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Abstract

We describe how 3D affine measurements may be com-
puted from a single perspective view of a scene given only
minimal geometric information determined from the image.
This minimal information is typically the vanishing line of
a reference plane, and a vanishing point for a direction not
parallel to the plane. It is shown that affine scene structure
may then be determined from the image, without knowledge
of the camera’s internal calibration (e.g. focal length), nor
of the explicit relation between camera and world (pose).

In particular, we show how to (i) compute the distance
between planes parallel to the reference plane (up to a com-
mon scale factor); (ii) compute area and length ratios on
any plane parallel to the reference plane; (iii) determine the
camera’s (viewer’s) location. Simple geometric derivations
are given for these results. We also develop an algebraic
representation which unifies the three types of measurement
and, amongst other advantages, permits a first order error
propagation analysis to be performed, associating an un-
certainty with each measurement.

We demonstrate the technique for a variety of applica-
tions, including height measurements in forensic images
and 3D graphical modelling from single images.

1. Introduction

In this paper we describe how aspects of the affine 3D
geometry of a scene may be measured from a single per-
spective image. We will concentrate on scenes containing
planes and parallel lines, although the methods are not so
restricted. The methods we develop extend and generalize
previous results on single view metrology [8, 9, 13, 14].

It is assumed that images are obtained by perspective
projection. In addition, we assume that the vanishing line of
a reference plane in the scene may be determined from the
image, together with a vanishing point for another reference
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direction (not parallel to the plane). We are then concerned
with three canonical types of measurement: (i) measure-
ments of the distance between any of the planes which are
parallel to the reference plane; (ii) measurements on these
planes (and comparison of these measurements to those ob-
tained on any plane); and (iii) determining the camera’s po-
sition in terms of the reference plane and direction. The
measurement methods developed here are independent of
the camera’s internal parameters: focal length, aspect ratio,
principal point, skew.

The ideas in this paper can be seen as reversing the rules
for drawing perspective images given by Leon Battista Al-
berti [1] in his treatise on perspective (1435). These are
the rules followed by the Italian Renaissance painters of the
15th century, and indeed we demonstrate the correctness
of their mastery of perspective by analysing a painting by
Piero della Francesca.

We begin in section 2 by giving geometric interpretations
for the key scene features, and then give simple geomet-
ric derivations of how, in principle, three dimensional affine
information may be extracted from the image. In section
3 we introduce an algebraic representation of the problem
and show that this representation unifies the three canoni-
cal measurement types, leading to simple formulae in each
case. In section 4 we describe how errors in image mea-
surements propagate to errors in the 3D measurements, and
hence we are able to compute confidence intervals on the 3D
measurements, i.e. a quantitative assessment of accuracy.
The work has a variety of applications, and we demonstrate
two important ones: forensic measurement and virtual mod-
elling in section 5.

2. Geometry

The camera model employed here is central projection.
We assume that the vanishing line of a reference plane in
the scene may be computed from image measurements, to-
gether with a vanishing point for another direction (not par-
allel to the plane). This information is generally easily ob-
tainable from images of structured scenes [3, 11, 12]. Ef-
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Figure 1: Basic geometry: The plane’s vanishing line l is the intersection
of the image plane with a plane parallel to the reference plane and passing
through the camera centre. The vanishing point v is the intersection of
the image plane with a line parallel to the reference direction through the
camera centre.

fects such as radial distortion (often arising in slightly wide-
angle lenses typically used in security cameras) which cor-
rupt the central projection model can generally be removed
[6], and are therefore not detrimental to our methods (see,
for example, figure 9).

Although the schematic figures show the camera centre
at a finite location, the results we derive apply also to the
case of a camera centre at infinity, i.e. where the images are
obtained by parallel projection. The basic geometry of the
plane’s vanishing line and the vanishing point are illustrated
in figure 1. The vanishing line l of the reference plane is the
projection of the line at infinity of the reference plane into
the image. The vanishing point v is the image of the point
at infinity in the reference direction. Note that the reference
direction need not be vertical, although for clarity we will
often refer to the vanishing point as the “vertical” vanishing
point. The vanishing point is then the image of the vertical
“footprint” of the camera centre on the reference plane.

