
Theoretical
Computer Science

Theoretical Computer Science 220 (1999) 3-30

www.elsevier.comllocate/tcs

Using the heartbeat failure detector for quiescent reliable
communication and consensus in partitionable networks’

Marcos Kawazoe Aguilera*, Wei Chen**, Sam Toueg***

Drpurtmrnt of Computer Science, Upson Hall, Cornell University, Ithaca, NY 14853-7501, USA

Abstract

We consider purtitionuhle networks with process crashes and lossy links, and focus on the
problems of reliuhle communicution and consensus for such networks. For both problems we
seek algorithms that are quiescent, i.e., algorithms that eventually stop sending messages. We
first tackle the problem of reliable communication for partitionable networks by extending the
results of Aguilera et al. (1997). In particular, we generalize the specification of the heartbeat
failure detector .Z’&?, show how to implement it, and show how to use it to achieve quiescent

reliable communication. We then turn our attention to the problem of consensus for partitionable
networks. We first show that, even though this problem can be solved using a natural extension
of failure detector OY, such solutions are not quiescent - in other words, 0 5“ alone is not
sufficient to achieve quiescent consensus in partitionable networks. We then solve this problem

using 05‘ and the quiescent reliable communication primitives that we developed in the first
part of the paper. @ 1999 Elsevier Science B.V. All rights reserved.

Keywords: Quiescent algorithms; Failure detectors; Reliable communication;
Partitionable networks; Consensus

1. Introduction

We focus on the problems of reliable communication and consensus for asyn-

chronous networks that may partition. For both problems we seek algorithms that are

quiescent, i.e., algorithms that eventually stop sending messages.

We consider networks where processes may crash and communication links may

lose messages. We assume that a lossy link is either fair or eventually down. Roughly

speaking, a fair link may lose an infinite number of messages, but if a message is

repeatedly sent then it is eventually received. A link is eventually down (we also

* Corresponding author. E-mail: aguilera@cs.comell.edu.

** E-mail: weichen@cs.comell.edu.

*** E-mail: sam@cs.comell.edu.

’ Research partially supported by NSF grants CCR-9402896 and CCR-9711403, by ARPA/ONR grant

N00014-96-1-1014, and by an Olin Fellowship.

0304-3975/99/$-see front matter @ 1999 Elsevier Science B.V. All rights reserved.
PII: SO304-3975(98)00235-7

M.K. Aguilera et al. I Theorrticul Computer Science 220 (1999) 3-30

fair link correct process

> 0
partition

link that crashes process that crashes
___- ------>

0

Fig. I. A network that partitions.

say that it eventually crashes) if it eventually stops transporting messages. Links are

unidirectional and the network is not necessarily completely connected. The network is

partitionable: there may be two correct processes p and q such that q is not reachable

from p, i.e., there is no fair path from p to q.’ A partition is a maximal set of

processes that are mutually reachable from each other. We do not assume that partitions

are eventually isolated: one partition may be able to receive messages from another,

or to successfully send messages to another partition, forever.

An example of a network that partitions is given in Fig. 1. The processes that do

not crash (black disks) are eventually divided into four partitions, A, B, C and D. Each

partition is strongly connected through fair links (solid arrows). So processes in each

partition can communicate with each other (but message losses can occur infinitely

often). None of the partitions is isolated. For example, processes in D may continue

to receive messages from processes in C (but not vice versa); processes in D are able

to send messages to processes in B; there is no fair path from C to A, or from D to

C, etc.

* A fair path is one consisting of correct processes and fair links.

M.K. Aguilera et (11. I Theoretical Computer Science 220 (1949) 3-30 5

[I] shows that without the help of failure detectors it is impossible to achieve quies-

cent reliable communication in the presence of process crashes and lossy links - even

if one assumes that the network never partitions. In order to overcome this problem,

[l] introduces the heartbeat failure detector (denoted X&J), and shows how it can be

implemented, and how it can be used to achieve quiescent reliable communication. All

these results are for networks that do not partition.

In this paper, we extend the above results to partitionable networks. In particular,

we: (a) generalize the definitions of reliable communication primitives, (b) generalize

the definition of the heartbeat failure detector %a, (c) show how to implement 22,

and (d) use X&7 to achieve quiescent reliable communication.

We next consider the problem of consensus for partitionable networks, and focus on

solving this problem with a quiescent algorithm. 3 In order to do so, we first generalize

the traditional definition of consensus to partitionable networks. We also generalize the

definition of 0 Y - the weakest failure detector for solving consensus in networks that

do not partition [9].

We show that, although OY can be used to solve consensus for partitionable net-

works, any such solution is not quiescent: Thus, OY alone is not sujicient to solve

quiescent consensus for partitionable networks. We then show that this problem can

be solved using OY together with XB. In fact, our quiescent consensus algorithm

for partitionable networks is identical to the one given in [8] for non-partitionable net-

works with reliable links: we simply replace the communication primitives used by the

algorithm in [8] with the quiescent reliable communication primitives that we derive

in this paper (the proof of correctness, however, is different).

An important remark on the use of failure detectors to achieve quiescence is now

in order. Any reasonable implementation of a failure detector in a message-passing

system is itself not quiescent: A process being monitored by a failure detector must

periodically send a message to indicate that it is still alive, and it must do so forever (if

it stops sending messages it cannot be distinguished from a process that has crashed).

Given that failure detectors are not quiescent, does it still make sense to use them as a

tool to achieve quiescent applications (such as quiescent reliable broadcast, consensus,

or group membership)?

The answer is yes, for two reasons. First, a failure detector is intended to be a basic

system service that is shared by many applications during the lifetime of the system,

and so its cost is amortized over all these applications. Second, failure detection is

a service that needs to be active forever - and so it is natural that it sends mes-

sages forever. In contrast, many applications (such as a single RPC call or the reliable

broadcast of a single message) should not send messages forever, i.e., they should be

quiescent. Thus, there is no conflict between the goal of building quiescent applications

and the use of a (non-quiescent) shared failure detection service as a tool to achieve

this goal.

3 The consensus algorithms for partitionable networks given in [7, IO, 121 are not quiescent.

6 M.K. Aguilrru et ccl. I Theoreticul Computer Science 220 (1999) 3-30

1.1. Organization of the paper

The rest of the paper is organized as follows. In Section 2, we explain our model

of partitionable networks, and of failure detection for such networks. In Section 3,

we extend the definition of the failure detector X%Y to partitionable networks. In

Section 4, we define reliable communication primitives for partitionable networks, and

give quiescent implementations that use 28’. We then turn our attention to the con-

sensus problem in Section 5. We first define this problem for partitionable networks

(Section 5.1), and extend the definition of the failure detector 0 Y (Section 5.2). We

then show that 0 Y is not sufficient to achieve quiescent consensus in partitionable

networks (Section 5.3) and give a quiescent implementation that uses both OY and

Xg (Section 5.4). In Section 6, we show how to implement XE’B in partitionable

networks. Some practical issues are briefly addressed in Section 7. We conclude with

a short discussion of related work (Section 8) and a comparison with other models

(Section 9).

2. Model

We consider asynchronous message-passing distributed systems in which there are

no timing assumptions. In particular, we make no assumptions on the time it takes to

deliver a message, or on relative process speeds. Processes can communicate with each

other by sending messages through unidirectional links. The system can experience both

process failures and link failures. Processes can fail by crashing, and links can fail by

crashing or by intermittently dropping messages (while remaining fair). Failures may

cause permanent network partitions. The model, based on the one in [9], is described

next.

A network is a directed graph G = (n, /1) where Ii’ = { 1,. . . , H} is the set of pro-

cesses, and n C Li’ x II is the set of links. If there is a link from process p to process

4, we denote this link by p + q, and if, in addition, q # p we say that q is a neighbor

of p. The set of neighbors of p is denoted by neighbor(p).

We assume the existence of a discrete global clock - this is merely a fictional device

to simplify the presentation and processes do not have access to it. We take the range

Y of the clock’s ticks to be the set of natural numbers.

2.1. Failures and failure patterns

Processes can fail by crashing, i.e., by halting prematurely. A process failure pat-

tern Fp is a function from F to 2 n. Intuitively, Fp(t) denotes the set of processes

that have crashed through time t. Once a process crashes, it does not “recover”,

i.e., ‘dt : Fp(t) C Fp(t + 1). We define crashed(@) = U,,,_ Fp(t) and correct(Fp) =

I7\crashed(Fp). If p E crashed (Fp) we say p crashes (or is faulty) in Fp and if p E

correct(Fp) we say p is correct in Fp.

