibly empty) con-

junction of equations, and s and t are terms. By a Horn formula we understand

a conjunction of Horn clauses.

11

2.2 First-order structures

First-order structures will (in general) be denoted by A and B. A �rst-order

structure in a signature � is called a �-structure. For f 2 � we write fA for

the interpretation of f in A.

If A is a �-structure and �0 � � then A��0 is the �0-structure that is the

reduction of A to signature �0. Let A and B be �-structures, A is a substructure

of B, in symbols A � B, if the universe of A is a subset of the universe of B,

and for each n-ary f 2 �, fA is the restriction of fB to the universe of A.

For X a sentence or a set of sentences, A j= X means that the structure

A is a model of or satis�es X according to Tarski's truth de�nition. A set of

sentences is called satis�able if it has a model. If X and Y are (sets of) sentences

then X j= Y means that Y is a logical consequence of X , i.e., that every model

of X is a model of Y . We write j= X to say that X is valid, i.e., true in all

models.

By the term algebra over � we mean the �-structureA, with domain T�, such

that for each n-ary f 2 � and t1; : : : ; tn 2 T�, fA(t1; : : : ; tn) = f(t1; : : : ; tn).

We let T� also stand for the term algebra over �.

Let E be a set of ground equations. De�ne the equivalence relation =E on

T by s =E t if and only if E j= s � t. By T�=E (or simply T=E) we denote the

quotient of T� over =E , i.e., for all s; t 2 T,

T=E j= s � t , E j= s � t:

2.3 Term rewriting

In most cases we consider a system of ground equations as a rewrite system.

We will assume that the reader is familiar with basic notions regarding ground

12

term rewrite systems [e.g. Dershowitz & Jouannaud 1990]. We will only use very

elementary properties. In particular, in the next section we will use Birkho�'s

[1935] completeness theorem for equational logic in the case of ground equations.

Theorem 1 (Birkho�) Given a ground set of equations E and a ground equa-

tion s � t, E j= s � t if and only if s can be reduced to t by using the equations

in E as rewrite rules in both directions.

Let R be a ground rewrite system. We write R� for the corresponding set

of equations:

R� = f s � t j s! t 2 R g:

In Section 6 we will use the following property of ground canonical (or conver-

gent) rewrite systems R [e.g. Dershowitz & Jouannaud 1990, Section 2.4]. For

any two ground terms t and s, the equation t � s follows logically from R� if

and only if the normal forms of t and s in R coincide, i.e.,

R� j= t � s , t#R = s#R:

Snyder [1989] has given a very simple but useful condition for showing that a

ground rewrite system R is canonical, namely that it is reduced : for each rule

s! t in R, s is irreducible in R n fs! tg and t is irreducible in R. We will use

this test on several occasions, to show that a ground rewrite system is canonical.

2.4 Finite tree automata

A �nite tree automaton or TA is a quadruple (Q;�; R; F), where

� Q is a �nite set of constants called states,

� � is a signature that is disjoint from Q,

13

� R is a set of rules of the form f(q1; : : : ; qn) ! q, where f 2 � has arity

n � 0 and q; q1; : : : ; qn 2 Q,

� F � Q is the set of �nal states.

A TA is called deterministic or a DTA if there are no two di�erent rules in it

with the same left-hand side. Terms are also called trees and a forest is a set of

trees. The forest recognized by a TA A = (Q;�; R; F) is the following set that

is denoted by L(A):

f t 2 T� j (9q 2 F) t
�
�!R q g:

A forest is recognizable or regular if it is recognized by some TA. A well-known

fact is that every regular forest is recognized by a DTA. Two �nite tree automata

are called constant-disjoint if there is no constant that occurs in both of them.

Example 2 Let A = (fqg;�; R; fqg) be a TA, where

R = f c! q j c is a constant in � g[

f f(q; : : : ; q) ! q j f is a function symbol in � g:

This DTA recognizes the forest T�. 2

3 Partisan Corroboration Theorem

The following lemma is used in the Partisan Corroboration Theorem. We

say that two (sets of) expressions X and Y are constant-disjoint if Con(X) \

Con(Y) = ;.

Lemma 3 Let 'i for i 2 I, be pairwise constant-disjoint quanti�er free sen-

tences. Then j=
W
i2I 'i implies j= 'i for some i 2 I.

14

Proof. For i 2 I , let �i = �('i) and let � =
S
i �i. Assume by contradiction

that 6j= 'i for all i 2 I . Then there is (for each i 2 I) a �i-structure Ai such

that Ai j= :'i. Without loss of generality, take the universes of all the models

to be pairwise disjoint.

We now construct a �-structure A such that Ai � A��i for i 2 I . First, let

the universe of A be the union of the universes of the Ai's. Next, for each i 2 I

and constant c 2 �i let cA = cAi . For each n-ary function symbol f in � de�ne

fA as follows. For all individuals ~a = a1; : : : ; an in A,

fA(~a) =

8><
>:

fAi(~a); if a1; : : : ; an are in Ai;

a1; otherwise.

It is clear that A is well-de�ned because of the disjointness criteria and that

Ai � A��i for i 2 I . One easily establishes, by induction on terms and formulas

that, if B � A then for all quanti�er free sentences ', B j= ' if and only ifA j= '.

Hence A��i j= :'i for i 2 I , and thus A j= :'i for i 2 I . But this contradicts

that j=
W
i2I 'i. �

Note that Lemma 3 can be seen as a particular case of Lo�s-Tarski theorem

(existential sentences are preserved under extensions).

If we drop the constant-disjointness criterion in Lemma 3, then of course the

lemma is false. A simple counterexample is

j= c0 � c1 _ :(c0 � c1):

We will state now some other obvious but useful lemmas. Lemma 4 is an easy

corollary of Birkho�'s completeness theorem.

Lemma 4 Let t and s be ground terms and let E and E0 be ground sets of

equations such that Con(E0) \ (Con(E) [Con(s)) = ;. Then E0 [E j= t � s

implies E j= t � s.

15

Proof. Let E, E0, s and t be given and assume that E0 [E j= t � s. By

Birkho�'s [1935] completeness theorem we know that s can be rewritten to t

by using E0 [E as a set of rewrite rules. So there is a sequence of terms

s0; s1; : : : ; sn�1; sn where s0 = s, sn = t and si is rewritten to si+1 by using

some rule in E0 [E, for 0 � i < n. By induction on i (for i � n) follows that

�(si) � �(E) [�(s) and only a rule from E can be used to rewrite si. The

statement follows from the completeness theorem of Birkho�. �

Lemma 5 Let t and s be ground terms and let E be a ground set of equations.

Then E j= t � s implies �(t) � �(E) [�(s).

Proof. Take E0 = ; in the proof of Lemma 4. �

For a �nite set E of equations we will write E also for a corresponding conjunc-

tion of equations and let the context determine whether a set or a formula is

meant.

Lemma 6 Let t and s be ground terms and E0 and E ground sets of equations

such that E is �nite and Con(E0) \ (Con(E) [Con(s)) = ;. Then

T=E0[E j= (E) t � s)) j= (E) t � s):

Proof. Let E, E0, s and t be given. From T=E0[E j= (E) t � s) follows

immediately that T=E0[E j= t � s and thus E0 [E j= t � s. Hence E j= t � s

by Lemma 4, i.e., j= (E) t � s). �

We will use the following de�nitions. Let ' be a quanti�er free formula and m

a positive integer. A set of m ground substitutions � is an m-corroborator for

' if

j=
_
�2�

'�:

16

When � = f�g we say that � is a corroborator for ' or corroborates '. The m-

corroboration problem is the problem of determining whether a given quanti�er

free formula has an m-corroborator.

