Decision-Theoretic Troubleshooting

David Heckerman John S. Breese Koos Rommelse

Introduction

You have just finished typing that big report into your word processor. It is formatted correctly
and looks beautiful on the screen. You hit print, go to the printer, and nothing is there. You try
again, still nothing. The report needs to go out today. What do you do?

Increasingly, computer users in this situation are calling customer support. Helpdesk services
cost corporations hundreds of millions of dollars per year, and productivity losses due to users
debugging software and hardware configuration problems probably are of a similar magnitude. As
software becomes more complex and interoperable, the difficulty of diagnosis and repair grows.
Other industries are experiencing similar increases in support and service costs for complex devices
such as aircraft, trains, automobiles, and photocopiers.

Whereas the helpdesk may be able to solve your printing problem, you have had to wait for a
response, communicate the problem to the technician, and ultimately track down the problem over a
period of hours or sometimes days. Wouldn’t it be better to have an automated local expert at your
beck and call? This vision has been at the core of substantial research and development in the fields
of artificial intelligence and expert systems. Since the early 1980s, diagnosis and treatment have
been central problems in theoretical and applied Al [2]. Given that a device is not working properly
or a patient has some complaint, the automated-diagnostic system is charged with determining the
set of faults or diseases that explain the symptoms [3, 4, 6, 1]. The diagnostician is able to ask
questions about the behavior of the device, or test individual components in order to determine if
they are working properly. As new information is gained, the procedure updates its current view
of the world. Inference focuses on identifying the set of faults consistent with the observations and
ordering them in terms of likelihood. Information gathering proceeds until a single cause has been
identified or the current diagnosis is sufficiently certain to support action.

Typically, however, our primary objective is to repair the device or cure the patient, not just
determine what is wrong. At any stage of the process, there are many possible observations, tests,
or repairs that can be applied. In addition, we may have the option of calling service: promoting the
problem to a higher level of expertise that is guaranteed to be able to repair the device. Because
these operations are expensive in terms of time and/or money, we wish to generate a sequence

of actions that minimizes costs and results in a functioning device (or healthy patient). In this

paper, we develop a diagnostic procedure that not only seeks to identify the most likely causes of
a malfunction, but also generates a plan of action for repair. This plan consists of repairing or
replacing individual components of a composite device or system, as well as making observations

or tests. We and others call this process troubleshooting [3].

Optimal Troubleshooting and Decision Trees

An optimal troubleshooting plan is a sequence of observations and repairs that minimizes expected
costs. The classic way to compute the expected cost of a plan is to use a decision tree.! In this
section, we show how this computation is done. In the remainder of the paper, we introduce a more
practical approach using Bayesian networks.

A decision tree represents the possible unfolding of events in temporal order. The representation
contains two types of nodes: decision nodes and chance nodes. A decision node (drawn as a square
node) represents a decision: an irrevocable allocation of resource. Branches of a decision node
correspond to the mutually exclusive and collectively exhaustive set of alternatives available to the
decision maker. A chance node (drawn as a circle) represents an uncertain variable. Branches of
a chance node correspond to the mutually exclusive and collectively exhaustive possible states of
the variable. Associated with each chance-node branch is the decision maker’s probability that
the variable will be in the corresponding state. Each path through the tree reflects a possible
outcome for the decision maker. Associated with each path is the decision maker’s preference for
that outcome.

A decision tree for troubleshooting a simple two-component device is shown in Figure 1. The
left-most square node represents the decision of whether or not to observe the variable 0. The left-
most circular node o represents an observation that provides some evidence about the status of the
components. The number to the immediate left of a chance-node branch is the probability of that
branch. The values at the end of the tree are the cumulative costs of observation and repair along
the path from the root. For example, the second sum from the top of the figure (5+ 10+ 20) is the
cost of the path where first o is observed (cost = 5), then ¢; is repaired without fixing the device
(cost = 10), and then ¢; is repaired (cost = 20). In constructing this model, we have assumed that
the device is faulty initially, the device will be fixed if one repairs both components, and we can
observe only o and whether or not the device is functioning. In addition, we have assumed that the
cost of observing whether or not the device is functioning is zero, and all repair and observation
costs are independent of the order in which actions are taken.