M.K. Aguilera et al. I Theoretical Computer Science 220 (1999) 3-30 7

We assume that the network has two types of links: links that are fair and links that

crash. Roughly speaking, a fair link p -+ q may intermittently drop messages, and do

so infinitely often, but if p repeatedly sends some message to q and q does not crash,

then q eventually receives that message. If link p + q crashes, then it eventually stops

transporting messages. Link properties are made precise in Section 2.5.

A link failure pattern FL is a function from Y to 2 ‘. Intuitively, FL(t) is the set of

links that have crashed through time t. Once a link crashes, it does not “recover”, i.e.,

Vt : FL(t) & fi(t + 1). We define crashed = UIEY FL(t). If p -+ q E crashed(we

say that p + q crashes (or is eventually down) in FL. If p -+ q $ crashed(we say

that p + q is fair in FL.

A failure pattern F = (Fp, FL) combines a process failure pattern and a link failure

pattern.

2.2. Connectivity

In contrast to [11, the network is partitionable: there may be two correct processes p

and q such that q is not reachable from p (Fig. 1). Intuitively, a partition is a maximal

set of processes that are mutually reachable from each other. We do not assume that

partitions are eventually isolated: one partition may be able to receive messages from

another, or to successfully send messages to another partition, forever. This is made

more precise below.

The following definitions are with respect to a given failure pattern F = (Fp, FL).

We say that a path (PI,. . . , pk) in the network is fair if processes ~1,. . , pk are

correct and links p1 --+p2,...,pk_l + pk are fair. We say process q is reachable from

process p if there is a fair path from p to q. 4 If p and q are both reachable from each

other, we write p $F q. Note that + is an equivalence relation on the set of correct

processes. The equivalence classes are called partitions. The partition of a process p

(with respect to F) is denoted partition,(p). For convenience, if p is faulty we define

partition,(p) = 8. The set of all non-empty partitions is denoted by Partitions,. The

subscript F in the above definitions is omitted whenever it is clear from the context.

2.3. Failure detectors

Each process has access to a local failure detector module that provides (possibly

incorrect) information about the failure pattern that occurs in an execution. A failure

detector history H with range 9 is a function from n x Y to 9. H(p, t) is the output

value of the failure detector module of process p at time t. A jbilure detector $S is

a function that maps each failure pattern F to a set of failure detector histories with

range 92 (where Wg denotes the range of the failure detector output of 9). g(F)

denotes the set of possible failure detector histories permitted by 9 for the failure

pattern F.

4 We allow singleton paths of the form (p). Since fair paths contain only correct processes, p is reachable

from itself if and only if it is correct.

8 M. K. Aguilera ef al. I Theoretical Computer Science 220 (1999) 3-30

2.4. Algorithms and runs

An algorithm A is a collection of n deterministic automata, one for each process in

the system. Computation proceeds in atomic steps of A. In each step, a process may: re-

ceive a message from a process, get an external input, query its failure detector module,

undergo a state transition, send a message to a neighbor, and issue an external output.

A run of algorithm A using failure detector 9 is a tuple R = (F, H2, I,S’, T) where

F = (Fp, FL) is a failure pattern, HP E 9(F) is a history of failure detector 9 for failure

pattern F, I is an initial configuration of A, S is an infinite sequence of steps of A, and T

is an infinite list of strictly increasing time values indicating when each step in S occurs.

A run must satisfy some properties for every process p: If p has crashed by time

t, i.e., p E Fp(t), then p does not take a step at any time t’> t; if p is correct, i.e.,

p E correct(Fp), then p takes an infinite number of steps; if p takes a step at time t

and queries its failure detector, then p gets Hs(p, t) as a response.

The correctness of an algorithm may depend on certain assumptions on the “envi-

ronment”, e.g., the maximum number of processes and/or links that may crash. For

example, in Section 5.4, we give a consensus algorithm that assumes that a majority

of processes are in the same network partition. Formally, an environment d is a set

of failure patterns.

A problem P is defined by properties that sets of runs must satisfy. An algorithm

A solves problem P using a failure detector 9 in environment 8 if the set of all runs

R = (F, HP, I,S, T) of A using 9 where F E 8 satisfies the properties required by P.
Let % be a class of failure detectors. An algorithm A solves a problem P using V in

environment d if for all 9 E %‘, A solves P using 9 in 6’. An algorithm implements V

in environment & if it implements some 9 E %? in 8. Unless otherwise stated, we put

no restrictions on the environment (i.e., 6 is the set of all possible failure patterns)

and we do not refer to it.

2.5. Link properties

So far we have put no restrictions on how links behave in a run (e.g., processes

may receive messages that were never sent, etc.). As we mentioned before, we want

to model networks that have two types of links: links that are fair and links that crash.

We therefore require that in each run R = (F, HP, Z, S, T) the following properties hold

for every link p 4 q E A:

l [Uniform Integrity] for all k 3 1, if q receives a message m from p exactly k times

by time t, then p sent m to q at least k times before time t;

l If p + q 6 crashed([Fairness] if p sends a message m to q an infinite number

of times and q is correct, then q receives m from p an infinite number of times.

If p + q E crashed([Finite Receipt] q receives messages from p only a finite

number of times. 5

5 We could have required a stronger property: if p + 4 has crashed by time f, i.e., p -+ q E FL(t), then q
does not receive any message sent by p at time t’ > t. This stronger property is not necessary in this paper.

M.K. Aguileru et ul. I Theoreticui Computer Science 220 (1999) 3-30 9

Uniform integrity ensures that a link does not create or duplicate messages. Fairness

ensures that if a link does not crash then it eventually transports any message that is

repeatedly sent through it. Finite receipt implies that if a link crashes then it eventually

stops transporting messages.

3. The heartbeat failure detector X93 for partitionable networks

One of our goals is to achieve quiescent reliable communication in partitionable net-

works with process crashes and message losses. In [l] it is shown that without failure

detectors this is impossible, even if one assumes that the network does not partition.

In order to circumvent this impossibility result, [l] introduces the heartbeat failure de-

tector, denoted 298, for non-partitionable networks. In this section, we generalize the

definition of X98? to partitionable networks. We then show how to implement it in

Section 6.

2’8 is different from the failure detectors defined in [8], or those currently in use in

many systems (even though some existing systems, such as Ensemble and Phoenix, use

the same name heartbeat in their failure detector implementations [6, 161). In contrast

to existing failure detectors, 299 is implementable in asynchronous systems, without

the use of timeouts (see Section 6).

A heurtbeat failure detector 9 (for partitionuble networks) has the following fea-

tures. The output of 9 at each process p is an array (VI, ~2,. . . , v,) with one nonnegative

integer for each process in n. 6 Intuitively, vq increases if process q is in the partition

of p, and stops increasing otherwise. We say that vq is the heartbeat value of process

q at p. The heartbeat sequence of q at p is the sequence of the heartbeat values of

q at p as time increases. 9 satisfies the following properties:

l .%?@-completeness: At each correct process p, the heartbeat sequence of every pro-

cess not in the partition of p is bounded. Formally:

VF = (Fp, FL),VH E GS(F),Vp E correct(Fp),Vq E IJl\partitionF(p),

~KEN,WEY:H(~,~)[~]~K;

0 ,7??2-accurucy
_ At each process p, the heartbeat sequence of every process is nondecreasing.

Formally:

~F,~HE~(F),~~E~,V~E~,V~E~: H(p,t)[q]bH(p,t+ l)[q]

_ At each correct process p, the heartbeat sequence of every process in the partition

of p is unbounded. Formally

VF = (Fp, FL), VH E 9(F), Vp E correct(Fp), Vq E partitionF(p),

‘vK E N, 3 E T : H(p, t)[q] > K.

’ In [I], the output of 9 at p is an array with one nonnegative integer for each neighbor of p

10 M.K. Aguileru et ul. I Theoreticul Computer Science 220 (1999) 3-30

The class of all heartbeat failure detectors is denoted Xg. By a slight abuse of

notation, we sometimes use 293 to denote a (generic) member of that class.

The output of 293 is a vector of unbounded counters. In contrast, the output of

failure detectors that are commonly used in practice has bounded size: it is just a list

of processes suspected to have crashed. Some remarks are now in order regarding the

necessity and practicality of .#&?‘s unbounded output.

298 can be used to solve the problem of quiescent reliable communication and it

is implementable in asynchronous systems, but its counters are unbounded. Can we

solve this problem using a failure detector that is both implementable and has bounded

output? The answer is no: in [2] we show that a failure detector with bounded output

size is either (a) too weak to achieve quiescent reliable communication, or (b) not

implementable. This shows that failure detectors that are commonly used in practice,

i.e., those that output only lists of suspects, are not always the best ones to solve a

problem: their power or applicability is limited. Thus, the difference between X9 and

existing failure detectors is more than “skin deep”.