It can be seen (for example, by inspection of figure 1)
that the vanishing line partitions all points in scene space.
Any scene point which projects onto the vanishing line is
at the same distance from the plane as the camera centre;
if it lies “above” the line it is further from the plane, and if
“below” the vanishing line, then it is closer to the plane than
the camera centre.

Two points on separate planes (parallel to the reference
plane) correspond if the line joining them is parallel to the
reference direction; hence the image of each point and the
vanishing point are collinear. For example, if the direction
is vertical, then the top of an upright person’s head and the
sole of his/her foot correspond.

2.1. Measurements between parallel planes

We wish to measure the distance between two parallel
planes, specified by the image points t and b, in the refer-
ence direction. Figure 2 shows the geometry, with points
t and b in correspondence. The four points marked on the
figure define a cross-ratio. The vanishing point is the image
of a point at infinity in the scene [15]. In the image the value
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Figure 2: Cross ratio: The point b on the plane � corresponds to the
point t on the plane �� . They are aligned with the vanishing point v. The
four points v, t, b and the intersection i of the line joining them with the
vanishing line define a cross-ratio. The value of the cross-ratio determines
a ratio of distances between planes in the world, see text.

of the cross-ratio provides an affine length ratio. In fact we
obtain the ratio of the distance between the planes contain-
ing t and b, to the camera’s distance from the plane � (or
�
� depending on the ordering of the cross-ratio). The abso-

lute distance can be obtained from this distance ratio once
the camera’s distance from � is specified. However it is
usually more practical to determine the distance via a sec-
ond measurement in the image, that of a known reference
length.

Furthermore, since the vanishing line is the imaged axis
of the pencil of planes parallel to the reference plane, the
knowledge of the distance between any pair of the planes
is sufficient to determine the absolute distance between an-
other two of the planes.
Example. Figure 3 shows that a person’s height may be
computed from an image given a vertical reference height
elsewhere in the scene. The formula used to compute this
result is given in section 3.1.

2.2. Measurements on parallel planes

If the reference plane � is affine calibrated (we know
its vanishing line) then from image measurements we can
compute: (i) ratios of lengths of parallel line segments on
the plane; (ii) ratios of areas on the plane. Moreover the
vanishing line is shared by the pencil of planes parallel to
the reference plane, hence affine measurements may be ob-
tained for any other plane in the pencil. However, although
affine measurements, such as an area ratio, may be made on
a particular plane, the areas of regions lying on two parallel
planes cannot be compared directly. If the region is parallel
projected in the scene from one plane onto the other, affine
measurements can then be made from the image since both
regions are now on the same plane, and parallel projection
between parallel planes does not alter affine properties.
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Figure 3: Measuring the height of a person: (top) original image; (bot-
tom) the height of the person is computed from the image as 178.8cm (the
true height is 180cm, but note that the person is leaning down a bit on his
right foot). The vanishing line is shown in white and the reference height
is the segment (tr�br). The vertical vanishing point is not shown since it
lies well below the image. t is the top of the head and b is the base of the
feet of the person while i is the intersection with the vanishing line.

A map in the world between parallel planes induces a
map in the image between images of points on the two
planes. This image map is a planar homology [15], which is
a plane projective transformation with five degrees of free-
dom, having a line of fixed points, called the axis and a
distinct fixed point not on the axis known as the vertex. Pla-
nar homologies arise naturally in an image when two planes
related by a perspectivity in 3-space are imaged [16]. The
geometry is illustrated in figure 4.

In our case the vanishing line of the plane, and the verti-
cal vanishing point, are, respectively, the axis and vertex of
the homology which relates a pair of planes in the pencil.
This line and point specify four of the five degrees of free-
dom of the homology. The remaining degree of freedom of
the homology is uniquely determined from any pair of im-
age points which correspond between the planes (points b
and t in figure 4).