We compute the expected cost of a troubleshooting plan by rolling back a decision tree from
right to left—a particular form of dynamic programming. At each step in the rollback procedure,

we find a rightmost node, and compute the expected cost of the plan that would end at that node.

'By decision tree, we mean the representation described by Raiffa [9] for use in decision analysis.

5+ 10

5+10+20

5+20

Observe o 5+10+20

5+10

5+10+20

5+20

5+10+20
10
Repair ¢,
20
10+ 20
20
Repair c, 05
29.5 o3
10+ 20

Figure 1: A decision tree showing all possible troubleshooting plans of a two-component device.
The left-most square node represents the decision of whether to observe the variable o. The left-
most circular node represents the variable o; and its branches represent the possible outcomes of the
variables. As this is a chance node, we do not know which branch will be taken. The number to the
immediate left of each of o’s branches is the probability that the branch will occur. The rightmost
column of chance nodes represent the observation of whether or not the device is functioning. The
values at the end of the tree are the cumulative costs of observation and repair along the path from
the root. For example, the second sum from the top of the figure (54 10 4 20) is the cost of the
path where first o is observed, then ¢ is repaired (not fixing the device), and then c¢; is repaired.
To identify the plan with the lowest expected cost, we roll back the decision tree from left to right.
At each step in the rollback procedure, we find a rightmost node, and compute the expected cost of
the plan that would end at that node. The expected cost of each node is shown under the branch

leading to the node. 3

When we encounter a rightmost chance node, we simply compute the expected cost of its branches.
We do so by multiplying the number on each branch by its corresponding probability, and then
summing the results for all branches. When we encounter a rightmost decision node, we find the
branch of that node with the lowest expected cost, and set the expected value of the decision node
to this cost. In addition, we record the action corresponding to the lowest-cost branch. The rollback
procedure is illustrated in Figure 1. Under each branch is its expected cost as determined by the

procedure. For example, the expected cost of the top branch labeled “Repair ¢;” is
0.9(15) + 0.1(35) = 17
The expected cost of the branch labeled “o = true” is

min(17,34.9) = 17

” indicated by the arrow. The optimal plan determined from a

and the best action is “Repair ¢y,
complete rollback says that we should first observe o; if 0 = true, then we should repair ¢; first;
and if o = false, then we should repair ¢; first. This plan has an expected cost of repair of 19.2.
Development of an optimal solution to the general troubleshooting problem requires an analysis
of all possible mixed observation—repair sequences using dynamic programming as shown above.
As we increase the number of repairable components and possible observations, the decision tree
grows exponentially. For example, a troubleshooting problem of this form with 5 components and
3 observations would generate a decision tree with nearly 340,000 endpoints. In this paper, we

generate a series of approximations that more efficiently selects either an observation or repair

action at each stage of the troubleshooting process.

Computing Probabilities of Faulty Components

When troubleshooting under uncertainty, we need to compute the probabilities that components
have failed. In our example in the previous section, these probabilities are the numbers just to
the right of the rightmost chance nodes. In our approach, we compute these probabilities using a
Bayesian network (see introductory article). Figure 2 shows an example Bayesian network for a
problem that, unfortunately, almost all of us have experienced: a car that won’t start. As mentioned
in the introductory article, most Bayesian networks are constructed by drawing arcs from cause to
effect. This network is no exception. For example, “Battery Age” affects “Battery Quality,” which

" which affects “Engine Turn Over,” which affects “Ingine Starts.”

affects “Battery Power,’

Given observations of some nodes (e.g., “Engine Starts” is false and “Lights” are on), we can
use a Bayesian-network inference algorithm to compute the probability that any or all of the system
components are faulty. The conditional independencies represented by the Bayesian network make

this computation practical in this case, and for most real-world problems as well.

Distributor

Spark Plugs

Engine Turn Over Engine Start

Figure 2: A Bayesian network for “my car won’t start.” Arcs are drawn from cause to effect.

If we repair a component and possibly make additional observations, we can still use this
Bayesian network to compute the probabilities of component faults, but we must account for the
change in the underlying state of the device and the fact that previous observations may have been

invalidated. An efficient method for doing so is described by Heckerman et al. [5].

A Simple Special Case

In this section, we describe a set of assumptions under which it is possible to identify an optimal
sequence of observations and repair actions in time proportional to the number of components in
the device,? without explicitly constructing and rolling back a decision tree. We relax several of
these assumptions in the following section.