In practice, the unbounded counters of XG9 are not a problem for the following

reasons. First, they are in local memory and not in messages - the implementation

of 293 shown in Section 6 uses bounded messages. Second, if we bound each local

counter to 64 bits, and assume a rate of one heartbeat per nanosecond, which is orders

of magnitude higher than currently used in practice, then X9? will work for more than

500 years.

4. Reliable communication for partitionable networks

There are two types of basic communication primitives: point-to-point and broad-

cast. We first define reliable broadcast for partitionable networks, and give a quiescent

implementation that uses X93. We then consider point-to-point reliable communication.

4.1. Reliable broadcast: specijication

Reliable broadcast jbr partitionable networks is defined in terms of two primitives:

broadcast(m) and deliver(m). We say that process p broadcasts message m if p in-

vokes broadcast(m). We assume that every broadcast message m includes the following

fields: the identity of its sender, denoted sender(m), and a sequence number, denoted

seq(m). These fields make every message unique. We say that q delivers message m if

q returns from the invocation of deliver(m). Primitives broadcast and deliver satisfy

the following properties: 7

l Validity: If a correct process broadcasts a message m, then it eventually delivers m.
l Agreement: If a correct process p delivers a message m, then all processes in the

partition of p eventually deliver m.

’ This specification is a generalization of the one for non-partitionable networks given in [15].

M.K. A&era et al. I Theoretical Computer Science 220 (1999) 3-30 II

l UniJbrm integrity: For every message m, every process delivers m at most once,

and only if m was previously broadcast by sender(m).
l Partition integrity: If a process q delivers an infinite number of messages broadcast

by a process p, then q is reachable from p.

Validity and Agreement imply that if a correct process p broadcasts a message m,
then all processes in the partition of p eventually deliver m.

We want to implement broadcast and deliver using the communication service pro-

vided by the network links (which are described in Section 2.5). Informally, an imple-

mentation of reliable broadcast is quiescent if it sends only a finite number of messages

when broadcast is invoked a finite number of times. *

4.2. Reliable broadcast: algorithm using 259

The quiescent implementation of reliable broadcast for partitionable network that we

give here is identical to the one given in [l] for non-partitionable networks. However,

the network assumptions, the reliable broadcast requirements, and the failure detector

properties are different, and so its proof of correctness and quiescence changes.

This implementation, which uses %?a’, has the following desirable feature: processes

do not need to know the entire network topology or the number of processes in the

system; they only need to know the identity of their neighbors. Moreover, each process

only needs to know the heartbeats of its neighbors.

The implementation of reliable broadcast is shown in Fig. 2. aP denotes the current

output of the failure detector 9 at process p. All variables are local to each process. In

the following, when ambiguities may arise, a variable local to process p is subscripted

by p. For each message m that is reliably broadcast, each process p maintains a

variable got,[m] containing a set of processes. Intuitively, a process q is in gotp[m] if

p has evidence that q has delivered m. All the messages sent by a process p in the

reliable broadcast algorithm are of the form (m, gotmsg, path) where gotmsg is the

current value of gotJm], and path is the sequence of processes that this copy of (m,
got_msg, path) has traversed so far.

In order to reliably broadcast a message m, p first delivers m; then p initializes vari-

able got,[m] to {p} and forks task d@uuse(m); finally p returns from the invocation of

broadcast(m). The task dz@use(m) runs in the background. In this task, p periodically

checks if, for some neighbor q @gotp[m], the heartbeat of q at p has increased and,

if so, p sends (m, got,[m], p) to all neighbors whose heartbeat increased - even to

those who are already in gotp[m]. 9 The task terminates when all neighbors of p are

contained in got,[m].

‘A quiescent implementation is allowed to send a finite number of messages even if no broadcast is

invoked at all (e.g., some messages may be sent as part of an “initialization phase”).

9 It may appear that p does not need to send this message to processes in qotP[m]. since they already

got m! But with this “optimization” the algorithm is no longer quiescent; we will indicate exactly where the

sending to every> neighbor whose heartbeat increased is necessary in the proof of Lemma 9.

12 M.K. Aguileru et al. I Theoreticul Computer Science 220 (1999) 3-30

For every process p:

To execute broadcast(m):
deliver(m)

@WI + {PI
fork task &jim(m)
return

task diffuse(m):
for all p E neighbor(P) do prev_hb[q] + - 1
repeat periodically

hb + S,, {query *-w
if for some q E neighbor(p), q 6 got[m] and prev_hb[q] < hb[q] then

for all q E neighbor(p) such that prev.hb[q] < hb[q] do send (m, gor[m], p) to q
prev-hb + hb

until neighbor(p) & go@]

upon receive (m, gotnwg, par/t) from q do
if p has not previously executed deliver(m) then

deliver(m)

w44 + {PI
fork task di#uz(m)

got[m] + gor[m] u gormsg
path + path p
for all q such that q E neighbor(P) and q appears at most once in path do

send (m,got[m],parh) to q

Fig. 2. Quiescent implementation of broadcast and deliver using Pg.

Upon the receipt of a message (m, got_msg, path), process p first checks if it has

already delivered m and, if not, it delivers m and forks task dSfSuse(m). Then p adds

the contents of gotmsg to got,[m] and appends itself to path. Finally, p forwards the

new message (m, gotp[m], path) to all its neighbors that appear at most once in path.
The code consisting of lines 18-26 is executed atomically. ” Moreover, if there are

several concurrent executions of the dz&se task (lines 9 to 16), then each execution

must have its own private copy of all the local variables in this task, namely m, hb,
and prev-hb.

We now show that this implementation is correct and quiescent. The proofs of the

first few lemmata are obvious and therefore omitted.

Lemma 1 (Uniform integrity). For every message m, every process delivers m at most
once, and only ij” m was previously broadcast by sender(m).

Lemma 2 (Validity). If a correct process broadcasts a message m, then it eventually
delivers m.

Lemma 3 (Partition integrity). If a process q delivers an infinite number of messages
broadcast by a process p, then q is reachable from p.

‘“A process p executes a region of code atomically if at any time there is at most one thread of p in

this region.

M. K. Ayuileru et ul. / Theoretical Computer Science 220 (1999) 3-30 13

Lemma 4. For any processes p and q, (1) tfat some time t, q E got,[m], then at every
time t’ 2 t, q E got,[m]; (2) When got,[m] is initialized, p E got,[m]; (3) if q E got,[m]
then q delivered m.

Lemma 5. For every m and path, there is ajnite number of distinct messages of the

form (m, *,path).

Lemma 6. Zf some process sends a message of the form (m, *,path), then no process
appears more than twice in path.

Lemma 7. Suppose link p + q is fair, and p and q are in the same partition. Zf’ p

delivers a message m, then q eventually delivers m.

Proof. Suppose for a contradiction that p delivers m and q never delivers m. Since p

and q are in the same partition, they are both correct. Therefore, p forks task dzffiise(m).

Since q does not deliver m, by Lemma 4 part (3) q never belongs to got,[m]. Because p

is correct and q is a neighbor of p, this implies that p executes the loop in lines 11-16

an infinite number of times. Since q is in the partition of p, the @&?-Accuracy property

guarantees that the heartbeat sequence of q at p is nondecreasing and unbounded. Thus,

the condition in line 13 evaluates to true an infinite number of times. Therefore, p

executes line 14 infinitely often. So p sends a message of the form (m, *, p) to q
infinitely often. By Lemma 5, there exists a subset go C 17 such that p sends message

(m, go, p) infinitely often to q. Since q is correct and link p + q is fair, q eventually

receives (m,go, p). Therefore, q delivers m, a contradiction. 0

Lemma 8 (Agreement). Zf a correct process p delivers a message m, then all processes
in the partition of p eventually deliver m.

Proof (Sketch). For every process q in the partition of p, there is a fair path from

p to q. The result follows from successive applications of Lemma 7 over the links of

this path. q

We now show that the implementation in Fig. 2 is quiescent. In order to do so,

we focus on a single invocation of broadcast and show that it causes the send-

ing of only a finite number of messages in the network. This implies that a finite

number of invocations of broadcast cause the sending of only a finite number of

messages.

Let m be a message and consider an invocation of broadcast(m). This invocation

can only cause the sending of messages of form (m, *, *). Thus, all we need to show

is that every process eventually stops sending messages of this form.

Lemma 9. Let p be a process and q be a neighbor of p with q E partition(p). If’ p

forks task d@use(m), then eventually condition q E got,[m] holds forever.

14 M.K. Aguilera et al. I Theoretical Computer Science 220 (1999) 3-30

Proof. By Lemma 4 part (l), we only need to show that eventually q belongs to

got,[m]. Suppose, for a contradiction, that q never belongs to got,[m]. Since p and q

are in the same partition, they are correct and there exist both a simple fair path I’

(Pl,P2,..., Pk’) from p to q with p1 = p and pkf = q, and a SirI@? fair path (pk’,

pk’ft,. . . , pk) fi0rt-t q to p with pk = p. For 1 d j< k, let 4 = (pl, ~2,. . . , pj). Note

that a process can appear at most twice in Pk. Thus, for 1 <j < k, process pj+t appears

at most once in Pj. Moreover, for every j E { 1,. . . , k}, pj E partition(p).