For x 2 FV ('), a guard for x in ', if it exists, is a clause

E) t � s

in ' such that E and s are ground and x occurs in t. We say that

^
x2FV (')

 x

is a guard of ' if each x is a guard for x in '; ' is is called guarded if it has a

guard.

Intuitively, in the light of Lemma 5, the notion of a Horn formula being

guarded is a suÆcient condition to guarantee that if there is a corroborator �

for ' then �('�) = �(').

SREU is, by de�nition, the 1-corroboration problem for Horn formulas.

However, we only need to consider guarded Horn formulas. To see that, consider

a Horn formula '; let � be its signature and let c be a constant in �. For each

variable x in ', let Gr�(x) denote the following Horn clause:

f c0 � c j c0 is a constant in � n fcg g[

f f(c; : : : ; c) � c j f is a function symbol in � g) x � c:

This is a very simple but useful construction that was �rst used by Degtyarev &

Voronkov to enforce certain solutions to be within a given signature. It is easy

to see that, for all terms t,

j= Gr�(t) , t 2 T�:

17

Let now be the guarded Horn formula

(
^

x2FV (')

Gr�(x)) ^ ':

From Herbrand's theorem follows that one only needs to consider corroborators

in the language of ', therefore has a corroborator if and only if ' has one.

Example 7 A simple example of a guarded Horn formula is this

 = (E1) x � c1) ^

(E2) y � c2) ^

(�1) x � y) ^

(�2) x � t � y)

where E1, E2, �1, �2 and t are ground, c1, c2 are constants, and `�' is a binary

function symbol written in in�x notation. A guard of is

(E1) x � c1) ^ (E2) y � c2):

An example of a Horn formula with a common guard for all variables is

' = (E) x � y � c) ^

(�1) x � y) ^

(�2) x � t � y);

where E, �1, �2 and t are ground and c is a constant. The guard of ' is

E) x � y � c:

These formulas are of particular interest for us, see Section 6. 2

We say that a corroborator of a disjunction ' is partisan, if it corroborates some

disjunct of '. The main result of this section is the following theorem.

18

Theorem 8 (Partisan Corroboration) Every corroborator of a disjunction

of constant-disjoint guarded Horn formulas is partisan.

Proof. Let ' =
W
i2I 'i where all the 'i's are constant-disjoint guarded Horn

formulas. Let � be a corroborator for '. We must prove that � corroborates 'i

for some i 2 I .

We can assume (without loss of generality) that there exist positive integers

m and n such that each 'i has the following form:

'i =
^

1�k�m

(Eki) ski � tki)

| {z }
 i

^
^

1�k�n

(Dk
i) uki � vki);

where i is a guard of 'i, i.e., each Eki and ski is ground and FV ('i) = FV (i),

for all i 2 I . Let Ci = Con('i) for i 2 I . We have that

Ci \ Cj = ; (8i; j 2 I; i 6= j): (1)

Let � = �('). For i 2 I let Ki denote the class of all �-structures that satisfy

'i�, i.e,

Ki = f�-structure A j A j= 'i� g:

From the validity of '� follows that each �-structure belongs to some Ki.

Let now J be any subset of I such that

j= i� (8i 2 J): (2)

So

Con('i�) = Ci (8i 2 J): (3)

To see that, suppose (by contradiction) that Con('i�) contains some c =2 Ci.

Clearly, c belongs to some x� where x occurs in the guard i. By Lemma 5,

every constant in x� belongs to Ci. This gives the desired contradiction.

19

If I = J then the theorem follows by (1), (3) and Lemma 3. Assume that

I 6= J . Below we prove the following statement:

If 6j= 'i� for all i 2 J then j= i� for some i 2 I n J . (4)

Let now J be the maximal subset of I such that (2) holds. In other words, for

all i 2 I n J , 6j= i�. By the contrapositive of (4) we conclude that for some

i 2 J , j= 'i� and the theorem follows.

Proof of (4) Assume 6j= 'i� for all i 2 J . Form an equation set D as follows.

There is for each i 2 J a clause in 'i� that is not valid and by (2) this clause

is not in i�. In other words, unless J is empty, there is a mapping f : J !

f1; 2; : : : ; ng such that

6j= (D
f(i)
i) u

f(i)
i � v

f(i)
i)� (8i 2 J): (5)

Let f be �xed and let

D =
[
i2J

D
f(i)
i �:

(Note that D = ; if J = ;.) For each mapping g : I n J ! f1; 2; : : : ;mg let Eg

denote the following set of equations:

Eg =
[
i2InJ

E
g(i)
i ;

and let

Ag = T=Eg[D:

We will now prove the following statement.

(6) Fix g : I n J ! f1; 2; : : : ;mg. There exists i 2 I n J such that Ag 2 Ki.

Proof. Suppose, by contradiction, that (6) does not hold. (Assume also

that J 6= ; or else (6) holds trivially.) Then Ag 2 Kj for some j 2 J . Fix

such an appropriate j.

20

So Ag satis�es each clause in 'j� and in particular the following holds,

call it (y):

Ag j= (D
f(j)
j) u

f(j)
j � v

f(j)
j)�:

Let D0 = D
f(j)
j �, D00 =

S
i2J;i6=j D

f(i)
i �, u0 = u

f(j)
j � and v0 = v

f(j)
j �.

By (3) follows that

Con(D0; u0; v0) � Cj

and

Con(Eg ; D
00) = Con(Eg) [

[
i2J;i 6=j

Con(D
f(i)
i �)

�
[
i2InJ

Ci [
[

i2J;i6=j

Ci

=
[

i2I;i6=j

Ci:

So, by (1),

Con(D0; u0; v0) \ Con(Eg ; D
00) = ;:

It follows, from Lemma 6 and (y), that

j= (D
f(j)
j) u

f(j)
j � v

f(j)
j)�:

But this contradicts (5). �

By using (6) we can now complete the proof of (4). Suppose, by contradiction,

that there is no i 2 I n J such that j= i�. Then there is for each i 2 I n J a

clause in i� that is not valid, i.e., there is a mapping g : I n J ! f1; 2; : : : ;mg

such that

6j= E
g(i)
i) s

g(i)
i � (t

g(i)
i �) (8i 2 I n J):

(Note that only the ti's can be nonground.) Fix such an appropriate g.

21

By using (6) we know that Ag 2 Ki for some i 2 I nJ . Choose such an i. So

Ag satis�es each clause in 'i�, and in particular the following holds, call it (z):

Ag j= E
g(i)
i) s

g(i)
i � (t

g(i)
i �):

But, by (3),

Con(E
g(i)
i ; s

g(i)
i) � Ci

and

Con(
[

j2InJ;j 6=i

E
g(j)
j) [Con(D) � Con(

[
j2InJ;j 6=i

Cj) [Con(
[
j2J

Cj)

= Con(
[

j2I;j 6=i

Cj);

and thus, by (1),

Con(E
g(i)
i ; s

g(i)
i) \ Con(

[
j2InJ;j 6=i

E
g(j)
j ; D) = ;:

Hence, by Lemma 6 and (z),

j= E
g(i)
i) s

g(i)
i � (t

g(i)
i �);

which contradicts our choice of g. �

Remark Theorem 8, as well as its proof, remain correct if the disjunction is

in�nite. We will not use this generalization.

The following example illustrates why the conditions of being constant-disjoint

and guarded are important and cannot in general be discarded. In each case

there is a counterexample to the theorem.

Example 9 Let us �rst consider an example where the disjuncts are guarded

but not constant-disjoint. Let '(x) be the following guarded Horn formula:

(c � 0) x � 1) ^ (c � 1) x � 0)

22

where c, 0 and 1 are constants, and let '1 = '(x1), '0 = '(x0) and = '1_'0

where x1 and x0 are distinct variables. Consider now any ground substitution

� such that �(x1) = 1 and �(x0) = 0. It is easy to show by case analysis that �

corroborates , i.e., that

j= ((c � 0) 1 � 1) ^ (c � 1) 1 � 0)) _

((c � 0) 0 � 1) ^ (c � 1) 0 � 0)):

However, � corroborates neither '1 nor '0.