This means that we can compare measurements made
on two separate planes by mapping between the planes in
the reference direction via the homology. In particular we
may compute (i) the ratio between two parallel lengths, one
length on each plane; (ii) the ratio between two areas, one
area on each plane. In fact we can simply transfer all points
from one plane to the reference plane using the homol-
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Figure 4: Homology mapping between parallel planes: (left) A point
X on plane � is mapped into the point X� on �� by a parallel projection.
(right) In the image the mapping between the images of the two planes is
a homology, with v the vertex and l the axis. The correspondence b � t

fixes the remaining degree of freedom of the homology from the cross-ratio
of the four points: v, i, t and b.

Figure 5: Measuring the ratio of lengths of parallel line segments lying
on two parallel scene planes: The points t and b (together with the plane
vanishing line and the vanishing point) define the homology between the
two planes on the facade of the building.

ogy and then, since the reference plane’s vanishing line is
known, make affine measurements in the plane, e.g. parallel
length or area ratios.
Example. Figure 5 shows that given the reference vanish-
ing line and vanishing point, and a point correspondence (in
the reference direction) on each of two parallel planes, then
the ratio of lengths of parallel line segments may be com-
puted from the image. The formula used to compute this
result is given in section 3.2.

2.3. Determining the camera position

In section 2.1, we computed distances between planes as
a ratio relative to the camera’s distance from the reference
plane. Conversely, we may compute the camera’s distance
from a particular plane knowing a single reference distance.



Furthermore, by considering figure 1 it is seen that the
location of the camera relative to the reference plane is the
back-projection of the vanishing point onto the reference
plane. This back-projection is accomplished by a homog-
raphy which maps the image to the reference plane (and
vice-versa). Although the choice of coordinate frame in the
world is somewhat arbitrary, fixing this frame immediately
defines the homography uniquely and hence the camera po-
sition.

We show an example in figure 12, where the location of
the camera centre has been determined, and superimposed
into a virtual view of the scene.

3. Algebraic Representation

The measurements described in the previous section are
computed in terms of cross-ratios. In this section we de-
velop a uniform algebraic approach to the problem which
has a number of advantages over direct geometric construc-
tion: first, it avoids potential problems with ordering for the
cross-ratio; second, it enables us to deal with both mini-
mal or over-constrained configurations uniformly; third, we
unify the different types of measurement within one rep-
resentation; and fourth, in section 4 we use this algebraic
representation to develop an uncertainty analysis for mea-
surements.

To begin we define an affine coordinate system XY Z in
space. Let the origin of the coordinate frame lie on the refer-
ence plane, with the X and Y -axes spanning the plane. The
Z-axis is the reference direction, which is thus any direc-
tion not parallel to the plane. The image coordinate system
is the usual xy affine image frame, and a pointX in space is
projected to the image point x via a �� � projection matrix
P as:

x � PX �
�
p� p� p� p�

�
X

where x and X are homogeneous vectors in the form:
x � �x� y� w��, X � �X�Y� Z�W ��, and ‘�’ means
equality up to scale.

If we denote the vanishing points for the X , Y and Z
directions as (respectively)vX , vY and v, then it is clear by
inspectionthat the first three columns of P are the vanishing
points; vX � p�, vY � p� and v � p�, and that the
final column of P is the projection of the origin of the world
coordinate system, o � p�. Since our choice of coordinate
frame has theX and Y axes in the reference plane p� � vX
and p� � vY are two distinct points on the vanishing line.
Choosing these points fixes the X and Y affine coordinate
axes. We denote the vanishing line by l, and to emphasise
that the vanishing points vX and vY lie on it, we denote
them by l�

�
, l�

�
, with l�

i
� l � �.

Columns 1, 2 and 4 of the projection matrix are the three
columns of the reference plane to image homography. This
homography must have rank three, otherwise the reference

plane to image map is degenerate. Consequently, the final
column (the origin of the coordinate system) must not lie
on the vanishing line, since if it does then all three columns
are points on the vanishing line, and thus are not linearly
independent. Hence we set it to be o � p� � l�jjljj ��l.

Therefore the final parametrization of the projection ma-
trix P is:

P �
�
l�� l�� �v �l

�
(1)

where � is a scale factor, which has an important rôle to
play in the remainder of the paper.