We claim that for every jE{l,...,k-1}, there is a set gj containing {pt,p2,...,pj}

such that pj sends (m,gj,Pj) to pj+t an infinite number of times. For j= k - 1, this

claim together with the Fairness property of link p&t + pk immediately implies that

pk = p eventually receives (m, gk__l ,Pk_-l). Upon the receipt of such a message, p

adds the contents of &_I to its variable got,[m]. Since gk-_l contains pkl = q, this

contradicts the fact that q never belongs to got,[m].

We show the claim by induction on j. For the base case, note that q never belongs

to got,[m] and q is a neighbor of p1 = p, and so PI executes the loop in lines 11-16

an infinite number of times. Furthermore, since q is in the partition of ~1, the X&J,-

Accuracy property guarantees that the heartbeat sequence of q at p1 is nondecreasing

and unbounded. This implies that the condition in line 13 evaluates to true an infinite

number of times. So p1 executes line 14 infinitely often. Since p2 is in the partition

of ~1, its heartbeat sequence is nondecreasing and unbounded. Together with the fact

that p2 is a neighbor of PI, this implies that p1 sends messages of the form (m, *, PI)

to p2 an infinite number of times. l2 By Lemma 5, there is some gt such that p1 sends

(m, 91, ~1) to p2 an infinite number of times. Parts (1) and (2) of Lemma 4 imply

that p1 E 91. This shows the base case.

For the induction step, suppose that for j <k - 1, pj sends (m,gj,e) to pj+l an

infinite number of times, for some set gj containing { ~1, ~2,. . . , pi}. By the Fairness

property of the link pj + pj+l , pj+l receives (m,gj,Pj) from pj an infinite number

of times. Since pj+2 is a neighbor of pj+l and appears at most once in Pi+,, each

time pj+t receives (m,gj,Pj), it sends a message of the form (m, *,Pj+l) to pj+2. It is

easy to see that each such message is (m,g,Pj+l) for some g that contains both gj and

{pi+,}. By Lemma 5, there exists gj+l C 17 such that gj+t contains {pl,p2,. ..,pj+l}

and pj+t sends (m, gj+l, Pj+l) to pj+2 an infinite number of times. 0

Corollary 10. Zf a correct process p forks task dzruuse (m), then eventually p stops

sending messages in task diffuse (m).

Proof. For every neighbor q of p, there are two cases. If q is in the partition of p then

eventually condition q E got,[m] holds forever by Lemma 9. If q is not in the partition

of p, then the %g-Completeness property guarantees that the heartbeat sequence of

q at p is bounded, and so eventually condition prevJ&[q] > hb,[q] holds forever.

” A path is simple if all processes in that path are distinct.
I2 This is where the proof uses the fact that p sends a message containing M to all its neighbors whose

heartbeat increased - even to those (such as ~2) that may already be in yot,[m] (cf. line 14 of the algorithm).

M. K. Aguilera et al. I Theoretical Computer Science 220 (1999) 3-30 15

Therefore, there is a time after which the guard in line 13 is always false. Hence,

p eventually stops sending messages in task dzjfiise (m). 0

Lemma 11 (Quiescence). Eventually every process stops sending messages of the
form (m, *, *).

Proof. Suppose, for a contradiction, that the lemma is not true. Then there exists a

process p such that p never stops sending messages of the form (m, *, *). By Lemma 6,

the third component of a message of the form (m, *, *) ranges over a finite set of values.

Therefore, there is some fixed path such that p sends an infinite number of messages

of the form (m,*,path).
Now let path, to be the shortest path such that there exists some process p. that

sends messages of the form (m, *,patho) an infinite number of times. Note that po
must be correct. Corollary 10 shows that there is a time after which po stops sending

messages in its task dz&e(m). Since po only sends a message in task d@se(m) or in

line 26, then po sends messages of the form (m, *,patho) in line 26 an infinite number

of times. For each (m, *,patho) that po sends in line 26, po must have previously

received a message of the form (m, *,path,) such that path, = path, .po. So po receives

a message of the form (m, *,pathl) an infinite number of times. By the Uniform

Integrity property of the links, some process p1 sends a message of form (m, *,path,)
to po an infinite number of times. But path, is shorter than path, - a contradiction to

the minimality of path,. 0

From Lemmata 1, 2, 3, 8, and 11 we have

Theorem 12. For partitionable networks, Fig. 2 shows a quiescent implementation of
reliable broadcast that uses 259.

We next consider point-to-point reliable communication for partitionable networks.

4.3. Quasi reliable send and receive for partitionable networks

Consider any two distinct processes s and r. We define quasi reliable send and
receive from s to r (for partitionable networks) in terms of two primitives: qr-send,,,

and qr-receive,,. We say that process s qr-sends message m to process r ifs invokes

qr-send,,(m). We assume that ifs is correct, it eventually returns from this invocation.

We allow process s to qr-send the same message m more than once through the same

link. We say that process r qr-receives message m from process s if r returns from

the invocation of qr-receive,,y(m). Primitives qr-send,, and qr-receive,, satisfy the

following properties: I3

I3 This specification is a generalization of the one for non-partitionable networks given in [11.

16 M.K. Aguilera rt al. I Theoretical Computer Science 220 (1999) 3-30

l Quasi no loss: For all k 3 1, if s and r are in the same partition, and s qr-sends

m to r exactly k times by time t, then Y eventually qr-receives m from s at least k
times.

l Uniform integrity: For all k3 1, if Y qr-receives m from s exactly k times by time

t, then s qr-sent m to Y at least k times before time t.

l Partition integrity: If Y qr-receives messages from s an infinite number of times

then r is reachable from s.

Intuitively, Quasi No Loss together with Uniform Integrity implies that if s and Y

are in the same partition, then r qr-receives m from s exactly as many times as s

qr-sends m to r.
We want to implement qr-send,,, and qr-receive,, using the communication service

provided by the network links. Informally, such an implementation is quiescent if it

sends only a finite number of messages when qr-send,, is invoked a finite number of

times.

Given any quiescent implementation of reliable broadcast (such as the one given

in the previous section), we can obtain a quiescent implementation of qr-send,, and

qr-receive,, for every pair of processes p and q. The implementation works as follows:

to qr-send a message m to q, p simply broadcasts the message M = (m, p, q, k) using

the given quiescent implementation of reliable broadcast, where sender(M) = p and

seq(M) = k, a sequence number that p has not used before. Upon the delivery of

A4 = (m, p, q, k), a process Y qr-receives m from p if r = q, and discards m otherwise.

This implementation of qr-send,, and qr-receive,, is clearly correct and quiescent.

Thus, from Theorem 12, we have

Corollary 13. For partitionable networks, quasi reliable send and receive between

every pair of processes can be implemented with a quiescent algorithm that uses ,YT~I.

5. Consensus for partitionable networks

5.1. Specijication

We now define the problem of consensus for partitionable networks as a generaliza-

tion of the standard definition for non-partitionable networks. Roughly speaking, some

processes propose a value and must decide on one of the proposed values [111. More

precisely, consensus is defined in terms of two primitives, propose(v) and decide(v),

where v is a value drawn from a set of possible proposed values. When a process

invokes propose(v), we say that it proposes v. When a process returns from the invo-

cation of decide(v), we say that it decides v.
The largest partition is defined to be the one with the largest number of processes

(if more than one such partition exists, pick the one containing the process with the

largest process id). The consensus problem ($or partitionable networks) is specified

as follows:

M.K. Aguilera et al. I Theoretical Computer Science 220 (1999) 3-30 17

l Agreement: No two processes in the same partition decide differently.

l Uniform validity: A process can only decide a value that was previously proposed

by some process.

l Uniform integrity: Every process decides at most once.

l Termination: If all processes in the largest partition propose a value, then they all

eventually decide.

Stronger versions of consensus may also require one or both of the following properties:

l Uniform agreement: No two processes (whether in the same partition or not) decide

differently.

a Partition termination: If a process decides then every process in its partition decides.

The consensus algorithm given in Section 5.4 satisfies the above two properties, while

the impossibility result in Section 5.3 holds for the weaker version of consensus.

Informally, an implementation of consensus is quiescent if each execution of con-

sensus causes the sending of only a finite number of messages throughout the network.

This should hold even for executions where only a subset of the correct processes

actually propose a value (the others may not wish to run consensus).