The approach that we take is an extension of the troubleshooting approaches described in
Kadane and Simon [7] and Kalagnanam and Henrion [8]. Let us suppose that our device has n
components represented by uncertain variables ¢q,...,¢,, and that each component is in exactly
one of a finite set of states.® In our automobile example, the components are “Battery Quality,”
“Alternator,” “Fan Belt,” “Starter,” “Gas,” “Fuel Pump,” “Fuel Line,” “Distributor,” and “Spark

Plugs.” Our assumptions are as follows:

1. There is only one problem-defining node in the Bayesian network for the device. This node
represents the functional status of the device. One of the states of this node must correspond
to normal operation. In Figure 2, the node labeled “Engine Starts” is the problem-defining

node.

2This time complexity assumes that Bayesian-network inference requires constant time. In practice, this assump-
tion is often reasonable even though inference in an arbitrary Bayesian network is NP-hard (see sidebar).

#Our approach can be generalized to continuous variables, but we do not do so here.

2. At the onset of troubleshooting, the device is faulty. That is, the problem defining node is

observed to be in a state other than “normal.”

3. Single fault: Exactly one component is abnormal and is responsible for the failure of the
device. We use p; to denote the probability that component ¢; is abnormal given our current
state of information. These probabilities are computed using a Bayesian network, as described

in the previous section. Under the single-fault assumption, we have "7, p; = 1.

4. Immediately following any component repair, the problem-defining node is observed with cost

Cr.

5. Each component is observable or unobservable. An observable component can be unambigu-
ously tested or inspected to determine whether or not it is functioning properly. Furthermore,
an observable component that is observed to be abnormal must be repaired immediately. An
unobservable component can never be directly observed, but can be repaired or replaced. In
our automobile example, the observable components are “Alternator,” “Fan Belt,” “Distrib-
utor,” and “Spark Plugs.” All other components are unobservable. For convenience, we use
the phrase observation—repair action to refer both to the observation and possible repair of

an observable component and to the repair of an unobservable component.

6. The costs of observation and repair of any component do not depend on previous repair or

observation actions.

7. Limited observations: No other observations are available. In our automobile example, we
do not permit the observation of “Battery Age,” “Radio,” “Lights,” “Engine Turn Over,” or
“Gas Gauge.”

For the moment, let us consider only observable components. Let CY and C denote the cost of
observation and repair of component ¢;, respectively. If we observe and possibly repair components
in the order ¢y,...,¢,, then for the expected cost of repair, denoted ECR(¢q, ..., ¢,), we have

P2
- M

ECR(er,.yen) = (CF o p(CF+C) 4 (1= p) (C5 4+ 722 (C +C7) +

Ps3
1—p — CS4+ ————(CE+CP)) 4 - -
(1= 1 = (8 4 Lo (5 4 C7)
n i—1
= 1= py | €2+ pi(CE 4 CP)
=1 7=1

That is, we first observe component ¢; incurring cost C7. With probability p;, we find that the
component is faulty and repair it (and the device) incurring cost C] + C?. With probability 1 — py,
we find that the component is functioning properly, and observe component ¢;. With probability

p2/(1 — p1), we find that ¢y is faulty and repair it; and so on.

Now consider a troubleshooting sequence where we reverse the observation and possible repair
of components ¢ and cgy1. All terms in the expected cost of repair of this sequence will be the

same as those for the original sequence, except terms ¢ = k and ¢ = k 4 1. Therefore, we obtain
ECR(ey,...,¢,) = ECR(c1, ..y €hm1, Chg1s Chy - 5 €0) = D1 O — pClipy

Consequently, the sequence ¢y,...,¢, has a lower (preferred) ECR than that with ¢ and cxyq
reversed if and only if pi/C} > pry1/CR,,- It follows that the optimal observation—repair sequence

is given by the following plan:
1. Compute the probabilities of component faults given that the device is not functioning.

2. Observe the (as yet unobserved) component with the highest ratio p;/C?. Ties may be broken

arbitrarily.
3. If the component is faulty, then replace it.
4. If a component was replaced, then terminate. Otherwise, go to step 2.

In this plan, if a component is found to be faulty and repaired, we know that the device must be
repaired by Assumption 3. Consequently, we can terminate the troubleshooting process as specified
in step 4. Also, note that fault probabilities need be computed only once.

