
Neural Network Training Using Multi-channel Data withAggregate LabellingN McGrogan�, C M Bishopy, L Tarassenko��Department of Engineering Science, University of OxfordyMicrosoft Research, CambridgeAbstractThe solution of classi�cation problems usingstatistical techniques requires appropriatelylabelled training data. In the case of multi-channel data, however, the labels may onlybe available in aggregate form rather thanas separate labels for each individual chan-nel. Standard techniques, using a trainedmodel to predict each channel separately,are therefore precluded. In this paper wepresent a new method of training neural net-work classi�ers from aggregate labels. Thistechnique allows the network to learn whatsigni�cant events on individual channels re-sult in the given labels. We apply this train-ing method to two synthetic (but, in thesecond case, realistic) problems and com-pare the results with those from a classi-�er trained on the accurate channel labels,which would usually not be available. Onpreviously unseen test data for the two prob-lems 97:75% and 99:1% of feature vectorswere classi�ed correctly. These represent re-ductions of only 0:5% and 0:1% from classi-�ers trained on accurate labels for all chan-nels.IntroductionThe use of neural networks for classi�cationis well documented and the requirements fortraining are similarly well known. One pre-requisite of any training method is correctlylabelled training data [5]. When a neuralnetwork is used to analyse time-varying datait is usual for the data to be temporally seg-mented and a label assigned to each seg-ment [4].In a multi-channel environment the same

segmentation process can be used on thedata and classi�cation networks applied toeach channel independently. However, theavailable labelling may only be aggregate,i.e., for each time segment only a single la-bel is given; the channels are not labelledindividually. The label indicates the occur-rence of a particular event on at least oneof the recorded channels, but it cannot betaken as correct when the channels are in-spected independently.An example of this problem occurs in thedetection of spikes in the human electroen-cephalogram (EEG) during the diagnosis ofepilepsy. Typically a number of channels ofdata (commonly 20) are recorded and seg-mented temporally. A single aggregate labelis assigned to each time segment indicatingthe presence of spikes in at least one of thechannels but there is no indication of thechannels in which the spikes occurred. Asa result, the channels in which there is nospike are wrongly labelled. The task of re-labelling each channel independently wouldrequire a signi�cant amount of time on thepart of a trained EEG technician and this isnot a practical option.In this paper we present a method whichallows a neural network to be trained onthe available aggregate labelling to identifywhat characteristic of individual channelsgives rise to the observations. The trainednetwork can subsequently be used to classifyeach channel individually. Our approachbuilds on that adopted by Keeler et al. [3]to learn the spatial segmentation of hand-written numerals.Figure 1 shows a simple example of thelabelling problem which we have described.A time sequence of features (A, B, C or D)is shown over �ve channels. Each time slice



ADDBC AAACA CAAAC BBDAA DBACA AACCC DBADB ACCAA AADCD ADBBA BABAD1 0 0 1 1 0 1 0 0 1 1Figure 1: A simple example of the aggregatelabelling problem.has been given an aggregate label accord-ing to the presence (label 1) or absence (la-bel 0) of a particular feature in at least oneof the channels. By examining the data wecan identify the critical feature (in this case,B) which results in an event being signalled.Once this has been established, subsequentdata could be classi�ed on each channel in-dependently.We start by presenting the theoreticalbackground to the training method and thendemonstrate its use on two synthetic datasets. In each case, results are comparedagainst a neural network classi�er trainedon the full labelling of each channel. After adiscussion of these results we conclude withsome possible areas for future developmentsof this method.Theoretical BackgroundTo learn a solution to aggregate labelledproblems we use the following approach.Suppose that the available training dataconsists of N time slices and C channels.In this case we have a set of feature vectorsxcn for 1 � c � C and 1 � n � N . Wealso have an aggregate label provided by anexpert for each time slice given by tn, wheretn 2 f0; 1g. This label indicates the pres-ence of a particular event in at least one ofthe C channels at time slice n.In order to be able to classify the channelsindependently we need to train one modelper channel, mc(xcn;wc), wherewc is a vec-tor of adaptive parameters. The output ofmodelmc provides an estimate of the proba-bility of our event being observed in channelc at a given time slice n.If we assume that the distribution of fea-ture vectors is independent of channel, so