In the following sections we show how to compute
various measurements from this projection matrix. Mea-
surements between planes are independent of the first two
(under-determined) columns of P. For these measurements
the only unknown quantity is �. Coordinate measurements
within the planes depend on the first two and the fourth
columns of P. They define an affine coordinate frame within
the plane. Affine measurements (e.g. area ratios), though,
are independent of the actual coordinate frame and depend
only on the fourth column of P. If any metric information
on the plane is known, we may impose constraints on the
choice of the frame.

3.1. Measurements between parallel planes

We wish to measure the distance between scene planes
specified by a base point B on the reference plane and top
pointT in the scene. These points may be chosen as respec-
tively �X�Y� �� and �X�Y� Z�, and their images are b and
t. If P is the projection matrix then the image coordinates
are

b � P

�
���
X
Y
�
�

�
��� � t � P

�
���
X
Y
Z
�

�
���

The equations above can be rewritten as

b � ��Xp� � Y p� � p�� (2)

t � ��Xp� � Y p� � Zp� � p�� (3)

where � and � are unknown scale factors, and pi is the ith
column of the P matrix.

Taking the scalar product of (2) with �l yields � � 	l � b,
and combining this with the third column of (1) and (3) we
obtain

�Z �
�jjb� tjj

�	l � b�jjv � tjj
(4)

Since �Z scales linearly with � we have obtained affine
structure. If � is known, then we immediately obtain a met-
ric value for Z. Conversely, if Z is known (i.e. it is a refer-
ence distance) then we have a means of computing �, and
hence removing the affine ambiguity.



Figure 6: Measuring heights using parallel lines: Given the vertical
vanishing point, the vanishing line for the ground plane and a reference
height, the distance of the top of the window on the right wall from the
ground plane is measured from the distance between the two horizontal
lines shown, one defined by the top edge of the window, and the other on
the ground plane.

Example. In figure 6 heights from the ground plane are
measured between two parallel lines, one off the plane (top)
and one on the plane (base). In fact, thanks to the plane
vanishing line, given one line parallel to the reference plane
it is easy to compute the family of parallel lines. Computing
the distance between them is a straightforward application
of (4).

3.2. Measurements on parallel planes

The projection matrix P from the world to the image is
defined above with respect to a coordinate frame on the ref-
erence plane. In this section we determine the projection
matrix P� referred to the parallel plane �� and we show how
the homology between the two planes can be derived di-
rectly from the two projection matrices.

Suppose the world coordinate system is translated from
the plane � onto the plane �� along the reference direction,
then it is easy to show that we can parametrize the new pro-
jection matrix P

� as:

P
� �

�
p� p� �v �Zv ��l

�
where Z is the distance between the planes. Note that if
Z � � then P

� � P correctly.
The plane to image homographies can be extracted from

the projection matrices ignoring the third column, to give:

H �
�
p� p�

�l
�
� H

� �
�
p� p� �Zv ��l

�
Then 
H � H

�
H
�� maps image points on the plane � onto

points on the plane �� and so defines the homology.
A short computation gives the homology matrix 
H as:


H � I� �Zv	l
�

(5)

Given the homology between two planes in the pencil we
can transfer all points from one plane to the other and make
affine measurements in the plane (see fig 5 and fig 7).

Figure 7: Measuring ratios of areas on separate planes: The image
points t and b together with the vanishing line of the two parallel planes
and the vanishing point for the orthogonal direction define the homology
between the planes. The ratio between the area of the window on the left
plane and that of the window on the right plane is computed.

3.3. Determining camera position

Suppose the camera centre is C � �Xc� Yc� Zc�Wc�
� in

affine coordinates (see figure 1). Then since PC � � we
have

PC � l�
�
Xc � l�

�
Yc � �vZc ��lWc � � (6)

The solution to this set of equations is given (using Cramer’s
rule) by

Xc � �det
�
l�� v �l

�
, Yc � det

�
l�� v �l

�
�Zc � �det

�
l�
�

l�
�

�l
�
, Wc � det

�
l�
�

l�
�

v
� (7)

Note that once again we obtain structure off the plane up to
the affine scale factor �. As before, we may upgrade the
distance to metric with knowledge of �, or use knowledge
of camera height to compute � and upgrade the affine struc-
ture.