Let us now consider the case when constant-disjointness is not violated but

the disjuncts are not guarded. Let '1(y; x1; y1) be the formula

((y � 0) x1 � y1) ^ (y � y1) x1 � 0))

and let '0(x0; y0) be the formula

((c � y0) x0 � 1) ^ (c � 1) x0 � y0))

where c, 0 and 1 are constants and x1; x0; y1; y0; y are distinct variables. Let

 = '1 _ '0. Let � be a ground substitution such that �(x1) = 1, �(x0) = 0,

�(y) = c, �(y1) = 1 and �(y0) = 0. Then j= � but 6j= '1� and 6j= '0� (the

situation is exactly the same as in the previous case). 2

4 From corroboration to m-corroboration

As Degtyarev & Voronkov [1995] have shown, the corroboration problem is unde-

cidable. Shortly after, Voda & Komara [1995] have shown that m-corroboration

is undecidable for all multiplicities m. We show that the latter result follows

easily from the former result by using the Partisan Corroboration Theorem.

23

Theorem 10 (Degtyarev{Voronkov) Corroboration of guarded Horn for-

mulas is undecidable.

For technical reasons it will be convenient to use the following de�nitions.

Given a set V of variables, by a (�; V)-expression we mean a �-expression all

of whose variables are in V . We write �(n) for the constant-disjoint copy of �

where each constant c has been replaced by a unique constant c(n) not in �.

Similarly, V (n) is a disjoint copy of V where each variable x has been replaced

by a unique variable x(n) not in V . It is also assumed that c(m) 6= c(n) and

x(m) 6= x(n) for m 6= n.

We de�ne by induction on any (�; V)-expressionX the (�(n); V (n))-expression

X(n) as the one obtained from X by replacing in it each variable x with x(n)

and each constant c with c(n). For any substitution � mapping variables in V to

ground �-terms we let �(n) denote the substitution that takes the variable x(n)

to the term (x�)(n), for x 2 V . So, for any (�; V)-expression X and natural

number n,

(X�)(n) = X(n)�(n):

The following property holds trivially. For any (�; V)-sentence ' and natural

number n,

j= ' , j= '(n):

Theorem 11 Let ' be a guarded Horn (�; V)-formula and n a positive integer.

Then ' has a corroborator if and only if
Vn
i=1 '

(i) has an n-corroborator.

Proof. The `)' direction is immediate. We prove the `(' direction as follows.

Let I = f1; 2; : : : ; ng and let be the formula
V
i2I '

(i). Assume that has an

24

n-corroborator f �i j i 2 I g. So

j=
_
i2I

('(1)�i ^ � � � ^ '
(i)�i ^ � � � ^ '

(n)�i):

By using the distributive laws we can construct an equivalent formula in con-

junctive normal form, including as one of the conjuncts the formula
W
i2I '

(i)�i.

Hence

j=
_
i2I

'(i)�i:

Let Vi = FV ('(i)) for i 2 I . Since all the Vi's are pairwise disjoint we can let

�0 be a substitution such that �0�Vi = �i�Vi for i 2 I , and it follows that

j=
_
i2I

'(i)�0:

From the Partisan Corroboration Theorem 8 follows now that j= '(i)�0 for some

i 2 I . Fix such an appropriate i. But then, by the fact that '(i) is guarded and

using Lemma 5, it follows that the range of �0�Vi is T�('(i)), and thus there is a

substitution � such that �(i)�Vi = �0�Vi. Hence j= '(i)�(i) and so j= '�. �

Theorem 12 (Voda{Komara) For all n � 1, n-corroboration is undecidable.

Proof. Given n and ', the construction of in Theorem 11 is trivially e�ective.

So, if we had a decision procedure (for some n) for deciding the existence of n-

corroborators, we could use it to decide the existence of corroborators, but this

would contradict Theorem 10. �

Assume that we are using an automated theorem proving method that is

based on the Herbrand theorem. Roughly, this involves a search for terms, for

a given multiplicity m. Voda{Komara theorem tells us that there is no m for

which we could e�ectively decide when to stop our search for such terms in case

they do not exist.

25

By using the fact that SREU is undecidable with ground left-hand sides

[Plaisted 1995], (i.e., variables occur only in positive literals in the corresponding

Horn formulas), and already in the guarded case with two variables [Veanes

1996], we can sharpen the Voda-Komara theorem as follows.

Corollary 13 For all n � 1, n-corroboration is undecidable for guarded Horn

formulas with 2n variables and ground negative literals.

By a monadic signature or language we mean a signature or language where

all function symbols have arity at most one. By monadic SREU or corroboration

we understand the restriction of that decision problem to monadic languages.

The decidability of monadic SREU is currently one of the diÆcult open problems

related to SREU [Gurevich & Voronkov 1997]. An e�ectively equivalent problem

is the decidability of the prenex fragment of intuitionistic logic with equality in

monadic languages [Degtyarev & Voronkov 1996a]. Some evidence speaks in

favor of that the problem is decidable (e.g., many subcases are decidable, see

Section 8). From Theorem 11 follows that:

Corollary 14 If monadic corroboration is undecidable, then so is monadic n-

corroboration for any n > 1, or equivalently, if monadic n-corroboration is de-

cidable for some n > 1 then so is monadic corroboration.

5 Shifted pairing

Shifted pairing is a general technique for proving undecidability results. The

term shifted pairing was introduced by Plaisted [1995]. A variant of shifted

pairing was used already by Hopcroft & Ullman [1979] in establishing the un-

decidability of the problem of testing nonemptiness of the intersection of two

26

context free languages. Goldfarb's [1981] proof of the undecidability of second-

order uni�cation uses also similar ideas. Finite tree automata provide a suitable

abstraction level for our purposes, for formalizing this technique as a decision

problem of �nite tree automata.

The main result of this section is the Shifted Pairing theorem. In this section

we use a binary function symbol `�', and we write it for better readability using

in�x notation and assume that it associates to the right. For example, if t1,

t2, and t3 are terms, then the term �(t1; �(t2; t3)) is written unambiguously as

t1 � t2 � t3.

Theorem 15 (Shifted Pairing) One can e�ectively construct two constant-

disjoint tree automata

Amv = (Qmv;�mv; Rmv; fqmvg); Aid = (Qid;�id; Rid; fqidg);

and two ground and canonical rewrite systems

�1 � T�mv � T�id
; �2 � T�mv � T�id

;

such that, it is undecidable whether, given t0 2 T�id
, there exists s 2 L(Amv)

and t 2 L(Aid) such that s
�
�!�1 t and t0 � s �

�!�2 t.

The rest of this section is devoted to the proof of this theorem. We start by

proving some lemmas. The proof of the theorem itself is given in Section 5.3.2.

We consider a �xed deterministic Turing machine M with initial state q0,

�nal state qf , a blank symbol . By �(M) we denote the union of the states

and tape symbols of M including the blank symbol. All characters in �(M) are

considered to be constants. Moreover, M is only allowed to write a blank when

it erases the last nonblank symbol on the tape. This means that IDs do not

include blanks. However, overwriting the last nonblank symbol on the tape by

27

a blank, means erasing of the last input symbol on the tape. For such a TM M

we can assume, without loss of generality, that when M enters the �nal state

then its tape is empty. Given an ID v, we let v+ denote the following string:

v+ =

8><
>:

successor of v; if v is non�nal;

�; otherwise:

Note that the �nal ID of M is the unique one character string qf and q+f = �.

5.1 Words and trains

We use certain nonmonadic terms to represent strings, we call such terms words.

Similarly, we use certain terms, that we call trains, to represent sequences of

strings. Let c and d be constants.

