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Abstract

The solution of classification problems using
statistical techniques requires appropriately
labelled training data. In the case of multi-
channel data, however, the labels may only
be available in aggregate form rather than
as separate labels for each individual chan-
nel. Standard techniques, using a trained
model to predict each channel separately,
are therefore precluded. In this paper we
present a new method of training neural net-
work classifiers from aggregate labels. This
technique allows the network to learn what
significant events on individual channels re-
sult in the given labels. We apply this train-
ing method to two synthetic (but, in the
second case, realistic) problems and com-
pare the results with those from a classi-
fier trained on the accurate channel labels,
which would usually not be available. On
previously unseen test data for the two prob-
lems 97.75% and 99.1% of feature vectors
were classified correctly. These represent re-
ductions of only 0.5% and 0.1% from classi-
fiers trained on accurate labels for all chan-
nels.

Introduction

The use of neural networks for classification
is well documented and the requirements for
training are similarly well known. One pre-
requisite of any training method is correctly
labelled training data [5]. When a neural
network is used to analyse time-varying data
it is usual for the data to be temporally seg-
mented and a label assigned to each seg-
ment [4].

In a multi-channel environment the same

segmentation process can be used on the
data and classification networks applied to
each channel independently. However, the
available labelling may only be aggregate,
i.e., for each time segment only a single la-
bel is given; the channels are not labelled
individually. The label indicates the occur-
rence of a particular event on at least one
of the recorded channels, but it cannot be
taken as correct when the channels are in-
spected independently.

An example of this problem occurs in the
detection of spikes in the human electroen-
cephalogram (EEG) during the diagnosis of
epilepsy. Typically a number of channels of
data (commonly 20) are recorded and seg-
mented temporally. A single aggregate label
is assigned to each time segment indicating
the presence of spikes in at least one of the
channels but there is no indication of the
channels in which the spikes occurred. As
a result, the channels in which there is no
spike are wrongly labelled. The task of re-
labelling each channel independently would
require a significant amount of time on the
part of a trained EEG technician and this is
not a practical option.

In this paper we present a method which
allows a neural network to be trained on
the available aggregate labelling to identify
what characteristic of individual channels
gives rise to the observations. The trained
network can subsequently be used to classify
each channel individually. Our approach
builds on that adopted by Keeler et al. [3]
to learn the spatial segmentation of hand-
written numerals.

Figure 1 shows a simple example of the
labelling problem which we have described.
A time sequence of features (A, B, C or D)
is shown over five channels. Each time slice
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Figure 1: A simple example of the aggregate
labelling problem.

has been given an aggregate label accord-
ing to the presence (label 1) or absence (la-
bel 0) of a particular feature in at least one
of the channels. By examining the data we
can identify the critical feature (in this case,
B) which results in an event being signalled.
Once this has been established, subsequent
data could be classified on each channel in-
dependently.

We start by presenting the theoretical
background to the training method and then
demonstrate its use on two synthetic data
sets. In each case, results are compared
against a neural network classifier trained
on the full labelling of each channel. After a
discussion of these results we conclude with
some possible areas for future developments
of this method.

Theoretical Background

To learn a solution to aggregate labelled
problems we use the following approach.
Suppose that the available training data
consists of N time slices and C' channels.
In this case we have a set of feature vectors
Xep for 1 < ¢ < Cand1<n<N. We
also have an aggregate label provided by an
expert for each time slice given by ¢,,, where
t, € {0,1}. This label indicates the pres-
ence of a particular event in at least one of
the C channels at time slice n.

In order to be able to classify the channels
independently we need to train one model
per channel, m.(X¢n, W.), where w, is a vec-
tor of adaptive parameters. The output of
model m, provides an estimate of the proba-
bility of our event being observed in channel
¢ at a given time slice n.