Note that affine viewing conditions (where the camera
centre is at infinity) present no problem to the expressions
in (7), since in this case we have �l �

�
� � �

��
and

v �
�
� � �

��
. Hence Wc � � so we obtain a cam-

era centre on the plane at infinity, as we would expect. This
point on �� represents the viewing direction for the paral-
lel projection.

If the viewpoint is finite (i.e. not affine viewing condi-
tions) then the formula for �Zc may be developed further
by taking the scalar product of both sides of (6) with the
vanishing line�l. The result is: �Zc � ���l � v���.

4. Uncertainty Analysis

Feature detection and extraction – whether manual or au-
tomatic (e.g. using an edge detector) – can only be achieved
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Figure 8: Maximum likelihood estimation of the top and base points
(closeup of fig. 9): (left) The top and base uncertainty ellipses, respec-
tively �t and �b, are shown. These ellipses are specified by the user, and
indicate a confidence region for localizing the points. (right) MLE top and
base points �t and �b are aligned with the vertical vanishing point (outside
the image).

to a finite accuracy. Any features extracted from an image,
therefore, are subject to errors. In this section we consider
how these errors propagate through the measurement for-
mulae in order to quantify the uncertainty on the final mea-
surements.

When making measurements between planes, uncer-
tainty arises from the uncertainty in P, and from the uncer-
tain image locations of the top and base points t and b. The
uncertainty in P depends on the location of the vanishing
line, the location of the vanishing point, and on �, the affine
scale factor. Since only the final two columns contribute,
we model the uncertainty in P as a �� � homogeneous co-
variance matrix, �P. Since the two columns have only five
degrees of freedom (two for v, two for l and one for �),
the covariance matrix is singular, with rank five. Details
of its computation are given in [4] and are omitted here for
brevity.

Likewise, the uncertainty in the top and base points (re-
sulting largely from the finite accuracy with which these
features may be located in the image) is modelled by covari-
ance matrices �b and �t. Since in the error-free case, these
points must be aligned with the vertical vanishing point we
can determine maximum likelihood estimates of their true
locations (	t and 	b) by minimising the objective

�b� � �b��
����

b�
�b� � �b�� � �t� ��t��

����
t�
�t� ��t��

(which is the sum of the Mahalanobis distances between
the input points and the ML estimates, the subscript 2 in-
dicates inhomogeneous 2-vectors) subject to the alignment
constraint v � ��t � �b� � �. Using standard techniques [7]
we obtain a first order approximation to the ���, rank three
covariance of the parameters �z � � 	t

�

�
	b
�

�
��. Figure 8

illustrates the idea.

Figure 9: Uncertainty analysis on height measurements: The image
shown was captured from a cheap security type camera which exhibited
radial distortion. This has been corrected and the height of the man es-
timated (measurements are in cm). (left) The height of the man and the
associated uncertainty are computed as 190.6cm (c.f. ground truth value
190cm). The vanishing line for the ground plane is shown in white at
the top of the image. When one reference height is used the uncertainty
(3-sigma) is ����cm, while (right) it reduces to ����cm as two more ref-
erence heights are introduced (the filing cabinet and the table on the left).

Now, assuming the statistical independence of �z and P

we obtain a first order approximation for the variance of the
distance measurement:

��
h
�rh

	
��z �

� �P



rh

� (8)

whererh is the � � �� Jacobian matrix of the function
which maps the projection matrix and top and base points to
a distance between them (4). The validity of all approxima-
tion has been tested by Monte Carlo simulations and by a
number of measurements on real images where the ground
truth was known.
Example. An image obtained from a poor quality security
camera is shown in figure 9. It has been corrected for ra-
dial distortion using the method described in [6], and the
floor taken as the reference plane. Vertical and horizontal
lines are used to compute the P matrix of the scene. One
reference height is used to obtain the affine scale factor �
from (4), so other measurements in the same direction are
metric.