� A term s is called a c-word if either s = c, or s = c1 � s0 for some constant

c1 and c-word s0.

The empty c-word is simply the constant c.

� A term t is called a d-train of c-words if either t = d, or t = s � t0 for some

c-word s and d-train t0.

The empty d-train is simply the constant d.

We adopt the following convenient notation for words and trains. A c-word

c1 � c2 � � � � � cn � c

is written simply as

c1c2 � � � cn � c

and is said to represent the string c1c2 : : : cn. When we say that a c-word is in

a set V of strings, we mean that the string represented by that c-word is in V .

28

Similarly, a d-train

(v1 � c) � (v2 � c) � � � � � (vn � c) � d

is said to represent the string sequence

(v1; v2; : : : ; vn):

By representing strings by words as above, one can of course easily represent

arbitrary regular sets of strings by corresponding regular forests of words. We

use this fact in the Train Lemma, that is our key tool in constructing the two

tree automata Amv and Aid.

Lemma 16 (Train Lemma) Let V be a regular set of strings over a signature

� of constants. Let c and d be distinct constants not in �. Then the set of all

d-trains of c-words in V is recognized by a DTA with one �nal state.

Proof. To begin with, let A1 = (Q1;�1; R1; F1), where �1 = � [f�; cg, be a

DTA that recognizes the set of all c-words in V . Next, let p be a new state,

�2 = �1 [fdg, and

A = (Q1 [fpg;�2; R; fpg)

where

R = R1 [fd! pg [f q � p! p j q 2 F1 g:

We prove that A is a DTA satisfying the claim. Clearly, it is a DTA. First, we

prove the equivalence of statements 1 and 2.

1. t 2 L(A) (t 2 T�2 and t
�
�!R p)

2. t 2 T�2 and there exist n � 0 and states q1; q2; : : : ; qn 2 F1 such that

t
�
�!R1 q1 � q2 � � � � � qn � d

29

�!fd!pg q1 � q2 � � � � � qn � p

�
�!f q�p!pjq2F1 g p

The direction from Statement 2 to Statement 1 is immediate. To prove the

converse direction consider a reduction of t in R to p. A classical permutation

argument on reductions, using the fact that p =2 Q1 and d =2 �1, shows that

there exists a reduction where all the rules from R1 appear �rst:

t
�
�!R1 t

0 �
�!RnR1

p:

It follows now, by induction on the number of rewrite steps, that any reduction

of t0 in R nR1 to p must be of the desired form, proving Statement 2.

Since no rule in R can introduce a `�', the �rst part of the reduction in

Statement 2 is equivalent to saying that there exist terms s1; : : : ; sn 2 T�2 such

that t = s1 � � � � � sn � d and si
�
�!R1 qi. From si

�
�!R1 qi follows that d cannot

occur in si, i.e., s1; : : : ; sn 2 T�1 , and thus s1; : : : ; sn 2 L(A1). Consequently,

Statement 2 is tantamount to saying that t is a d-train of c-words in V , and the

claim follows. �

Let cid and did be two �xed distinct constants not in �(M). A train of IDs is

a did-train of cid-words representing IDs of M .

Lemma 17 There is a DTA Aid = (Qid;�id; Rid; fqidg) that recognizes the set

of all trains of IDs, where �id = �(M) [f�; cid; didg.

Proof. The set of all IDs of M is regular. Use Lemma 16. �

5.2 Trains of moves

We now want to represent moves of M in such a way that we can obtain a

statement corresponding to Lemma 17 for moves. A naive encoding of a move

30

(v; v+) as a term (v � c) � (v+ � c) does of course not work for several reasons, to

mention one: such terms are not recognizable.

Instead, we exploit the following information. Let (v; v+) be a move, m the

length of v and n the length of v+. We know that either n = m, n = m + 1

(M adds a new symbol at the end of the tape contents), or n = m � 1 (M

erases the last nonblank symbol on the tape). We encode moves by strings

of new characters where the i'th character encodes the i'th characters in the

components of the move. We now proceed with the formal de�nition.

Two new constants, denoted by ha; bi and ha; bi0, respectively, are introduced

for every pair of constants a and b in �(M). All these new constants are assumed

to be pairwise distinct. Let v be any ID of M and v+ its successor, say

v = a1a2 � � � am;

v+ = b1b2 � � � bn:

We de�ne hv; v+i as the following string.

hv; v+i =

8>>>><
>>>>:

ha1; b1iha2; b2i � � � han�1; bn�1ih ; bni0; if m = n� 1;

ha1; b1iha2; b2i � � � ham�1; bm�1iham; i0; if m = n+ 1;

ha1; b1iha2; b2i � � � ham�1; bm�1iham; bmi
0; if m = n:

we call such a string a move also.

Let cmv and dmv be �xed distinct new constants. A train of moves is a

dmv-train of cmv-words that represent moves.

Lemma 18 There is a DTA Amv = (Qmv;�mv; Rmv; fqmvg) that recognizes the

set of all trains of moves, where

�mv = f ha; bi; ha; bi0 j a; b 2 �(M) g [f�; cmv; dmvg:

31

Proof. Follows from the Train Lemma 16 and the fact that the set of moves is

regular. The important property that is exploited here is that only a �xed size

substring of an ID is changed by a move.

For example, the set of all moves corresponding to computation steps that

do not change the last tape symbol can be described by the following regular

set of strings:

V �VÆV
�V 0

where VÆ is is a certain �nite set of three-character or two-character strings

constructed from the transition function of M , e.g., if M upon reading the

symbol a in state q writes the symbol a0, moves right, and enters state q0, then

hq; a0iha; q0i is in VÆ . The set V consists all constants ha; ai such that a is an

input symbol of M , and V 0 is the set of all constants ha; ai0 such that a is an

input symbol of M . The other cases are similar. �

5.3 Main construction

Given a nonempty train t of moves, say

t = (hv1; v
+
1 i � cmv) � (hv2 ; v

+
2 i � cmv) � � � � � (hvk�1; v

+
k�1i � cmv) � (hvk ; v

+
k i � cmv) � dmv

de�ne the �rst projection of t as the following train of IDs

�1(t) = (v1 � cid) � (v2 � cid) � � � � � (vk�1 � cid) � (vk � cid) � did

and the second projection of t as the following train

�2(t) =

8><
>:

(v+1 � cid) � (v+2 � cid) � � � � � (v+k�1 � cid) � did; if vk = qf ;

(v+1 � cid) � (v+2 � cid) � � � � � (v+k�1 � cid) � (v+k � cid) � did; otherwise.

We say that t is a shifted pairing train if t is a train of moves such that

�1(t) = (v1 � cid) � �2(t)

32

and we refer to v1 as the �rst ID of t. Recall that q0 is the initial state of M .

Lemma 19 Let v0 be an input string for M . Then there exists a shifted pairing

train t with �rst ID q0v0 if and only if M accepts v0.

Proof. Let v0 be given and t a train of moves as above, with v1 = q0v0. If t is

a shifted pairing train then the second projection must be shorter than the �rst

one, and thus vk = qf and

(v1 ; v2 ; v3 ; : : : ; vk�1 ; vk) =

(q0v0 ; v+1 ; v+2 ; : : : ; v+k�2 ; v+k�1)

which is tantamount to saying that the �rst projection of t represents a valid

computation of M with input v0, i.e., M accepts v0. The proof of the converse

direction is similar. �

5.3.1 The rewrite systems �1 and �2

The system �1 contains all the following rules:

1. For all a; b 2 �(M), the rule ha; bi ! a.

2. For all a; b 2 �(M) such that a 6= , the rule ha; bi0 � cmv ! a � cid.

3. For all b 2 �(M), the rule h ; bi0 � cmv ! cid.

4. The rule dmv ! did.

Lemma 20 The rewrite system �1 is canonical and �1 � T�mv � T�id
.