5.2. V Y for partitionable networks

It is well known that consensus cannot be solved in asynchronous systems, even if

at most one process may crash and the network is completely connected with reliable

links [111. To overcome this problem, Chandra and Toueg introduced unreliable failure

detectors in [8]. In this paper, we focus on the class of eventually strong failure

detectors (the weakest one for solving consensus in non-partitionable networks [9]),

and extend it to partitionable networks. l4

At each process p, an eventually strong failure detector outputs a set of processes.

In [8], these are the processes that p suspects to have crashed. In our case, these are

the processes that p suspects to be outside its partition. More precisely, an eventually
strong failure detector 3 (for partitionable networks) satisfies the following properties

(in the following, we say that a process p trusts process q, if its failure detector does

not suspect q):

l Strong completeness: For every partition P, there is a time after which every process

that is not in P is permanently suspected by every process in P. Formally,

VF, ‘vH E 9(F), VP E PartitionsF, 3 E .Y, Vp $! P, Vq E P, Vt’ 3 t : p E H(q, t’).

l Eventual weak accuracy: For every partition P, there is a time after which some

process in P is permanently trusted by every process in P. Formally:

VF, ‘vH E 9(F), VP E PartitionsF, 3 E 3,3p E P, ‘dt’ 2 t, Vq E P : p 6 H(q, t’).

The class of all failure detectors that satisfy the above two properties is denoted V .Y.

I4 The other classes of eventual failure detectors introduced in [g] can be generalized in a similar way

18 M.K. Aguilera et al. I Theoretical Computer Science 220 (1999) 3-30

A weaker class of failure detectors, denoted 0Y~p, is obtained by defining the

largest partition as in Section 5.1, and replacing “For every partition P” with “For

the largest partition P” in the two properties above (this definition is similar to one

given in [lo]). Note that 0 9~p does not impose any requirement on the failure de-

tector modules of processes in “small” partitions. To strengthen our results, we use

09 for the impossibility result (Section 5.3) and OYLp for the consensus algorithm

(Section 5.4).

By a slight abuse of notation, we sometimes use 09 and 09~~ to refer to an

arbitrary member of the respective class.

5.3. Quiescent consensus for partitionable networks cannot be achieved using 0 Y

Although consensus for partitionable networks can be solved using 09, we now

show that any such solution is not quiescent (the consensus algorithms in [7, lo] do

not contradict this result because they are not quiescent).

Theorem 14. In partitionable networks with 5 or more processes, consensus has no

quiescent implementation using 0 9. This holds even if we assume that no process

crashes, there is a link between every pair of processes, each link is eventually up or
down, I5 a majority of processes are in the same partition, and all processes initially

propose a value.

Proof (Sketch). The proof is by contradiction. Suppose there is a quiescent algorithm

L& that uses 0 Y to solve consensus for partitionable networks. We consider a network

with n 25 processes, and construct three runs of & using 0 Y in this network, such

that the last run violates the specification of consensus. In each of these three runs no

process crashes, and every process executes d by initially proposing 0.

Run Ro. There are two permanent partitions: { 1,2} and {3,4,. . . , n}. Within each

partition no messages are lost, and all messages sent across the partitions are lost. At

all times, each process p E { 1,2} trusts only itself and process 2, and each process

PE{3,4,..., H} trusts only itself and process 3. We can easily show that processes 1

and 2 cannot decide any value in this run. l6 Since ,d is quiescent, there is a time

to after which no messages are sent or received in Ro.
Run RI. Up to time to, RI is identical to run Ro. At time to+ 1, the network partitions

permanently into { 1) and {2,3,. . . , n}. From this time on, within each partition no

messages are lost, and all messages sent across partitions are lost. Moreover, from

time to + 1, process 1 trusts only itself, and each process p E {2,3,. . . , n} trusts only

itself and process 2. Since LZZ is quiescent, there is a time tl after which no messages

are sent or received in RI.

I5 1 e ., for each link there is a time after which either all the messages sent are received or no message

sent is received.
I6 In a minority partition that does not receive messages from the outside, such as partition { 1,2} above,

processes can never decide. Otherwise, we construct another run in which, after they decide, the minority

partition merges with a majority partition where processes have decided differently.

M. K. A&era et al. I Theoretical Computer Science 220 (1999) 3-30 19

l Run Rz. There is a single partition: { 1,2,. . . , n}. Throughout the whole run, process 1

and its failure detector module behaves as in Ro, and all other processes and their

failure detector modules behave as in RI. In particular, up to time to, R2 is identical

to Ro, and from time to + 1 to ti, all messages sent to and from process 1 are

lost. We conclude that, as in Ro, process 1 does not decide in R2. This violates

the Termination property of consensus, since all processes in partition { 1,2,. , n}

propose a value.

Note that the behavior of the failure detector in each of the above three runs is

compatible with OY. 0

5.4. Quiescent consensus for partitionable networks using 0 9~p and 23’

To solve consensus using 0 Y”p and XB in partitionable networks, we take the

rotating coordinator consensus algorithm of [8], we replace its communication prim-

itives with the corresponding ones defined in Sections 4.3 and 4.1, namely, qr-send,

qr-receive, broadcast and deliver, and then we plug in the quiescent implementations

of these primitives given in Section 4.2 (these implementations use XL%?). The resulting

algorithm satisfies all the properties of consensus for partitionable networks, including

Uniform Agreement and Partition Termination, under the assumption that the largest

partition contains a majority of processes (this assumption is only necessary for the

Termination property of consensus). I7 Moreover, this algorithm is quiescent.

Although this algorithm is almost identical to the one given in [8] for non-partition-

able networks, the network assumptions, the consensus requirements, and the failure

detector properties are different, and so its proof of correctness and quiescence changes.

The rotating coordinator algorithm is shown in Fig. 3 (the code consisting of lines

39-41 is executed atomically). Processes proceed in asynchronous “rounds”. During

round r, the coordinator is process c = (r mod n) + 1. Each round is divided into four

asynchronous phases. In Phase 1, every process qr-sends its current estimate of the

decision value timestamped with the round number in which it adopted this estimate, to

the current coordinator c. In Phase 2, c waits to qr-receive [(n + I)/21 such estimates,

selects one with the largest timestamp, and qr-sends it to all the processes as its

new estimate estimate,. In Phase 3, for each process p these are two possibilities:

(1) p qr-receives estimate, from c, it adopts estimate, as its own estimate, and then

qr-sends an ack to c; or (2) upon consulting its failure detector module, p suspects c,

and qr-sends a nack to c. In Phase 4, c waits to qr-receive [(n + 1)/21 replies (ack
or nack). If all replies are acks, then c knows that a majority of processes changed

their estimates to estimate,, and thus estimate, is locked (i.e., no other decision value

is possible). Consequently, c reliably broadcasts a request to decide estimate,.. At any

time, if a process delivers such a request, it decides accordingly.

” A standard partitioning argument shows that consensus for partitionable networks cannot be solved using

0 .‘Y and fl93 if we do not make this assumption.

M. K. Aguileru et al. I Theorrtical Computer Scienrr 220 (1999) 3-30

For every process p:

To execute propose(
estimate, + up
statep + undecided
TP + 0
t+, + 0
repeat

Tp - Tp + 1
cP + (T, mod n) + I

Phase 1:

qr-send (p, rP, estimate,, ts,,) to cP

{estimate, is p’s estimate of the decision value}

{r, is p’s current round number}
{ts,, is the last round in which p updated estimate,, initially 0)

{Rotate through coordinators until decision is reached}

{c, is the current coordinator}

Phase 2:

if p = cp then

wait until [for [(n + 1)/2] processes Q: qr-received (q,r,, estimate,, tsy) from q]

msgs,[r,] +- {(q, r,,estimate,, ts,,) 1 p qr-received (q,r,,estimate,, tsv) from q}
t + largest tsy such that (q, TV, estimate,, tsy) E msgs,[r,]

estimate, t select one estim&, such that (q, TV, estimate,, t) E msgs,[r,]
qr-send (p, rP, estimate,) to all

Phase 3:

wait until [qr-received (cP, TV, estimate+) from cp or 9 suspects cpl

if [qr-received (cP, rpr estimate,,,) from q,] then
estimate, + estimate,,,
IS, +- TP
qr-send (p, TV, ack) to cp

else qr-send (p, TV, nack) to cP

Phase 4:

ifp=c,then

wait until [for [(n + I)/21 processes q: qr-received (q, rP, a&) or (q, T,,, nack)]
if [for [(n + 1)/21 processes q: qr-received (q,r,,nck)] then

broadcast (p, T,, estimate,, decide) {reliable broadcast the decision value}
until statep = decided

upon deliver(q, TV, estimate,, decide)
if statep = undecided then

decide(estimte,)
state, + decided

Fig. 3. Consensus for partitionable networks using 0 .Y~ip and reliable communication primitives.