The computed height of the man and an associated 3-
standard deviation uncertainty are displayed in the figure.
The height obtained differs by only 6mm from the known
true value. As the number of reference distances is in-
creased, so the uncertainty on P (in fact just on �) de-
creases, resulting in a decrease in uncertainty of the mea-
sured height, as theoretically expected.

5. Applications

5.1. Forensic science

A common requirement in surveillance images is to ob-
tain measurements from the scene, such as the height of a
felon. Although, the felon has usually departed the scene,
reference lengths can be measured from fixtures such as ta-
bles and windows.



Figure 10: Measuring the height of a person in an outdoor scene: The
ground plane is the reference plane, and its vanishing line is computed
from the slabs on the floor. The vertical vanishing point is computed from
the edges of the phone box, whose height is known and used as reference.
The veridical height is 187cm, but note that the person is leaning slightly
on his right foot.

Figure 11: Measuring heights of objects on separate planes: Using the
homology between the ground plane (initial reference) and the plane of the
table, we can determine the height of the file on the table.

In figure 10 the edges of the paving stones on the floor
are used to compute the vanishing line of the ground plane;
the edges of the phonebox to compute the vertical vanishing
point; and the height of the phone box provides the metric
calibration in the vertical direction. The height of the person
is then computed using (4).

Figure 11 shows an example where the homology is used
to project points between planes so that a vertical distance
may be measured given the distance between a plane and
the reference plane.

5.2. Virtual modelling

In figure 12 we show an example of complete 3D re-
construction of a scene. Two sets of horizontal edges are
used to compute the vanishing line for the ground plane,
and vertical edges used to compute the vertical vanishing
point. Four points with known Euclidean coordinates deter-
mine the metric calibration of the ground plane and thus for
the pencil of horizontal planes which share the vanishing
line. The distance of the top of the window to the ground,
and the height of one of the pillars are used as reference

Figure 12: Complete 3D reconstruction of a real scene: (left) original
image; (right) a view of the reconstructed 3D model; (bottom) A view of
the reconstructed 3D model which shows the position of the camera centre
(plane location X,Y and height) with respect to the scene.

lengths. The position of the camera centre is also estimated
and is shown in the figure.

5.3. Modelling paintings

Figure 13 shows a masterpiece of Italian Renaissance
painting, “La Flagellazione di Cristo” by Piero della
Francesca (1416 - 1492). The painting faithfully follows the
geometric rules of perspective, and therefore we can apply
the methods developed here to obtain a correct 3D recon-
struction of the scene.

Unlike other techniques [8] whose main aim is to cre-
ate convincing new views of the painting regardless of the
correctness of the 3D geometry, here we reconstruct a geo-
metrically correct 3D model of the viewed scene.

In the painting analyzed here, the ground plane is chosen
as reference and its vanishing line can be computed from
the several parallel lines on it. The vertical vanishing point
follows from the vertical lines and consequently the relative
heights of people and columns can be computed. Further-
more the ground plane can be rectified from the square floor
patterns and therefore the position on the ground of each



vertical object estimated [5, 10]. The measurements, up to
an overall scale factor, are used to compute a three dimen-
sional VRML model of the scene. Two different views of
the model are shown in figure 13.

6. Summary and Conclusions

We have explored how the affine structure of 3-space
may be partially recovered from perspective images in
terms of a set of planes parallel to a reference plane and a
reference direction not parallel to the reference plane. More
generally, affine 3 space may be represented entirely by sets
of parallel planes and directions [2]. We are currently in-
vestigating how this full geometry is best represented and
computed from a single perspective image.
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Figure 13: Complete 3D reconstruction of a Renaissance painting:
(top) La Flagellazione di Cristo, (1460, Urbino, Galleria Nazionale delle
Marche). (middle) A view of the reconstructed 3D model. The patterned
floor has been reconstructed in areas where it is occluded by taking advan-
tage of the symmetry of its pattern. (bottom) another view of the model
with the roof removed to show the relative positions of people and archi-
tectural elements in the scene. Note the repeated geometric pattern on the
floor in the area delimited by the columns (barely visible in the painting).
Note that the people are represented simply as flat silhouettes since it is not
possible to recover their volume from one image, they have been cut out
manually from the original image. The columns have been approximated
with cylinders.