If we assume that the distribution of fea-
ture vectors is independent of channel, so

we could use the same model for each of the
channels, in which case m(x.,, W) now rep-
resents the probability of our event being ob-
served in channel ¢ at time slice n. It is pos-
sible to use a feed-forward neural network,
such as a multi-layer perceptron (MLP), as
the non-linear model m, so that

Yen = m(xcnzw) (1)
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where a., is a linear combination of ‘hidden
unit’ activations.

If we also assume that the channels are
independent of one another then the proba-
bility that, at a time slice n, at least one of
the channels contains our event is given by
Pn, Where

C
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We can now train the network by min-
imising the negative log-likelihood, E [1]:

N
E=- Z{tn lnpn + (1 - tn) ln(l _pn)}'

" (4)

The derivative of E with respect to the
adaptive parameters w is then given by

oFE al (th — pn) < Oacn
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(5)

and these derivatives can be used to train
the MLP with a standard non-linear opti-
misation method.

Having developed the theory behind the
training method we shall now turn to some
practical examples using synthetic data sets.

Sampled Gaussians

Our first synthetic problem consists of data
from four two-dimensional, radially sym-
metric Gaussian distributions (o = 1) with
the sampled z and y values being the fea-
tures used. Figure 2 gives a plot of the dis-
tributions used.

Independent training, validation and test
data sets were constructed and consisted of



Figure 2: The four Gaussians sampled for
the first synthetic data set. Circles show the
o, 20 and 3o circles for each distribution.

100 sampled points on each of 4 “channels”.
For each channel, at time slice n, a point
is sampled randomly from one of the four
Gaussians (with equal priors). The labels
for each channel are artificially assigned ac-
cording to the following rule: the label is 1 if
the point is taken from Gaussian A, 0 oth-
erwise. The per-channel and aggregate la-
belling of the training data set are shown in
Figure 3.

MLP classifiers with structures of the
form 2-i-1, for 2 < ¢ < 20, were trained
using the scaled conjugate gradient optimi-
sation method with the error function given
in Equation 4. The ¢, values are the ag-
gregate labels shown in Figure 3(b). After
training, the 2-11-1 network was identified
as having the lowest error on the validation
data set and is the model used for further
testing.

Setting the decision boundary to 0.5 and
applying the trained network independently
to each of the channels of the test data set
resulted in 9 feature vectors (2.25%) being
misclassified. Figure 4 shows the results
graphically.

These results can be compared with the
classification accuracy of an MLP network
trained on the fully labelled data (i.e., the
same training data and the same training
procedure, except that we now use per-
channel labels t., rather than aggregate la-
bels t,). A 2-2-1 network gave the best gen-
eralisation performance and left 7 feature

vectors (1.75%) misclassified from the test
data set.

Inter-ictal Spikes

Study of the human electroencephalogram
(EEG) recorded during the investigation of
epilepsy has shown that a large majority
of subjects suffering from epilepsy exhibit
spikes in their EEG between seizures (inter-
ictal spikes) [6]. In most cases when epilepsy
is confirmed by analysis of the EEG, it is
on the basis of inter-ictal activity [2]. The
detection of these inter-ictal spikes is there-
fore an important step in the diagnosis of
epilepsy.

Recordings of the EEG are generally
made over multiple (approximately 20)
channels and the expert labelling of this
data for spikes is a prime example of ag-
gregate labelling — spikes are identified as
occurring within a particular time period,
but the channels in which the spikes occur
is not recorded. The labelling of individ-
ual channels would be too time-consuming
and so the ability to train a neural network
spike detector from just the aggregate la-
bels would be an important step forward.
For this reason we have assembled another
synthetic, but realistic, data set, designed to
mimic the detection of EEG spikes. A five
coefficient auto-regressive (AR) model of hu-
man EEG sampled at 256 Hz during wake-
fulness has been used to generate four chan-
nels of synthetic background EEG. Spikes
of variable height and duration (between 50
and 100ms) have been inserted into this
data randomly (with a probability of 0.1
that a spike will occur in a one second time
period). Figure 5 shows a short section of
one channel of the signal.