We next prove that the algorithm is correct and quiescent. Our proof is similar to the

one in [8], except for the proofs of Termination and Quiescence. The main difficulty in

these proofs stems from the fact that we do not assume that partitions are eventually

isolated: it is possible for processes in one partition to receive messages from outside

this partition, forever. The following is an example of why this is problematic. The

failure detector OYLp guarantees that in the largest partition there is some process c

that is trusted by all processes in that partition. However, c may be permanently sus-

pected of being faulty by processes outside the largest partition. Thus, it is conceivable

that c receives nacks from these processes in Phase 4 of every round in which it acts

as the coordinator. These nacks would prevent c from every broadcasting a request

to decide. In such a scenario, processes in the largest partition never decide, and they

M.K. Aguileru et al. I Theoretical Computer Science 220 (1999) 3-30 21

qr-send messages forever. Similar scenarios in which processes in the minority parti-

tions qr-send messages forever are also conceivable. To show that all such undesirable

scenarios cannot occur, we use a partial order on the set of partitions.

Lemma 15 (Uniform integrity). Every process decides at most once.

Proof. Immediate from the algorithm. 0

Lemma 16 (Uniform validity). A process can only decide a value that was preuiously
proposed by some process.

Proof. Immediate from the algorithm, the Uniform Integrity property of qr-send and

qr-receive and the Uniform Integrity property of reliable broadcast. 0

Lemma 17 (Partition termination). Zf a process decides then every process in its par-
tition decides.

Proof. If p is faulty then partition(p) = 0, so the result is vacuously true. If p is

correct then the result follows from the Agreement property of reliable broadcast. 0

We omit the proof of the next lemma because it is almost identical to the one of

Lemma 6.2.1 in [8].

Lemma 18 (Uniform agreement). No two processes (whether in the same partition or
not) decide dt#erently.

We now show the termination and quiescence properties of the implementation. For

any partition P, we say that QuiescentDecision (P) holds if

1. all processes in P eventually stop qr-sending messages, and

2. if IPI > Ln/2] and all processes in P propose a value, then all processes in P even-

tually decide.

Lemma 19. For every partition P, if there is a time after which no process in P
qr-receives messages from processes in D\P, then QuiescentDecision holds.

Proof (Sketch). Let t be the time after which no process in P qr-receives messages

from processes in D\P. We first show that all processes in P eventually stop qr-sending

messages. There are several possible cases.

Cuse 1: Some processs in P decides. Then by Lemma 17 all processes in P decide.

A process that decides stops qr-sending messages after it reaches the end of its current

round, so all processes in P eventually stop qr-sending messages.

Case 2: No process in P decides. There are now two subcases:

Case 2.1: Each process in P thut proposes a value blocks at a wait statement.
Then all processes in P eventually stop qr-sending messages.

22 M. K. Aguileru et ul. I Theoretical Computer Science 220 (1999) 3-30

Case 2.2: Some process p in P that proposes a value does not block at any of the
wait statements. Then, since p does not decide, it starts every round r >O. There are

now two subcases:

Case 2.2.1: IPI < Lrz/2J. L e 1-0 be the round of process p at time t and let ~1 be the t

first round after ro in which p is the coordinator. In Phase 2 of round 1-1, p waits to

qr-receive estimates from r(fi + 1)/21 p recesses. It can only qr-receive messages from

processes in P, and since IPI < Ln/2], it blocks at the wait statement of Phase 2 - a

contradiction.

Case 2.2.2: IPI > Ln/2]. By the Eventual Weak Accuracy property of OYLp, there

exists a process c E P and a time t’ such that after t’, all processes in P trust c.

Let t” = max{t, t’} and let ra be the largest round number among all processes at

time t”. Let ri and r2 be, respectively, the first and second rounds greater than ro in

which c is the designated coordinator. Since p trusts c after time t”, and it completes

Phase 3 of round r2, p must have qr-received a message of the form (c,r2,estimatec)
from c in that phase. Therefore, c starts round r2, and thus c completes round r1. So c
qr-receives messages from [(a+ 1)/21 processes in Phase 4 of round t-1. These processes

are all in P because, after time t”,c qr-receives no messages from processes in Il\P.
All such messages are acks because all processes in P start round t-1 after time t”,

and so they thrust c while in round r1. Therefore, c reliably broadcasts a decision

value at the end of Phase 4 or round q, and so it delivers that value and decides - a

contradiction to the assumption that no process in P decides.

We now show that if IPI > Ln/2J and all processes in P propose a value, then all

processes in P eventually decide. By Lemma 17, we only need to show that some

process in P decides. For contradiction, suppose that no process in P decides. We

claim that no process in P remains blocked forever at one of the wait statements.

This claim implies that every process in P starts every round r > 0, and thus qr-sends

an infinite number of messages, which contradicts what we have shown above. We

prove the claim by contradiction. Let Q be the smallest round number in which some

process in P blocks forever at one of the wait statements. Since all processes in P
propose and do not decide, they all reach the end of Phase 1 of round ro: they all

qr-send a message of the type (*, ro, estimate, *) to the coordinator c = (ro mod n) + 1

of round ro. Thus, at least [(n + 1)/21 such messages are qr-sent to c. There are now

two cases: (1) c E P. Then c qr-receives those messages and replies by qr-sending

(c,ro, estimate,). Thus c completes Phase 2 of round ~0. Moreover, every process in

P qr-receives this message, and so every process in P completes Phase 3 of round ro.
Thus every process in P qr-sends a message of the type (*,ro,ack) or (*,ro,nack)
to c, and so c completes Phase 4 of round ro. We conclude that every process in P
completes round r-0 - a contradiction. (2) c @ P. Then, by the Strong Completeness

property of OYLp, all processes in P eventually suspect c forever, and thus they do

not block at the wait statement in Phase 3 of round ro. Therefore, all processes in P
complete round ro - a contradiction. 0

Lemma 20. For every partition P, QuiescentDecision holds.

M. K. Aguilera et al. I Theoretical Computer Science 220 (1999) 3-30 23

Proof (Sketch). Define a binary relation -+ on the set Partitions as follows: for every

P,Q E Partitions, P--t Q if and on1 y if P # Q and there is a fair path from some

process in P to some process in Q. Clearly --+ is an ii-reflexive partial order. The lemma

is shown by induction on -+. Let P be any partition and assume that, for every Q such

that Q -+ P, QuiescentDecision(Q) holds. We must show that QuiescentDecision

also holds.

Let Q be any partition such that Q ~3 P. Since QuiescentDecision holds, every

process q E Q eventually stops qr-sending messages. So, by the Uniform Integrity

property of qr-send and qr-receive, there is a time after which no process in P qr-

receives messages from processes in Q.

Now let Q be any partition such that Q + P and Q # P. For all processes q E Q and

p E P, there is no fair path from q to p, and so p is not reachable from q. By the

Partition Integrity property of qr-send and qr-receive, eventually p does not qr-receive

messages from q. So, eventually no process in P qr-receives messages from processes

in Q.

We conclude that eventually no process in P qr-receives messages from processes in

any partition Q #P. Moreover, eventually no process in P qr-receives messages from

faulty processes. Thus, there is a time after which no process in P qr-receives messages

from processes in II\P. Therefore, by Lemma 19, QuiescentDecision holds. 0

Corollary 21 (Termination). Assume that the largest partition contains a majority

of processes. If all processes in the largest partition propose a value, then they all
eventually decide.

Proof. Let P be the largest partition. By assumption, IPI > [n/2]. Apply Lemma 20.

0

Corollary 22 (Quiescence). By plugging the quiescent implementations of qr-send,

qr-receive, broadcast, and deliver of Section 4.2 into the algorithm of Fig. 3, we

obtain a quiescent algorithm.

Proof. First note that every process p invokes only a finite number of broadcasts: if

p crashes, this is obvious; if p is correct and broadcasts at least once, it eventually

delivers its first broadcast, and then stops broadcasting soon after this delivery. Further-

more, each process also invokes only a finite number of qr-sends: for a process that

crashes, this is obvious, and for a correct process, this is a consequence of Lemma 20.

The result now follows since the implementations of broadcast and qr-send in Section

4.2 are quiescent. q

From Lemmata 15-18, and Corollaries 21 and 22, we have

24 M. K. Ayuilua et al. I Theoretical Computer Science 220 (19991 3-30

I For every process p:

3 Initialization:
d foraUqEIIdo9P[q]+0 { !3$ is the output of 2’63 at p}

cobegin
)I Task I:

repeat periodically

%LPl + 91pl + 1 {increment p’s own heartbeat}
for all q E neighbor(p) do send (HEARTBEAT,p) to q

11 Task 2:
upon receive (HEARTBEAT,path) from q do

for all q E n such that q appears after p in path do

41ql + %P[Ql + 1
path +- path p
for all q such that p E neighbor(p) and q appears at most once in path do

send (HEARTBEAT,parh) to q

Fig. 4. Implementation of #B for partitionable networks

Theorem 23. Consider the algorithm obtained by plugging the implementations of

qr-send, qr-receive, broadcast and deliver of Section 4.2 into the algorithm of
Fig. 3. This algorithm is quiescent, and satisjes the following properties of con-
sensus: Uniform Agreement, Unifbrm Validity, Uniform Integrity, and Partition Ter-

mination. Moreover, if the largest partition contains a majority of processes, then it
also satisfies Termination.