we could use the same model for each of thechannels, in which case m(xcn;w) now rep-resents the probability of our event being ob-served in channel c at time slice n. It is pos-sible to use a feed-forward neural network,such as a multi-layer perceptron (MLP), asthe non-linear model m, so thatycn = m(xcn;w) (1)= 11 + exp(�acn) ; (2)where acn is a linear combination of `hiddenunit' activations.If we also assume that the channels areindependent of one another then the proba-bility that, at a time slice n, at least one ofthe channels contains our event is given bypn, where pn = 1� CYc=1(1� ycn): (3)We can now train the network by min-imising the negative log-likelihood, E [1]:E = � NXn=1ftn ln pn + (1� tn) ln(1� pn)g:(4)The derivative of E with respect to theadaptive parameters w is then given by@E@wl = � NXn=1 (tn � pn)pn  CXc=1 ycn @acn@wl ! ;(5)and these derivatives can be used to trainthe MLP with a standard non-linear opti-misation method.Having developed the theory behind thetraining method we shall now turn to somepractical examples using synthetic data sets.Sampled GaussiansOur �rst synthetic problem consists of datafrom four two-dimensional, radially sym-metric Gaussian distributions (� = 1) withthe sampled x and y values being the fea-tures used. Figure 2 gives a plot of the dis-tributions used.Independent training, validation and testdata sets were constructed and consisted of
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Figure 2: The four Gaussians sampled forthe �rst synthetic data set. Circles show the�, 2� and 3� circles for each distribution.100 sampled points on each of 4 \channels".For each channel, at time slice n, a pointis sampled randomly from one of the fourGaussians (with equal priors). The labelsfor each channel are arti�cially assigned ac-cording to the following rule: the label is 1 ifthe point is taken from Gaussian A, 0 oth-erwise. The per-channel and aggregate la-belling of the training data set are shown inFigure 3.MLP classi�ers with structures of theform 2-i-1, for 2 � i � 20, were trainedusing the scaled conjugate gradient optimi-sation method with the error function givenin Equation 4. The tn values are the ag-gregate labels shown in Figure 3(b). Aftertraining, the 2-11-1 network was identi�edas having the lowest error on the validationdata set and is the model used for furthertesting.Setting the decision boundary to 0.5 andapplying the trained network independentlyto each of the channels of the test data setresulted in 9 feature vectors (2:25%) beingmisclassi�ed. Figure 4 shows the resultsgraphically.These results can be compared with theclassi�cation accuracy of an MLP networktrained on the fully labelled data (i.e., thesame training data and the same trainingprocedure, except that we now use per-channel labels tcn rather than aggregate la-bels tn). A 2-2-1 network gave the best gen-eralisation performance and left 7 feature

vectors (1:75%) misclassi�ed from the testdata set.Inter-ictal SpikesStudy of the human electroencephalogram(EEG) recorded during the investigation ofepilepsy has shown that a large majorityof subjects su�ering from epilepsy exhibitspikes in their EEG between seizures (inter-ictal spikes) [6]. In most cases when epilepsyis con�rmed by analysis of the EEG, it ison the basis of inter-ictal activity [2]. Thedetection of these inter-ictal spikes is there-fore an important step in the diagnosis ofepilepsy.Recordings of the EEG are generallymade over multiple (approximately 20)channels and the expert labelling of thisdata for spikes is a prime example of ag-gregate labelling | spikes are identi�ed asoccurring within a particular time period,but the channels in which the spikes occuris not recorded. The labelling of individ-ual channels would be too time-consumingand so the ability to train a neural networkspike detector from just the aggregate la-bels would be an important step forward.For this reason we have assembled anothersynthetic, but realistic, data set, designed tomimic the detection of EEG spikes. A �vecoe�cient auto-regressive (AR) model of hu-man EEG sampled at 256Hz during wake-fulness has been used to generate four chan-nels of synthetic background EEG. Spikesof variable height and duration (between 50and 100ms) have been inserted into thisdata randomly (with a probability of 0:1that a spike will occur in a one second timeperiod). Figure 5 shows a short section ofone channel of the signal.Four-channel training and test data setswere constructed, each 250 seconds long.Since this is arti�cial data, as with the sam-pled Gaussian data in the �rst problem, theactual per-channel labels are known for bothdata sets.The data is segmented into one-secondtime slices and the features used as input tothe neural network are the mean slope andmean sharpness of the signal over each timeslice. For three consecutive EEG sample val-ues, xt�1, xt and xt+1, slope and sharpness



(a) Per-channel labels.(b) Aggregate labels.Figure 3: Training data set labels for the sampled Gaussian problem. Four channels are shownwith 100 samples per channel. Black boxes represent a labelled event (i.e., a point sampled fromGaussian A). Note how the aggregate label indicates an event when the corresponding time slicein the per-channel labelling contains at least one marked channel.