Four-channel training and test data sets
were constructed, each 250 seconds long.
Since this is artificial data, as with the sam-
pled Gaussian data in the first problem, the
actual per-channel labels are known for both
data sets.

The data is segmented into one-second
time slices and the features used as input to
the neural network are the mean slope and
mean sharpness of the signal over each time
slice. For three consecutive EEG sample val-
ues, xy_1, ¢; and z;41, slope and sharpness



(a) Per-channel labels.

(b) Aggregate labels.

Figure 3: Training data set labels for the sampled Gaussian problem. Four channels are shown
with 100 samples per channel. Black boxes represent a labelled event (i.e., a point sampled from
Gaussian A). Note how the aggregate label indicates an event when the corresponding time slice
in the per-channel labelling contains at least one marked channel.

(a) Actual per-channel labels.

(b) Network output labels (decision boundary 0.5).

(c¢) Differences between Figures 4(a) and 4(b). White squares represent false negatives, black
is false positive.

Figure 4: Test results shown in graphical form for the sampled Gaussian data set.
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Figure 5: Four seconds of artificially gener-
ated EEG (single channel) containing a syn-
thetic spike in the third second. The z coor-
dinate shows the signal sample number (four
seconds at 256 Hz gives a total of 1024 sam-

ples).

are defined as [6]:

0 _
5,5 =Tt — Tt-1,

(6)
8 = Tp1 — T, (7)
1
slope, = S (1071 + 10, ), (8)
sharpness; = |6; — 67 (9)

Figure 6 shows the distribution of slope and
sharpness values for 250 seconds of training
data.

The two classes in this problem are almost
linearly separable. A 2-4-1 network struc-
ture was used for classification with both the
aggregate and the fully labelled data. Fig-
ure 7 shows the classifications given by the
network trained on aggregate labels using
a 0.5 decision boundary: 9 feature vectors
(0.9%) were misclassified.

For comparison a 2-4-1 network trained
on the fully labelled training set (i.e., tcp
labels rather than t, labels) left 8 feature
vectors (0.8%) misclassified when applied to
the test data.

Conclusion

Results from the application of this train-
ing method to two training sets have shown
that it is possible to train a neural network
classifier from aggregate labels with only a
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Figure 6: The distribution of slope (z axis)
and sharpness (y axis) values for 250 sec-
onds of artificial EEG. Time slices contain-
ing spikes are indicated by +.

very slight reduction in performance. This
degradation is insignificant with respect to
the cost (either financial or in terms of man-
power) of extensive expert relabelling.

In the studies presented in this paper
we have used synthetic data to show that
the same model m(x.,, w) can be fitted to
the data x.,, from individual channels as a
result of training with an aggregate label
t,. We used synthetic (but realistic, in the
case of the EEG) data in order to have the
correct individual labels t., also available,
so that per-channel training could be com-
pared with the method presented in this pa-
per. Testing using real EEG data is cur-
rently in progress and we hope to use this
method to detect automatically the onset
of epileptic seizures in long-term recordings
for which the amount of time required for a
technician to relabel the available data on a
per-channel basis is considered prohibitive.

Further development of the training
method is required to support different mod-
els for each channel, to allow for spatial cor-
relation between neighbouring channels, and
to move beyond two class problems by allow-
ing multiple outputs from the classifier.

Acknowledgements

Nick McGrogan is supported by an EPSRC
studentship. We gratefully acknowledge the
help of our clinical collaborators at the Na-
tional Hospital for Neurology and Neuro-



(a) Actual per-channel labels.

(b) Network output labels (decision boundary 0.5).

(c) Differences between Figures 7(a) and 7(b). White squares represent false negatives, black is false positive.

Figure 7: Test results for the inter-ictal spike data set shown in graphical form.
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