6. Implementation of X,B for partitionable networks

We now show how to implement 3% for partitionable networks. Our implemen-

tation (Fig. 4) is a minor modification of the one given in [l] for non-partitionable

networks. Every process p executes two concurrent tasks. In the first task, p peri-

odically increments its own heartbeat value, and sends the message (HEARTBEAT, p)
to all its neighbors. The second task handles the receipt of messages of the form

(HEARTBEAT,path). Upon the receipt of such a message from process q, p increases

the heartbeat values of all the processes that appear after p in path. Then p appends

itself to path and forwards message (HEARTBEAT,path) to all its neighbors that appear

at most once in path.
Note that 2% does not use timeouts on the heartbeats of a process in order to

determine whether this process has failed or not. 227 just counts the total number of
heartbeats received from each process, and outputs these “raw” counters without any

further processing or interpretation.

Thus, &?93 should not be confused with existing implementations of failure detectors

(some of which, such as those in Ensemble and Phoenix, have modules that are also

called heartbeat [6, 161). Even though existing failure detectors are also based on the

repeated sending of a heartbeat, they use timeouts on heartbeats in order to derive lists

M.K. Aguilera et al. I Theoretical Computer Science 220 (1994) 3-30 25

of processes considered to be up or down; applications can only see these lists. In

contrast, &?8 simply counts heartbeats, and shows these counts to applications.

We now proceed to prove the correctness of the implementation.

Lemma 24. At each process p,

creasing.

the heartbeat sequence of every process q is nonde-

Proof. This is clear since 9Q,[q] can only be changed in lines 9 and 15. 0

Lemma 25. At each correct process p, the heartbeat sequence of every process in

the purtition of p is unbounded.

Proof. Let q be a process in the partition of p. If q = p then line 9 is executed

infinitely many times (since p is correct), and so the heartbeat sequence of p at p

is unbounded. Now assume q # p and let (~1, ~2,. . . , pi) be a simple fair path from

p to q, and (P;,P,+i,...,Pk) be a simple fair path from q to p, so that p1 =pk=p

and pi=q. Forj-l,..., k, let Pj=(Pi)..., Pi). For eachj=l,..., k- 1, we claim

that Pj sends (HEARTBEAT,Pj) to Pj+i an infinite number of times. We show this by

induction on j. For the base case (j = l), note that p1 = p is correct, so its Task 1

executes forever and therefore p1 sends (HEARTBEAT, pi) to all its neighbors, and thus

to ~2, an infinite number of times. For the induction step, let j < k - 1 and assume that

Pj sends (HEARTBEAT,Pj) to pj+l an infinite number of times. Since Pj+I is correct

and the link Pj + P,j+i is fair, Pj+l receives (HEARTBEAT, Pj) an infinite number of

times. Moreover, Pj+2 appears at most once in Pj+l and Pi+2 is a neighbor of P/+1,

so each time Pj+l receives (HEARTBEAT,Pj), it sends (HEARTBEAT,Pj+i) to Pj+2 in

line 18. Therefore, Pi+1 sends (HEARTBEAT, Pi+,) to Pj+2 an infinite number of times.

This shows the claim.

For j = k - 1 this claim shows that pk_ 1 sends (HEARTBEAT, Pk- I) to Pk an infinite

number of times. Process Pk is correct and link P&i + Pk is fair, so Pk receives

(HEARTBEAT,Pk_l) an infinite number of times. Note that q appears after p in Pk_ i.

So every time Pk receives (HEARTBEAT, Pk_1), it increments gpk [q] in line 15. So

3pk [q] is incremented an infinite number of times. Note that, by Lemma 24, 9Jp,[q]

can never be decremented. So, the heartbeat sequence of q at Pk = p is unbounded.

0

Corollary 26 (&S-Accuracy). At each process p, the heartbeut sequence of every

process is nondecreasing, and at each correct process p, the heartbeat sequence of

every process in the partition of p is unbounded.

Proof. From Lemmata 24 and 25. 0

Lemma 27. Zf some process p sends (HEARTBEAT,path) then (1) p is the fast process

in path and (2) no process appears more than twice in path.

26 A4.K. A&era et al. / Theoretical Computer Science 220 (1999) 3-30

Proof. Obvious. 0

Lemma 28. Let p and q be processes, and path be a sequence of processes. Suppose
that p receives message (HEARTBEAT,path . q) an injinite number of times. Then q

is correct and link q --+ p is fair. M oreover, tf path is non-empty, then q receives
message (HEARTBEAT,path) an inJinite number of times.

Proof. Obvious. Cl

Lemma 29 (Zg-Completeness). At each correct process p, the heartbeat sequence

of every process not in the partition of p is bounded.

Proof (Sketch). Let q be a process that is not in the partition of p. Note that q # p.
For a contradiction, suppose that the heartbeat sequence of q at p is not bounded. Then

p increments ap[q] an infinite number of times in line 15. So, for an infinite number

of times, p receives messages of the form (HEARTBEAT, *) with a second component

that contains q after p. Lemma 27 part (2) implies that the second component of a

message of the form (HEARTBEAT, *) ranges over a finite set of values. Thus there

exists a path containing q after p such that p receives (HEARTBEAT,path) an infinite

number of times. Let path = (PI,. . . , pk). For convenience, let p = pk+l. By repeated

applications of Lemma 28, we conclude that for each j = k, k - 1,. . . , 1, pj is correct

and link pj+pj+l is fair. Let i,i’E{l,..., k} be such that pi = p, pi! = q and i <iI.

Thus (pi, pi+i, . . , pit) is a fair path from p to q and (pi’, pif+i,. . . , pk, p) is a fair

path from q to p. Therefore p and q are in the same partition - a contradiction. 0

By Corollary 26 and the above lemma, we have

Theorem 30. Fig. 4 implements 293 for partitionable networks.

7. Some practical considerations

In contrast to several previous works on network partitions, we did not assume here

that all partitions are isolated. In other words, there can be two partitions P and P’
such that processes in P can continuously receive messages from processes in P’ (but

processes in P’ eventually stop receiving messages from P). Dealing with non-isolated

partitions complicates the task of designing and/or proving the algorithms (e.g., in

the proof of our Consensus algorithm, we had to define a partial order on the set of

partitions, and argue by induction on this partial order). The completeness properties

of 239 and 09 helped us deal with non-isolated partitions, as we now explain.

Let P and P’ be two partitions such that p E P receives every message that p’ E P’
sends. The completeness property of X3? requires that the heartbeat of p’ at p must

eventually stop. Similarly, the completeness property of OY requires that p perma-

nently suspectes p’. In other words, even though p receives all the messages of p’,

M. K. A&era et al. I Theoretical Computer Science 220 (1999) 3-30 21

z&L?~ and OY must behave as if all the processes in P were actually isolated from those

in P’. Thus, X&J and 09 help algorithms by “restoring” the isolation of partitions

to some extent. At this point, it may seem that we dealt with problem of non-isolated

partitions by simply “postulating it away” in the definitions of Y?$? and 09. This is

not the case, since we gave an implementation of X98 (Section 6), and by incorpo-

rating a timeout mechanism to this implementation, one can also obtain 09’: if the

heartbeat of p’ at p does not increase within a certain timeout period, p suspects p’

(of course, timeout mechanisms make sense only in partially synchronous systems).

We now address the issue of message buffering. Soon after a process p crashes its

heartbeat ceases everywhere and processes stop sending messages to p. However, they

do have to keep the messages they intended to send to p, just in case p is merely

very slow, and the heartbeat of p resumes later on. In theory, they have to keep

these messages forever, and this requires unbounded buffers. In practice, however, the

system will eventually decide that p is indeed useless and will “remove” p (e.g. via

a Group Membership protocol). All the stored messages addressed to p can then be

discarded. The removal of p may take a long time, l8 but the heartbeat mechanism

ensures that processes stop sending messages to p soon after p actually crashes, and

much before its removal. The same considerations apply if, instead of crashing, p is

partitioned away from its current partition P, and the (Partitionable) Group Membership

eventually removes it from P.

8. Related work

Regarding reliable communication, the works that are closest to ours are [1,4].