Including unobservable components in our approach is straightforward. Recall that an unob-
servable component ¢; is simply repaired with some cost ;. Therefore, an unobservable component
acts just like an observable component that is observed with cost R; and always found to be faulty
and repaired with cost zero. Consequently, we can include unobservable components in our proce-
dure, provided we set (¢ to R;, and set C7 to zero.

Let us now examine some of our assumptions. Assumption 1 if often reasonable. When
there is more than one “problem,” we often can decompose our troubleshooting problems into two
independent troubleshooting problems. For example, if our car does not start and our car side
door is broken, then (for most cars) we can troubleshoot the problems independently. If there are
interactions between faults, then the information that a second problem exists can be used in the
probability calculations for troubleshooting the primary problem.

Assumption 2 usually is appropriate for troubleshooting, as there is no reason to use a trou-
bleshooting system unless there is a problem with a device. In contrast, Assumption 2 may often
be unreasonable in the context of automated systems for preventative maintenance.

Assumption 4 is often reasonable, except in those situations where the cost of testing a device
is expensive. For example, when repairing a jet engine, it is often best to repair many components
before retesting the engine.

Assumption 5 is almost always appropriate. Dividing components into those that are and are

not practical to observe before repair comes with no loss of generalization. Furthermore, in the

single-fault case, it is optimal to replace any component immediately after it has been observed to
be faulty. In the multiple-fault case, this policy is not necessarily optimal, although it typically
makes sense to repair a component immediately.

The validity of Assumption 6 depends on the problem domain. When trying to troubleshoot a
printing problem, the costs of checking the driver software, network cable, power connection, and so
on are reasonably independent of previous actions. When repairing an automobile engine, however,
many components can be replaced with low cost once the engine header has been removed. We do

not address methods for relaxing this assumption in this paper.

Approximations for More General Troubleshooting

In this section, we relax the single-fault assumption, and allow for more general observations in
the troubleshooting plan. In addition, we consider the service-call action. To our knowledge,
the generation of optimal troubleshooting plans allowing these extensions can not be done in time
polynomial in the number of components. To handle these extensions, we introduce approximations
based on our procedure described in the previous section. In Section , we describe experiments
with real-world troubleshooting systems demonstrating that these approximations can lead to high-

quality troubleshooting plans.

Service Call

Let us assume that, at any time in the troubleshooting process, we may call service. This action
will have fixed cost C*, and will lead to a functioning device with certainty. For example, a service
call may be simply a replacement of the entire device. The assumption that the service cost is fixed
is often reasonable in practice, although attempted repairs may decrease or increase service costs
somewhat. Let us also assume that all components have repair costs less than the service cost. If
this assumption is not true for a given component, then we simply replace a recommendation to
repair the component with a recommendation to call service.

We can include the service-call action in our approach as follows. Because a service call is
guaranteed to repair the device, it will always be the last action in a repair sequence. Furthermore,
regardless of where in the sequence a service call occurs, the optimal observation—repair order for the
remaining components is still determined by nonascending probability—to-cost ratios, as described

in the previous section. Let us label the components so that the optimal sequence without a service

call is ¢1,...,¢,. If we introduce a service call after the observation—repair of component k, we
obtain
i—1 n
ECR(ct,...,er) =D [[1=D_pj | C7+pi(Cr+CP) [+ | > pi]C* (1)
=1 j=1 J=k+1

To identify the position of the service call in the optimal sequence, we evaluate Equation 1 for each

value of k, finding the value of £ = 0,...,n for which the expected cost of repair is a minimum:
ns = mkin [ECR(c1, ..., cn)] (2)

where a service call is omitted from the plan if ny = n. We can compute n; in time linear in the
number of components n.

We emphasize that plans generated by this approach are not necessarily optimal. In particular,
we may be able to exchange the observation /repair of one or more components in {cy, ..., ¢, } with

that of components in {¢,,11,...,¢,} and obtain a plan with lower expected cost of repair.

Multiple Faults

The single-fault assumption is often a good approximation, because it is unlikely that two compo-
nents will fail at roughly the same time. We see this behavior in our automobile example. Although
the model permits multiple faults, when we observe that the car won’t start, the failure of one com-
ponent tends to explain away the failure of others. That is, the components are almost mutually
exclusive when the device is faulty.