(a) Actual per-channel labels.
(b) Network output labels (decision boundary 0:5).

(c) Di�erences between Figures 4(a) and 4(b). White squares represent false negatives, blackis false positive.Figure 4: Test results shown in graphical form for the sampled Gaussian data set.
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Figure 5: Four seconds of arti�cially gener-ated EEG (single channel) containing a syn-thetic spike in the third second. The x coor-dinate shows the signal sample number (fourseconds at 256Hz gives a total of 1024 sam-ples).are de�ned as [6]:�0t = xt � xt�1; (6)�1t = xt+1 � xt; (7)slopet = 12(j�0t j+ j�1t j); (8)sharpnesst = j�1t � �0t j: (9)Figure 6 shows the distribution of slope andsharpness values for 250 seconds of trainingdata.The two classes in this problem are almostlinearly separable. A 2-4-1 network struc-ture was used for classi�cation with both theaggregate and the fully labelled data. Fig-ure 7 shows the classi�cations given by thenetwork trained on aggregate labels usinga 0.5 decision boundary: 9 feature vectors(0:9%) were misclassi�ed.For comparison a 2-4-1 network trainedon the fully labelled training set (i.e., tcnlabels rather than tn labels) left 8 featurevectors (0:8%) misclassi�ed when applied tothe test data.ConclusionResults from the application of this train-ing method to two training sets have shownthat it is possible to train a neural networkclassi�er from aggregate labels with only a

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 6: The distribution of slope (x axis)and sharpness (y axis) values for 250 sec-onds of arti�cial EEG. Time slices contain-ing spikes are indicated by +.very slight reduction in performance. Thisdegradation is insigni�cant with respect tothe cost (either �nancial or in terms of man-power) of extensive expert relabelling.In the studies presented in this paperwe have used synthetic data to show thatthe same model m(xcn;w) can be �tted tothe data xcn from individual channels as aresult of training with an aggregate labeltn. We used synthetic (but realistic, in thecase of the EEG) data in order to have thecorrect individual labels tcn also available,so that per-channel training could be com-pared with the method presented in this pa-per. Testing using real EEG data is cur-rently in progress and we hope to use thismethod to detect automatically the onsetof epileptic seizures in long-term recordingsfor which the amount of time required for atechnician to relabel the available data on aper-channel basis is considered prohibitive.Further development of the trainingmethod is required to support di�erent mod-els for each channel, to allow for spatial cor-relation between neighbouring channels, andto move beyond two class problems by allow-ing multiple outputs from the classi�er.AcknowledgementsNick McGrogan is supported by an EPSRCstudentship. We gratefully acknowledge thehelp of our clinical collaborators at the Na-tional Hospital for Neurology and Neuro-



(a) Actual per-channel labels.(b) Network output labels (decision boundary 0:5).(c) Di�erences between Figures 7(a) and 7(b). White squares represent false negatives, black is false positive.Figure 7: Test results for the inter-ictal spike data set shown in graphical form.surgery, Mr Philip Allen and Dr SheilaghSmith, with the data collection and analy-sis.References[1] Christopher M Bishop. Neural Networksfor Pattern Recognition. Oxford Univer-sity Press, 1995.[2] John R Hughes. EEG in Clinical Prac-tice. Butterworth-Heinemann, secondedition, 1994.[3] James D Keeler, David E Rumelhart,and Wee-Kheng Leow. Integrated seg-mentation and recognition of hand-printed numerals. In Advances in Neu-ral Information Processing Systems, vol-ume 3, pages 557{563, 1991.[4] J Pardey, S Roberts, and L Tarassenko.A review of parametric modelling tech-niques for EEG analysis. Medical En-gineering and Physics, 18(1):2{11, Jan-uary 1996.[5] L Tarassenko. A Guide to Neural Com-puting Applications. Arnold, 1998.[6] L Tarassenko, Y U Khan, and M R GHolt. Identi�cation of inter-ictal spikesin the EEG using neural network anal-ysis. IEE Proc.-Sci. Meas. Technol.,145(6):270{278, November 1998.