Proof. It is easy to check that the rules in �1 form a reduced set of rules and

�1 is therefore canonical. �

Hence, we have the following relation between �1 and the notion of �rst pro-

jection.

33

Lemma 21 For all trains s of moves and all trains t of IDs, s
�
�!�1 t if and

only if t = �1(s).

Proof. Let s and t be given. By Lemma 20 t is irreducible in �1 because �mv

and �id are constant-disjoint. So, s
�
�!�1 t if and only if s#�1 = t. It remains

to be checked that indeed s#�1 = �1(s), which is straightforward. �

The system �2 contains all the following rules:

1. For all a; b 2 �(M), the rule ha; bi ! b.

2. For all a; b 2 �(M) such that b 6= , the rule ha; bi0 � cmv ! b � cid.

3. For all a 2 �(M) such that a 6= qf , the rule ha; i0 � cmv ! cid.

4. The rule (hqf ; i0 � cmv) � dmv ! did.

Again, one can easily check that the rules in 1{4 form a reduced rule set.

Lemma 22 The rewrite system �2 is canonical and �2 � T�mv � T�id
.

Lemma 23 For all trains s of moves and all IDs v, (v � cid) � s �
�!�2 �1(s) if

and only if s is a shifted pairing train with �rst ID v.

Proof. Let s and v be given and Assume that (v � cid) � s �
�!�2 �1(s). Say

s = (hv1; v
+
1 i � cmv) � � � � � (hvk�1; v

+
k�1i � cmv) � (hvk ; v

+
k i � cmv) � dmv:

So

�1(s) = (v1 � cid) � (v2 � cid) � � � � � (vk�1 � cid) � (vk � cid) � did:

By Lemma 22, ((v � cid) � s)#�2 = �1(s), and thus v1 = v, and

s#�2 = (v2 � cid) � � � � � (vk�1 � cid) � (vk � cid) � did:

34

On the other hand, from the de�nition of �2 follows that all the rules can be

applied simultaneously, which implies that

(hvi; v
+
i i � cmv)#�2 = vi+1 � cid for 1 � i < k; (7)

and the last word of s must be removed:

((hvk ; v
+
k i � cmv) � dmv)#�2 = did: (8)

From (7) follows that v+i = vi+1 for 1 � i < k and from (8) follows that the

rule (hqf ; i0 � cmv) � dmv ! did is used, and thus vk = qf . Hence, s is a shifted

pairing train with �rst ID v.

The proof of the converse direction is analogous. �

5.3.2 Proof of the Shifted Pairing Theorem

Proof. Let M in the above construction be a universal Turing machine. Let

Aid and Amv be constant-disjoint DTAs given by Lemma 17 and Lemma 18,

respectively. The claim in Theorem 15 is a consequence of the equivalence of

the following statements. The additional conditions on the rewrite systems �1

and �2 follow from Lemma 20 and Lemma 22.

1. M accepts v0.

2. There exists s 2 L(Amv) such that (q0v0 � cid) � s �
�!�2 �1(s).

3. There exist s 2 L(Amv) and t 2 L(Aid), such that s
�
�!�1 t and (q0v0 �

cid) � s �
�!�2 t.

The statements 1 and 2 are equivalent by Lemma 19 and Lemma 23. The

statements 2 and 3 are equivalent by Lemma 21. �

See Figure 2 for a concrete example.

35

6 Applications of Partisan Corroboration The-

orem and Shifted Pairing Theorem

The Shifted Pairing Theorem is used here to give a very elementary undecid-

ability proof of SREU. The latter result is then used, in combination with the

Partisan Corroboration Theorem to improve upon the undecidability result of

n-corroboration for arbitrary n.

6.1 Undecidability of SREU: minimal case

Consider �xed constant-disjoint DTAs Amv = (Qmv;�mv; Rmv; fqmvg) andAid =

(Qid;�id; Rid; fqidg), a binary function symbol �, and ground canonical rewrite

systems �1 and �2 given by the Shifted Pairing Theorem 15. Let q be a new

state and A the tree automaton (Q;�; R; F), where

Q = Qmv [Qid [fqg;

� = �mv [�id;

R = Rmv [Rid [fqmv � qid ! qg;

F = fqg:

Obviously, A is still a deterministic tree automaton, because Amv and Aid are

constant-disjoint and deterministic. We have the following property as a direct

consequence of the constant-disjointness of Aid and Amv.

Lemma 24 For all ground terms s and t, s�t �
�!R q if and only if s

�
�!Rmv qmv

and t
�
�!Rid

qid.

We can now prove the following result. Recall that a rigid equation is an ex-

pression E `r s � t, where E is a �nite set of equations and s and t are terms.

36

A ground substitution � solves E `r s � t if � corroborates E) s � t. SREU

is the problem of deciding if there exists a � that solves all members in a given

�nite set of rigid equations.

Theorem 25 There is an integer n, such that SREU is undecidable under the

following restrictions:

1. (Plaisted) the left-hand sides are ground,

2. the left-hand sides have at most n symbols,

3. there are at most two variables each occurring at most three times, and

4. there are at most three rigid equations.

Proof. Let St0(x; y) be the following system of rigid equations where t0 is a

given ground term over �id.

St0(x; y) =

8>>>><
>>>>:

R� `r x � y � q

��
1 `r x � y

��
2 `r t0 � x � y

Let � be a ground substitution with x� = s and y� = t. Since all the left-hand

sides are canonical rewrite systems, by using Birkho�'s theorem, we get that �

solves St0(x; y) if and only if

(s � t)#R = q#R; s#�1 = t#�1 ; t0 � s#�2 = t#�2 :

By using Lemma 24 and that q is irreducible in R, this is equivalent to

s#Rmv = qmv; t#Rid
= qid; s#�1 = t#�1 ; t0 � s#�2 = t#�2 : (9)

The �rst two facts in (9) imply that s 2 T�mv[Qmv and t 2 T�id[Qid
. In par-

ticular, s and t are constant-disjoint. At the same time, ��
1 j= s � t implies

37

(see Lemma 5) that Con(s) � Con(�1; t) and Con(t) � Con(�1; s). Hence

Con(s; t) � Con(�1) � �id [�mv. So (9) implies that s 2 T�mv and t 2 T�id
,

and therefore (9) is equivalent to

s 2 L(Amv); t 2 L(Aid); s#�1 = t#�1 ; t0 � s#�2 = t#�2 : (10)

But t is irreducible in both �1 and �2, so (10) is equivalent to

s 2 L(Amv); t 2 L(Aid); s
�
�!�1 t; t0 � s �

�!�2 t: (11)

By the Shifted Pairing Theorem 15, the problem of existence of such s and t for

a given t0 is undecidable, and thus, so is the solvability of St0(x; y) for a given

t0. The additional conditions are simply properties of St0(x; y), and n can be

chosen to be any integer greater than the number of symbols in the left-hand

sides of the rigid equations in St0(x; y). �

Undecidability proofs of SREU

Degtyarev & Voronkov's [1995] original proof of the undecidability of SREU was

by reduction of Baaz's [1993] monadic semi-uni�cation problem. This proof was

followed by other proofs by Degtyarev & Voronkov, �rst by reducing second-

order uni�cation to SREU [1996c], and then by reducing Hilbert's tenth problem

to SREU [1996b]. The undecidability of second-order uni�cation was proved by

Goldfarb [1981]. Plaisted [1995] reduced Post's Correspondence Problem to

SREU. From his proof follows that SREU is undecidable already with ground

left-hand sides. Veanes [1996] improved that construction by using the halting

problem for Turing machines and showed that two variables and one binary

function symbol is enough to obtain undecidability. Here we have shown that,

in addition, already three rigid equations suÆce for the undecidability.