Nonetheless, there will be times when multiple components in a device have failed. In these

cases, we can use the optimal single-fault plan with the following minor modification:

1. Compute the probabilities of component fault given the current state of information.
2. Observe the (as yet unobserved) component with the highest ratio p;/C?.
3. If the component is faulty, then replace it.

4. If a component was replaced, terminate if the device is working. Otherwise, go to step 1.

The only differences with the single-fault case are in steps 1 and 4. In step 4, we do not automatically
terminate if a component was replaced. Rather, because there may be multiple faults, we terminate
only if we observe that the device is working properly. Also, whether we observe the component
to be working or repair the component without repairing the device, we go back to step 1 (rather
than step 2), where we recompute the fault probabilities under our new state of information.
This plan is not necessarily optimal, because we incorrectly assume that there is only one fault
in step 2, when we identify the next component to observe. Also, note that we can extend this plan

to include service calls, using the procedure described in the previous section.

Nonbase Observations

So far, we have considered two special classes of observations: (1) the observation of the problem-

defining variable after a repair is made, and (2) the observation of a component before a repair is

made (as part of an observation-repair action). We refer to these observations as base observations.
In many situations, we want to be able to make more general observations. For example, when our
car fails to start, we may want to check the radio or the headlights in order to check the status of
the electrical system. In this section, we describe a method for making such general observations.

Our approach is based on a second approximation. In particular, we pretend that we can
make at most one nonbase observation before executing a plan consisting of only observation—
repair actions and a service call. Then, we determine which nonbase observation if any should
be made, and make the observation if appropriate. Finally, we iterate this procedure, possibly
making additional observations. The procedure is sometimes said to be myopic, because we may
make additional nonbase observations in the troubleshooting sequence, but we do not look ahead
to these possible actions when selecting the next nonbase observation.

Suppose we have m nonbase observations oy, 09, . . .0, available to us. Assume that observation
0; can take on exactly one of r; possible states. We write o; = k to indicate that observation o;
takes on state k. In our myopic approximation, we first use the procedures described in Sections
and to generate a troubleshooting sequence consisting of only base observations, repairs, and
service call under the current state of information. Changing notation for simplicity, let ECR(I)
denote the expected cost of repair of this sequence, where I is the current state of information.
Second, imagine that we make some observation o; first, and then determine the sequence of base
observations, repairs, and service call. The expected cost of observing o; with information I,

denoted ECO(I, 0;), is thus given by

ECO(I,0;) = C? + Z Pr(o; = k|I) ECR(IU {o; = k}) 3)
k=1

Note that the troubleshooting sequence following the observation may be different for every possible
outcome of the observation. Finally, we repeat the computation of ECO for every possible nonbase
observation.

If ECR(I) < ECO(I,0;) for every nonbase observation o;, then we choose not to make a
nonbase observation at this point in the troubleshooting process. Rather, we choose to perform an
observation—repair action on some component or call service, as described in the previous sections.
Otherwise, we choose to observe that variable o; with the lowest ECO. After a repair or nonbase
observation has been carried out, we update the information state I, and repeat the cycle. A

summary of this approach is given in Figure 3.

Empirical Results

We have applied our approach to troubleshooting printing problems, automobile startup problems,
copier feeder systems, and gas turbines. The results have been satisfying along a number of di-

mensions. The models have been easy to build and assess. The generated plans in many cases

10

Device
Abnormal

Evaluate expected costs
ECR(I)
ECO(I ,Ol)
ECO(1,0,)

Choose
o l«—| minimum |eYes
i ECO(l,0)

Service
No Yes—
call ?

Observe ECO(l,0)

< ECR(l)

= p
Obscerve c: mc?x(t,#)

c
is faulty?

No

Yes
v

Repair
c

No %&

normal?

ﬁnd

ac
€S P

Figure 3: A summary of our approximate decision-theoretic method for generating a troubleshoot-
ing plan. First, we evaluate ECR(I)—the expected cost of repair under our current state of infor-
mation I-—and for every observation o;, the expected cost of its observation ECO(I, 0;). Next, if
there is an observation o; for which ECO(I, 0;) < ECR(I), then we observe o; for which ECO(I, o;)
is a minimum. Otherwise, we check to see whether or not we should call service. We do so if and
only if ng, given by Equation 2, is equal to zero. If so, then we call service and then quit. Otherwise,
we perform an observation-repair action on the component ¢; such that p;/C? is a maximum. If
we repair ¢;, then we check if the device is functioning properly. If it is, then we quit, otherwise we

repeat the process, identifying the next best action.