Both of these works, however, consider only non-partitionable networks. In [4], Basu

et al. pose the following question: given a problem that can be solved in asynchronous

systems with process crashes only, can this problem still be solved if links can also

fail by losing messages? They show that the answer is “yes” if the problem is correct-

restricted [5,13] l9 or if more than half of the processes do not crash. However, the

communication algorithms that they give are not quiescent (and do not use failure

detectors). [l] was the first paper to study the problem of achieving quiescent reliable

communication by using failure detectors in a system with process crashes and lossy

links.

Regarding consensus, the works that are closest to ours are [7, 10, 12,141. In [14],

as a first step towards partitionable networks, Guerraoui and Schiper define f-accurate

failure detectors. Roughly speaking, only a subset r of the processes are required

to satisfy some accuracy property. However, their model assumes that the network is

completely connected and links between correct processes do not lose messages - thus,

no permanent partition is possible.

‘s In some group membership protocols, the timeout used to remove a process is on the order of minutes:

killing a process is expensive and so timeouts are set conservatively.

I9 I.e., its specification refers only to the behavior of non-faulty processes.

28 M.K. Aguileru et ul. I Theoretical Computer Science 220 (1999) 3-30

The first paper to consider the consensus problem in partitionable networks is [12],

but the algorithms described in that paper had errors [7]. Correct algorithms can be

found in [7, lo]. 2o All these algorithms use a variant of OY, but in contrast to the one

given in this paper they do not use XB and are not quiescent: processes in minority

partitions may send messages forever. Moreover, these algorithms make the following

additional assumptions: (a) the largest partition is eventually isolated from the rest of

the system: there is a time after which messages do not go in or out of this partition, and

(b) links in the largest partition can lose only a finite number of messages (recall that

in our case, all links may lose an infinite number of messages). The underlying model

of failures and failure detectors is also significantly different from the one proposed in

this paper. Another model of failure detectors for partitionable networks is given in

[3]. We compare models in the next section.

9. Comparison with other models

In [3, lo], network connectivity is defined in terms of the messages exchanged in a

run - in particular, it depends on whether the algorithm being executed sends a mes-

sage or not, on the times these messages are sent, and on whether these messages are

received. This way of defining network connectivity, which is fundamentally different

from ours, has two drawbacks. First, it creates the following cycle of dependencies

(Fig. 5): (a) The messages that an algorithm sends in a particular run depend on the

algorithm itself and on the behavior of the failure detector it is using, (b) the behav-

ior of the failure detector depends on the network connectivity, and (c) the network

connectivity depends on the messages that the algorithm sends. Second, it raises the fol-

lowing issue: are the messages defining network connectivity, those of the applications,

those of the failure detection mechanism, or both?

In our model, network connectivity does not depend on messages sent by the algo-

rithm, and so we avoid the above drawbacks. In fact, network connectivity is determined

by the (process and link) failure pattern which is defined independently of the mes-

sages sent by the algorithm. The link failure pattern is intended to model the physical

condition of each link independent of the particular messages sent by the algorithm

being executed.

In [lo], two processes p and q are permanently connected in a given run if they do

not crash and there is a time after which every message that p sends to q is received

by q, and vice versa. Clearly, network connectivity depends on the messages of the

run.

In [3], process q is partitioned from p at time t if the last message that p sent

to q by time t’< t is never received by q. This particular way of defining network

*‘Actually, the specification of consensus considered in [7, 121 only requires that one correct process in
the largest partition eventually decides. Ensuring that a[/ correct processes in the largest partition decide can

be subsequently achieved by a (quiescent) reliable broadcast of the decision value.

M. K. Agrrilera et al. I ~~e~reti~al Computer Science 220 (1999j 3-30 29

failure detector

Fig. 5. Cycle of dependencies when network connectivity is defined in terms of messages sent.

connectivity in terms of messages is problematic for our purposes, as the following

example shows.

A process p wishes to send a sequence of messages to q. For efficiency, the algorithm

of p sends a message to q only when p’s failure detector module indicates that y is

currently reachable from p (this is not unreasonable: it is the core idea behind the use

of failure detector &%??I to achieve quiescent reliable communication). Suppose that at

time f, p sends vn to q, and this message is lost (it is never received by q). By the

de~nition in 137, q is pa~itioned from p at time t. Suppose that the failure detector

module at p now telis p (correctly) that q is partitioned from p. At this point, p stops

sending messages to q until the failure detector says that q has become reachable again.

However, since p stopped sending messages to q, by definition, q remains partitioned

from p forever, and the failure detector oracle (correctly) continues to report that q is

unreachable from p, forever. Thus, the loss of a single message discourages p from

ever sending messages to q again.

A possible objection to the above example is that the failure detector module at p is

not just an oracle with axiomatic properties, but also a process that sends its own mes-

sages to determine whether q is reachable or not. Furthermore, these failure detector

messages should also be taken into account in the definition of network co~ectivity

(together with the messages exchanged by the algorithms that use those failure detec-

tors). However, this defeats one of the original purpose of introducing failure detection

as a clean abstraction to reason about fault tolerance. The proof of correctness of an

algorithm (such as the one in the simple example above) should refer only to the

abstract properties of the failure detector that it uses, and not to any aspects of its

implementation.

Acknowledgements

We would like to thank An~ndya Basu, Tushar Deepak Chandra, Francis Chu, Vassos

Hadzilacos, and the anon~ous referees for their helpful comments.

30 M. K. Aguilera et al. I Theoretical Computer Science 220 (1999) 3-30

References

[l] M.K. Aguilera, W. Chen, S. Toueg, Heartbeat: a timeout-free failure detector for quiescent reliable

communication, in: M. Mavronicolas, P. Tsigas (Ed%), Proc. 1 lth Intemat. Workshop on Distributed

Algorithms, Lecture Notes on Computer Science, Springer, Berlin, 1997, pp. 126140. A full version is

also available as Technical Report 97-1631, Computer Science Department, Cornell University, Ithaca,

New York, May 1997.

[2] M.K. Aguilera, W. Chen, S. Toueg, On the weakest failure detector for quiescent reliable

communication, Technical Report 97-1640, Department of Computer Science, Cornell University, July

1997.

[3] 6. Babaoglu, R. Davoli, A. Montresor, Partitionable group membership: specification and algorithms,

Technical Report UBLCS-97-1, Dept. of Computer Science, University of Bologna, Bologna, Italy,

January 1997.

[4] A. Basu, B. Charron-Bost, S. Toueg, Simulating reliable links with unreliable links in the presence of

process crashes, in: 6. Babaoglu, K. Marzullo (Eds.), Proc. 10th Internat. Workshop on Distributed

Algorithms, Lecture Notes in Computer Science, Springer, Berlin, 1996, pp. 105-122.

[5] R. Bazzi, G. Neiger, Simulating crash failures with many faulty processors, in: A. Segal, S. Zaks (Eds.),

Proc. 6th Internat. Workshop on Distributed Algorithms, Lecture Notes in Computer Science, Springer,

Berlin, 1992, pp. 166-184.

[6] T.D. Chandra, Private communication, April 1997.

[7] T.D. Char&a, V. Hadzilacos, S. Toueg, Private communication to Friedman et al. [12], March 1996.

[B] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed systems, J. ACM 43 (2)

March 1996, 225-267.

[9] T.D. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector for solving consensus, J. ACM

43 (4) July 1996, 685-722.

[lo] D. Dolev, R. Friedman, I. Keidar, D. Malkhi, Failure detectors in omission failure environments,

Technical Report TR96-1608, Department of Computer Science, Cornell University, Ithaca, New York,

September 1996.

[l l] M.J. Fischer, N.A. Lynch, MS. Paterson, Impossibility of distributed consensus with one faulty process,

J. ACM 32 (2) April 1985, 374382.

[12] R. Friedman, I. Keidar, D. Malkhi, K. Birman, D. Dolev, Deciding in partitionable networks, Technical

Report TR95-1554, Department of Computer Science, Cornell University, Ithaca, New York, November

1995.

[13] A. Gopal, Fault-tolerant broadcasts and multicasts: the problem of inconsistency and contamination,

PhD thesis, Cornell University, Ithaca, New York, January 1992.

[141 R. Guerraoui, A. Schiper, Gamma-accurate failure detectors, in: 0. Babaoglu, K. Marzullo (Eds.), Proc.

10th Intemat. Workshop on Distributed Algorithms, Lecture Notes in Computer Science, Springer,

Berlin, 1996, pp. 269-286.

[15] V. Hadzilacos, S. Toueg, A modular approach to fault-tolerant broadcasts and related problems,

Technical Report TR 94-1425, Department of Computer Science, Cornell University, Ithaca, New York,

May 1994.

[16] R. van Renesse, Private communication, April 1997.