38

6.2 Undecidability of m-corroboration: minimal case

Consider the system St0(x; y) of rigid equations in the proof of Theorem 25 and

let 't0 denote the corresponding guarded Horn formula:

(R�) x � y � c) ^ (��
1) x � y) ^ (��

2) t0 � x � y):

A formula is ground negative if all negatively occurring atoms in it are ground.

For example 't0 is ground negative.

Theorem 26 For all m � 1, m-corroboration is undecidable for ground nega-

tive guarded Horn formulas with at most 2m variables, and at most 3m clauses.

Proof. Given m and t0, construct the formula =
V
1�i�m '

(i)
t0 . By Theo-

rem 11, has an m-corroborator if and only if 't0 has a corroborator. The rest

follows from Theorem 25. �

7 Relations to intuitionistic logic

The decision problems in intuitionistic logic have not been as thoroughly stud-

ied as the corresponding problems in classical logic [B�orger, Gr�adel & Gurevich

1997]. In particular, new results about the prenex fragment of intuitionistic logic

(i.e., closed prenex formulas that are intuitionistically provable), have been ob-

tained recently by Degtyarev & Voronkov in [1996b, 1996c, 1996a] and Voronkov

[1996]. Some of these results are:

1. Decidability, and in particular PSPACE-completeness, of the prenex frag-

ment of intuitionistic logicwithout equality [Degtyarev & Voronkov 1996a].

2. Prenex fragment of intuitionistic logic with equality but without function

39

symbols is PSPACE-complete [Degtyarev & Voronkov 1996a]. Decidabil-

ity of this fragment was proved by Orevkov [1976].

3. Prenex fragment of intuitionistic logic with equality in the language with

one unary function symbol is decidable [Degtyarev & Voronkov 1996a].

4. 9�-fragment of intuitionistic logic with equality is undecidable [Degtyarev

& Voronkov 1996b, Degtyarev & Voronkov 1996c].

In some of the above results, the corresponding result has �rst been obtained

for a fragment of SREU with similar restrictions. The undecidability of the

9�-fragment is improved by Veanes [1996] by showing that already the

5. 99-fragment of intuitionistic logic with equality is undecidable.

Given a rigid equation E `r s � t, let F(E `r s � t) denote the following

implication in intuitionistic logic with equality:

(
^
e2E

e)) s � t

Given a system S of rigid equations, let F(S) denote the conjunction:

^
E`rs�t2S

F(E `r s � t):

Provability in intuitionsitic logic with equality is related to SREU through the

following lemma [Degtyarev & Voronkov 1996c].

Lemma 27 A system S(~x) of rigid equations is solvable if and only if the for-

mula 9~xF(S(~x)) is provable in intuitionistic logic with equality.

By using Theorem 25 and Lemma 27, we obtain the following sharpening of the

result in [Veanes 1996].

40

Corollary 28 There is an integer n such that the 99-fragment of intuitionistic

logic with equality is undecidable already under the following restrictions:

1. The only logical connectives are ^ and at most three)'s.

2. The antecedents of all implications are ground and have less than n sym-

bols.

In contrast, Degtyarev, Gurevich, Narendran, Veanes & Voronkov [1998b] have

shown that the

6. 8�98�-fragment of intuitionistic logic with equality is decidable.

Note that the statements 5 and 6 imply a complete classi�cation of the decid-

ability of the prenex fragment of intuitionistic logic with equality in terms of

the quanti�er pre�x.

7.1 Other fragments

Decidability problems for other fragments of intuitionistic logic have been stud-

ied by Orevkov in [1965, 1976], Mints [1967], Statman [1979], and Lifschitz

[1967]. Orevkov [1965] proves that the ::89-fragment of intuitionistic logic

with function symbols is undecidable. Lifschitz [1967] proves that intuitionistic

logic with equality and without function symbols is undecidable, i.e., that the

pure constructive theory of equality is undecidable. Orevkov [1976] shows decid-

ability of some fragments (that are close to the prenex fragment) of intuitionistic

logic with equality. Statman [1979] proves that the intuitionistic propositional

logic is PSPACE-complete.

41

7.2 A remark about proof search

Proof search in intuitionistic logic with equality is closely connected with SREU,

and, unlike in the classical case, the handling of SREU is in fact unavoidable

in that context, which is clearly illustrated by Lemma 27. Voronkov considers

in [1996] a particular sequent calculus based proof system LJ�. A part of that

system is shown in Figure 3. A proof skeleton in LJ� is obtained from a proof in

LJ� by erasing all sequents and keeping only a tree decorated with rule names.

See Figure 4.

Skeleton instantiation is the decision problem of the existence of a proof

of a given formula with a given (proof) skeleton. Voronkov [1996] shows that

SREU is polynomial time equivalent to skeleton instantiation in LJ�. So in

particular, the skeleton instantiation problem in LJ� is undecidable. Lemma 27

and the system of rigid equations constructed in the proof of Theorem 25 can

be used to exhibit a �xed skeleton for which the skeleton instantiation problem

is undecidable. Such a \universal" skeleton is illustrated in Figure 4.

8 Current status of SREU and open problems

Here we brie
y summarize the current status of SREU and mention some open

problems. Many related results are already mentioned above. The �rst decid-

ability proof of rigid E-uni�cation is given by Gallier, Narendran, Plaisted &

Snyder [1988]. De Kogel [1995] has presented a simpler proof, without compu-

tational complexity considerations. We start with the solved cases:

� Rigid E-uni�cation with ground left-hand side is NP-complete [Kozen

1981]. Rigid E-uni�cation in general is NP-complete and there exist �nite

42

complete sets of uni�ers [Gallier, Narendran, Plaisted & Snyder 1990, Gal-

lier et al. 1988]. (Here completeness has a very special meaning, di�ering

from its meaning in the context of (non-rigid) E-uni�cation.)

� Rigid E-uni�cation with one variable, or, more generally, SREU with one

variable and a �xed number of rigid equations is P-complete [Degtyarev

et al. 1998b].

� If all function symbols have arity � 1 (the monadic case) then it follows

that SREU is PSPACE-hard [Goubault 1994]. If only one unary function

symbol is allowed then the problem is decidable [Degtyarev, Matiyasevich

& Voronkov 1996]. If only constants are allowed then the problem is NP-

complete [Degtyarev, Matiyasevich & Voronkov 1996] assuming that there

are at least two constants.

� About the monadic case it is known that if there are more than 1 unary

function symbols then SREU is decidable if and only if it is decidable with

just 2 unary function symbols [Degtyarev, Matiyasevich & Voronkov 1996].

� If the left-hand sides are ground then the monadic case is decidable [Gurevich

& Voronkov 1997], and in fact PSPACE-complete [Cortier, Ganzinger,

Jacquemard & Veanes 1999]. A more general problem is shown to be de-

cidable in [Ganzinger et al. 1998]. Monadic SREU with one variable is

PSPACE-complete [Gurevich & Voronkov 1997].

� The word equation solving [Makanin 1977], which is an extremely hard

problem, can be reduced to monadic SREU [Degtyarev, Matiyasevich &

Voronkov 1996].

43

� Monadic SREU is equivalent to a non-trivial extension of word equations

[Gurevich & Voronkov 1997].

� Monadic SREU is equivalent to the decidability problem of the prenex

fragment of intuitionistic logic with equality with function symbols of arity

� 1 [Degtyarev & Voronkov 1996a].

� In general SREU is undecidable [Degtyarev & Voronkov 1995]. Moreover,

SREU is undecidable under the following restrictions:

{ The left-hand sides of the rigid equations are ground [Plaisted 1995].

{ Furthermore, there are only two variables [Veanes 1996] and three

rigid equations with ground left-hand sides of bounded size.