11

conform with intuition. In the remainder of this section, we discuss experiments that measure the
performance of our decision-theoretic approach more precisely.

We have developed a Monte-Carlo technique for estimating troubleshooting costs for a given
planner and domain. The basic idea is to use a Bayesian network for a given device to generate
a relatively large set of problem instances where one or more faults are known to have occurred.
We then apply the planning method to each case, recording the sum of costs of each action. A
histogram of these total costs then provides a good estimate of the distribution of troubleshooting
costs associated with a particular planner.

The method relies on an oracle Bayesian network to generate sample problems and to reveal the
outcomes of observations given that specific components have been repaired. In our experiments,
the joint probability distribution for the domain variables specified by the oracle Bayesian network
is identical to that of the decision-theoretic planner, thereby insuring that the planner has the
“correct” model. This assumption could be relaxed in future experiments. Qur approach for
generating cases guarantees that the problem-defining variable will assume an abnormal state in
every case.

In the results that follow, we compare our decision-theoretic planner, a random planner, a static
planner, and an omniscient planner in two domains: troubleshooting a car that won’t start and
troubleshooting the failure to print a document. Our decision-theoretic planner posts a mixture of
repairs and nonbase queries to the oracle Bayesian network until the oracle reports that the device is
repaired. The random planner posts repairs at random (without repetition) until the oracle reports
that the device is repaired. The static planner posts repairs in a static order: components with
lower observation costs are repaired first, with ties broken by repair cost. Again, the static planner
continues until the oracle reports that the device is repaired. The omniscient planner knows exactly
what faults are causing the device failure and repairs them. When posting repairs, each planner
(except the omniscient planner) queries the oracle to first observe whether the device is faulty, and
only repairs the component if it is defective. All planners can request a service call.

We generated 1000 troubleshooting cases for both domains. For the automobile problem,
we used the Bayesian network shown in Figure 2 containing nine components and five nonbase
observations. For the printing problem, we used the Bayesian network shown in the sidebar,
containing 15 components and no nonbase observations. Figure 4 shows a histogram of the costs
for both domains and for each of the planners for the 1000 cases.

In the automobile domain, the average cost of the omniscient, decision-theoretic, static, and
random planners was $127, $154, $298, and $457, respectively. Thus, except for the omniscient
planner, the decision-theoretic planner performed best, with the static planner coming in a distant
third. The decision-theoretic planner saves $144 per case on average over a static repair sequence.
The total average cost for the omniscient planner sets a lower bound on the expected cost of an

optimal planner. The decision-theoretic planner is close to this lower bound.

12

automobile

frequency
frequency

cost (dollars) time (minutes)

Figure 4: Cost histograms for the domains of automobile and print troubleshooting and for four
planners. Shown from front to back are histograms for the random, static, decision-theoretic

planners, and omniscient planners.

We obtained similar results in the printing domain. In this domain, cost was measured in
minutes of delay. The average cost of the omniscient, decision-theoretic, static, and random planners
was 32, 45, 56, and 84 minutes respectively. Again, except for the omniscient planner, the decision-
theoretic planner performed best, with the static planner coming in third. Also, the decision-
theoretic planner is relatively close to the lower bound set by the omniscient planner. For the
decision-theoretic, static, and random planners, the secondary peaks in the histograms for the
printer domain indicate plans where service was called. The omniscient planner rarely had to call
service, as expected.

Thus, in both domains, the decision-theoretic planner had lower costs than either the static
or random planner, and its repair costs were relatively close to the minimum possible repair costs.
We note that in both domains, the variance of repair costs associated with the decision-theoretic
planner were less than the variances associated with the heuristic planners.