� SREU with one variable is decidable, in fact EXPTIME-complete [Degtyarev

et al. 1998b]. Further decidable cases are proved in [Degtyarev, Gurevich,

Narendran, Veanes & Voronkov 1998a] and [Cortier et al. 1999].

� SREU is polynomial time equivalent with second-order uni�cation [Levy

1998, Veanes 1998].

The unsolved cases are:

� Decidability of monadic SREU.

� Decidability of SREU with two rigid equations.

Both problems are highly non-trivial. An intriguing problem is also the corrobo-

ration problem with a given strategy. In particular, the following open problem

was posed by Voronkov [1997]:

� Does there exist a computable strategy f with which the corroboration

problem is decidable?

44

Further problems related to SREU and the Herbrand theorem are discussed in

[Voronkov 1998b, Voronkov 1998a].

Acknowledgements

We wish to thank Andrei Voronkov and Anatoli Degtyarev for many valuable

discussions. We thank Florent Jacquemard for useful comments on a preliminary

version of this paper. The comments and suggestions of an anonymous referee

greatly improved the �nal manuscript.

45

References

Baaz, M. (1993), Note on the existence of most general semi-uni�ers, in `Arith-

metic, Proof Theory and Computation Complexity', Vol. 23 of Oxford Logic

Guides, Oxford University Press, pp. 20{29.

Birkho�, G. (1935), `On the structure of abstract algebras', Proc. Cambridge

Phil. Soc. 31, 433{454.

B�orger, E., Gr�adel, E. & Gurevich, Y. (1997), The Classical Decision Problem,

Springer Verlag.

Chang, C. & Keisler, H. (1990), Model Theory, third edn, North-Holland, Am-

sterdam.

Cortier, V., Ganzinger, H., Jacquemard, F. & Veanes, M. (1999), Decidable

fragments of simultaneous rigid reachability, submitted to ICALP'99.

De Kogel, E. (1995), Rigid E-uni�cation simpli�ed, in P. Baumgartner,

R. H�ahnle & J. Posegga, eds, `Theorem Proving with Analytic Tableaux

and Related Methods', number 918 in `Lecture Notes in Arti�cial Intelli-

gence', Schlo� Rheinfels, St. Goar, Germany, pp. 17{30.

Degtyarev, A. & Voronkov, A. (1995), Simultaneous rigid E-uni�cation is unde-

cidable, UPMAIL Technical Report 105, Uppsala University, Computing

Science Department.

Degtyarev, A. & Voronkov, A. (1996a), Decidability problems for the prenex

fragment of intuitionistic logic, in `Eleventh Annual IEEE Symposium on

Logic in Computer Science (LICS'96)', IEEE Computer Society Press, New

Brunswick, NJ, pp. 503{512.

46

Degtyarev, A. & Voronkov, A. (1996b), Simultaneous rigid E-uni�cation is un-

decidable, in H. Kleine B�uning, ed., `Computer Science Logic. 9th Interna-

tional Workshop, CSL'95', Vol. 1092 of Lecture Notes in Computer Science,

Paderborn, Germany, September 1995, pp. 178{190.

Degtyarev, A. & Voronkov, A. (1996c), `The undecidability of simultaneous rigid

E-uni�cation', Theoretical Computer Science 166(1{2), 291{300.

Degtyarev, A., Gurevich, Y. & Voronkov, A. (1996), Herbrand's theorem and

equational reasoning: Problems and solutions, in `Bulletin of the European

Association for Theoretical Computer Science', Vol. 60. The \Logic in

Computer Science" column.

Degtyarev, A., Gurevich, Y., Narendran, P., Veanes, M. & Voronkov, A. (1998a),

`Decidability and complexity of simultaneous rigid E-uni�cation with one

variable and related results', Theoretical Computer Science. To appear.

Degtyarev, A., Gurevich, Y., Narendran, P., Veanes, M. & Voronkov, A. (1998b),

The decidability of simultaneous rigid E-uni�cation with one variable, in

T. Nipkow, ed., `Rewriting Techniques and Applications', Vol. 1379 of Lec-

ture Notes in Computer Science, Springer Verlag, pp. 181{195.

Degtyarev, A., Matiyasevich, Y. & Voronkov, A. (1996), Simultaneous rigid E-

uni�cation and related algorithmic problems, in `Eleventh Annual IEEE

Symposium on Logic in Computer Science (LICS'96)', IEEE Computer

Society Press, New Brunswick, NJ, pp. 494{502.

Dershowitz, N. & Jouannaud, J.-P. (1990), Rewrite systems, in J. Van Leeuwen,

ed., `Handbook of Theoretical Computer Science', Vol. B: Formal Methods

and Semantics, North Holland, Amsterdam, chapter 6, pp. 243{309.

47

Gallier, J., Narendran, P., Plaisted, D. & Snyder, W. (1988), RigidE-uni�cation

is NP-complete, in `Proc. IEEE Conference on Logic in Computer Science

(LICS)', IEEE Computer Society Press, pp. 338{346.

Gallier, J., Narendran, P., Plaisted, D. & Snyder, W. (1990), `Rigid E-

uni�cation: NP-completeness and applications to equational matings', In-

formation and Computation 87(1/2), 129{195.

Gallier, J., Raatz, S. & Snyder, W. (1987), Theorem proving using rigid E-

uni�cation: Equational matings, in `Proc. IEEE Conference on Logic in

Computer Science (LICS)', IEEE Computer Society Press, pp. 338{346.

Ganzinger, H., Jacquemard, F. & Veanes, M. (1998), Rigid reachability, in

J. Hsiang & A. Ohori, eds, `Advances in Computing Science { ASIAN'98,

4th Asian Computing Science Conference, Manila, The Philippines, Decem-

ber 1998, Proceedings', Vol. 1538 of Lecture Notes in Computer Science,

Springer Verlag, pp. 4{21.

Goldfarb, W. (1981), `The undecidability of the second-order uni�cation prob-

lem', Theoretical Computer Science 13, 225{230.

Goubault, J. (1994), Rigid ~E-uni�ability is DEXPTIME-complete, in `Proc.

IEEE Conference on Logic in Computer Science (LICS)', IEEE Computer

Society Press.

Gurevich, Y. & Voronkov, A. (1997), Monadic simultaneous rigid E-uni�cation

and related problems, in P. Degano, R. Corrieri & A. Marchetti-

Spaccamella, eds, `Automata, Languages and Programming, 24th Inter-

national Colloquium, ICALP'97', Vol. 1256 of Lecture Notes in Computer

Science, Springer Verlag, pp. 154{165.

48

Herbrand, J. (1972), Logical Writings, Harvard University Press.

Hopcroft, J. E. & Ullman, J. D. (1979), Introduction to Automata Theory, Lan-

guages and Computation, Addison-Wesley Publishing Co.

Kozen, D. (1981), `Positive �rst-order logic is NP-complete', IBM J. of Research

and Development 25(4), 327{332.

Levy, J. (1998), Decidable and undecidable second-order uni�cation problems, in

T. Nipkow, ed., `Rewriting Techniques and Applications, 9th International

Conference, RTA-98, Tsukuba, Japan, March/April 1998, Proceedings',

Vol. 1379 of Lecture Notes in Computer Science, Springer Verlag, pp. 47{

60.

Levy, J. & Veanes, M. (1998), On uni�cation problems in restricted second-

order languages, in `Annual Conference of the European Association for

Computer Science Logic (CSL'98), Brno, Czech Republic'.

Lifschitz, V. (1967), `Problem of decidability for some constructive theories

of equalities (in Russian)', Zapiski Nauchnyh Seminarov LOMI 4, 78{85.

English Translation in: Seminars in Mathematics: Steklov Math. Inst. 4,

Consultants Bureau, NY-London, 1969, p.29{31.