In the automobile domain, the number of cases in which there was single, double, and triple
faults was 930, 69, and 1, respectively. In the printing domain, the number of cases in which there
was single, double, triple, and quadruple faults was 636, 285, 72, and 7, respectively. Therefore, in
both domains, our single-fault assumption was quite good. Nonetheless, to investigate the effect
of single versus multiple faults on our troubleshooting approach, we generated separate histograms
for single- and multiple-fault cases in the automobile domain, shown in Figure 5. We see that
the relative ordering of planners did not change. For the automobile domain, the savings for the
decision-theoretic planner over the static ordering was $144 over all cases. Among the single-
fault scenarios, the average savings was $138 whereas over the multiple fault scenarios the savings

was $208. Therefore, even though the single fault assumption was violated, the decision-theoretic

13

multiple faults

frequency
frequency

cost (dollars)

cost (dollars)

1000

Figure 5: Cost histograms in the automobile domain for single- and multiple-fault cases. From

front to back are histograms for the random, static, decision-theoretic, and omniscient planners.

planner did well, and, in fact, had a higher net savings because the average repair cost in multiple
fault scenarios is higher. For the printer domain, we observed nearly the same average savings for

both single fault and multiple fault scenarios.

Summary

We have described a decision-theoretic approach for generating troubleshooting plans under un-
certainty that interleaves both observations and repair actions. Our approach is based on a set
of approximations to an exact method for a simple special case. Despite our approximations, we
have seen that our planner produces expected troubleshooting costs that are close to optimal and

significantly lower than simple planners.

References

[1] J. Breese, E. Horvitz, M. Peot, R. Gay, and G. Quentin. Automated decision-analytic diag-
nosis of thermal performance in gas turbines. In Proceedings of the International Gas Turbine
and Aeroengine Congress and Fzposition, Cologne, Germany, American Society of Mechanical

Engineers, June 1992.

[2] B.G. Buchanan and E.H. Shortliffe, editors. Rule-Based Fxpert Systems: The MYCIN FExperi-
ments of the Stanford Heuristic Programming Project. Addison—Wesley, Reading, MA, 1984.

[3] J. de Kleer and B. Williams. Diagnosing multiple faults. Artificial Intelligence, 32:97-130, 1987.

14

[4] M. Genesereth. The use of design descriptions in automated diagnosis. Artificial Intelligence,

24:311-319, 1984.

[5] D. Heckerman, J. Breese, and K. Rommelse. Sequential troubleshooting under uncertainty. In
Proceedings of Fifth International Workshop on Principles of Diagnosis, New Paltz, NY, pages
121-130, October 1994.

[6] D. Heckerman, E. Horvitz, and B. Nathwani. Toward normative expert systems: Part I. The

Pathfinder project. Methods of Information in Medicine, 31:90-105, 1992.

[7] J. Kadane and H. Simon. Optimal strategies for a class of constrained sequential problems.

Annals of Statistics, 5:237-255, 1977.

[8] J. Kalagnanam and M. Henrion. A comparison of decision analysis and expert rules for sequen-
tial diagnosis. In Proceedings of the Fourth Workshop on Uncertainty in Artificial Intelligence,
Minneapolis, MN, pages 205-212. Association for Uncertainty in Artificial Intelligence, Moun-
tain View, CA, August 1988. Also in Shachter, R., Levitt, T., Kanal, L., and Lemmer, J., editors,
Uncertainty in Artificial Intelligence 4, pages 271-281. North-Holland, New York, 1990.

[9] H. Raiffa. Decision Analysis: Introductory Lectures on Choice Under Uncertainty. Addison—
Wesley, Reading, MA, 1968.

About the Authors

DAVID HECKERMAN is a senior researcher in the Decision Theory Group at Microsoft Re-
search. His research interests include the design of practical methods for constructing Bayesian
networks from expert knowledge and learning Bayesian networks from data. Author’s Present
Address: Microsoft Research, One Microsoft Way 9S, Redmond, WA 98052-6399; email: heck-
erma@microsoft.com.

JOHN S. BREESE is a senior researcher in the Decision Theory Group at Microsoft Research.
His research interests focus on developing tools and methods for decision-theoretic reasoning, in
particular the integration of normative methods with symbolic processing techniques. Author’s
Present Address: Microsoft Research, One Microsoft Way 95, Redmond, WA 98052-6399; email:
breese@microsoft.com.

KOOS ROMMELSE is a researcher in the Decision Theory Group at Microsoft Research. His
present interests are in the development of tools for probabilistic inference, troubleshooting, and
learning Bayesian networks from data. Author’s Present Address: Microsoft Research, One

Microsoft Way 9S, Redmond, WA 98052-6399; email: koosr@microsoft.com.

15