Makanin, G. (1977), `The problem of solvability of equations in free semigroups',

Mat. Sbornik (in Russian) 103(2), 147{236. English Translation in Amer-

ican Mathematical Soc. Translations (2), vol. 117, 1981.

Mints, G. (1967), `Choice of terms in quanti�er rules of constructive predi-

cate calculus (in Russian)', Zapiski Nauchnyh Seminarov LOMI 4, 78{85.

English Translation in: Seminars in Mathematics: Steklov Math. Inst. 4,

Consultants Bureau, NY-London, 1969, p.43{46.

49

Orevkov, V. (1965), `Unsolvability in the constructive predicate calculus of the

class of the formulas of the type ::89 (in Russian)', Soviet Mathematical

Doklady 163(3), 581{583.

Orevkov, V. (1976), `Solvable classes of pseudo-prenex formulas (in Russian)',

Zapiski Nauchnyh Seminarov LOMI 60, 109{170. English translation in:

Journal of Soviet Mathematics.

Plaisted, D. (1995), Special cases and substitutes for rigid E-uni�cation, Tech-

nical Report MPI-I-95-2-010, Max-Planck-Institut f�ur Informatik.

Snyder, W. (1989), EÆcient ground completion: An O(nlogn) algorithm for

generating reduced sets of ground rewrite rules equivalent to a set of ground

equations E, in G. Goos & J. Hartmanis, eds, `Rewriting Techniques and

Applications', Vol. 355 of Lecture Notes in Computer Science, Springer-

Verlag, pp. 419{433.

Statman, R. (1979), `Lower bounds on Herbrand's theorem', Proc. American

Mathematical Society 75(1), 104{107.

Veanes, M. (1996), Uniform representation of recursively enumerable sets with

simultaneous rigid E-uni�cation, UPMAIL Technical Report 126, Uppsala

University, Computing Science Department.

Veanes, M. (1997), The undecidability of simultaneous rigid E-uni�cation with

two variables, in `Proc. Kurt G�odel Colloquium KGC'97', Vol. 1289 of

Lecture Notes in Computer Science, Springer Verlag, pp. 305{318.

Veanes, M. (1998), The relation between second-order uni�cation and simulta-

neous rigid E-uni�cation, in `Proc. Thirteenth Annual IEEE Symposium

50

on Logic in Computer Science, June 21{24, 1998, Indianapolis, Indiana

(LICS'98)', IEEE Computer Society Press, pp. 264{275.

Voda, P. & Komara, J. (1995), On Herbrand skeletons, Technical report, In-

stitute of Informatics, Comenius University Bratislava. Revised January

1996.

Voronkov, A. (1996), Proof search in intuitionistic logic with equality, or back

to simultaneous rigid E-uni�cation, in M. McRobbie & J. Slaney, eds, `Au-

tomated Deduction | CADE-13', Vol. 1104 of Lecture Notes in Computer

Science, New Brunswick, NJ, USA, pp. 32{46.

Voronkov, A. (1997), Strategies in rigid-variable methods, in M. Pollack, ed.,

`Proc. of the Fifteenth International Joint Conference on Arti�cial Intelli-

gence (IJCAI-97)', Vol. 1, Nagoya, Japan, pp. 114{119.

Voronkov, A. (1998a), Herbrand's theorem, automated reasoning and semantic

tableaux, in `Proc. Thirteenth Annual IEEE Symposium on Logic in Com-

puter Science, June 21{24, 1998, Indianapolis, Indiana (LICS'98)', IEEE

Computer Society Press, pp. 252{263.

Voronkov, A. (1998b), `Simultaneous rigidE-uni�cation and other decision prob-

lems related to Herbrand's theorem', Theoretical Computer Science. Article

after invited talk at LFCS'97.

51

Legends of �gures

Figure 1: Shifted pairing. Each term t recognized by Aid represents a sequence

of IDs of M . Each term s recognized by Amv represents a sequence of

moves of M . If s reduces in �1 to t then the �rst projection of s coincides

with t. Moreover, if s reduces in �2 to the tail of t, then the second

projection of s coincides with the tail of t.

Figure 2: Example of shifted pairing. Consider a Turing machine M that,

given an empty input string, writes two 0's and then simply erases them.

A valid computation of M can have the form (q0; 0q1; 00q2; 0q30; q40; qf).

The corresponding train of moves is the middle tree in the �gure, say s,

with the tree above s as the �rst projection of s, and the tree below s as

the second projection of s. The arrows illustrate in a precise way, how �1

and �2 reduce s to its �rst projection and second projection, respectively.

Figure 3: The propositional and quanti�er inference rules of LJ�. Here � and

� are multisets of (side) formulas. In the rules (9 !) and (! 8) the

variable y does not occur free in the conclusions of the rules.

Figure 4: The upper part of the �gure shows a possible proof tree in LJ� of

the formula 9x 9y ('1) e1(x; y)) ^ ('2) e2(x; y)) ^ ('3) e3(x; y)).

This formula denotes the formula 9x 9yF(St0(x; y)) where St0(x; y) is

the system of rigid equations taken from the proof of Theorem 25. Here

the �i's are multisets of equations, the Di's are subproofs consisting of

inference rules involving equality only, and each ni is the size of 'i.

The corresponding proof skeleton is shown in the lower part of the �gure.

52

b

ID1

ID+
1

b

ID2

ID+
2

b

ID3

ID+
3

b

IDk�1

ID+
k�1

b

IDk

ID+
k

b

ID1
b

ID2
b

ID3

b

IDk�1
b

IDk

�1

�2

Figure 1:

53

b

b

q0

b

b

0 b

q1

b

b

0 b

0 b

q2

b

b

0 b

q3 b

0

b

b

q4 b

0

b

b

qf

b

b

q0 0 b

q1

b

b

0 0 b

q1 0 b

q2

b

b

0 0 b

0 q3 b

q2 0

b

b

0 q4 b

q3 0 b

0

b

b

q4 qf b

0

b

b

qf

b

b

0 b

q1

b

b

0 b

0 b

q2

b

b

0 b

q3 b

0

b

b

q4 b

0

b

b

qf

�2

�1

Figure 2:

54

�; �; ;� ! �

�; � ^ ;� ! �
(^ !)

� ! � � !

� ! � ^
(! ^)

�; �;� ! � �; ;� ! �

�; � _ ;� ! �
(_ !)

� ! �

� ! � _
(! _1)

�; ;� ! � �; �) ;� ! �

�; �) ;� ! �
()!)

� !

� ! � _
(! _2)

�;� !

� ! �)
(!))

�; �fx 7! tg;8x�;� ! �

�;8x�;� ! �
(8 !)

� ! �fx 7! yg

� ! 8x�
(! 8)

�; �fx 7! yg;� ! �

�; 9x�;� ! �
(9 !)

� ! �fx 7! tg

� ! 9x�
(! 9)

Figure 3:

55

D1

�1 ! e001
...

(^ !n1)

'1 ! e001
(^ !0)

! '1) e001
(!))

D2

�2 ! e002
...

(^ !n2)

'2 ! e002
(^ !0)

! '2) e002
(!))

D3

�3 ! e003
...

(^ !n3)

'3 ! e003
(^ !0)

! '3) e003
(!))

! ('2) e002) ^ ('3) e003)
(! ^)

! ('1) e001) ^ ('2) e002) ^ ('3) e003)
(! ^)

! 9y('1) e01(y)) ^ ('2) e02(y)) ^ ('3) e03(y))
(! 9)

! 9x9y('1) e1(x; y)) ^ ('2) e2(x; y)) ^ ('3) e3(x; y))
(! 9)

+

(�)

...

(^ !n1)

(^ !0)

(!))

(�)

...

(^ !n2)

(^ !0)

(!))

(�)

...

(^ !n3)

(^ !0)

(!))

(! ^)

(! ^)

(! 9)

(! 9)

Figure 4:

56

