
Partial Online Cycle Elimination in Inclusion Constraint GraphsManuel F�ahndrich� Je�rey S. Foster� Zhendong Su� Alexander Aiken�EECS DepartmentUniversity of California, Berkeley387 Soda Hall #1776Berkeley, CA 94720-1776fmanuel,jfoster,zhendong,aikeng@cs.berkeley.eduAbstractMany program analyses are naturally formulated and im-plemented using inclusion constraints. We present new re-sults on the scalable implementation of such analyses basedon two insights: �rst, that online elimination of cyclic con-straints yields orders-of-magnitude improvements in analy-sis time for large problems; second, that the choice of con-straint representation a�ects the quality and e�ciency ofonline cycle elimination. We present an analytical modelthat explains our design choices and show that the model'spredictions match well with results from a substantial ex-periment.1 IntroductionInclusion constraints are a natural vehicle for expressing awide range of program analyses including shape analysis,closure analysis, soft typing systems, receiver-class predic-tion for object-oriented programs, and points-to analysis forpointer-based programs, among others [Rey69, JM79, Shi88,PS91, AWL94, Hei94, And94, FFK+96, MW97]. Such anal-yses are e�cient for small to medium size programs, but theyare known to be impractical for large analysis problems.Inclusion constraint systems have natural graph repre-sentations. For example, the constraints X � Y � Z arerepresented by nodes for the quantities X ;Y ; and Z anddirected edges (X ;Y) and (Y;Z) for the inclusions. Resolv-ing the constraints corresponds to adding new edges to thegraph to express relationships implied by, but not explicitin, the initial system. In this example, the transitive edge(X ;Z) represents the implied constraint X � Z .The performance of constraint resolution can be im-proved by simplifying the constraint graph. Periodic simpli-�cation performed during resolution helps to scale to largeranalysis problems [FA96, FF97, MW97], but performance isstill unsatisfactory. One problem is deciding the frequencyat which to perform simpli�cations to keep a well-balancedcost-bene�t tradeo�. Simpli�cation frequencies in past ap-�Supported in part by an NDSEG fellowship, NSF Young Inves-tigator Award CCR-9457812, NSF Grant CCR-9416973, and a giftfrom Rockwell Corporation.To appear in the Proceedings of the ACM SIG-PLAN '98 Conference on Programming Language De-sign and Implementation (PLDI), Montreal, Canada,June 1998.

proaches range from once for an entire module to once forevery program expression.In this paper we show that cycle elimination in the con-straint graph (a particular simpli�cation) is one key to mak-ing inclusion constraint analyses scale to large problemswith good performance. Cyclic constraints have the formX1 � X2 � X3 : : : � Xn � X1 where the Xi are set variables.All variables on such a cycle are equal in all solutions of theconstraints, and thus the cycle can be collapsed to a singlevariable.We take an extreme approach to simpli�cation frequencyby performing cycle detection and elimination online, i.e.,at every update of the constraint graph. At �rst glance,this approach seems overly expensive, since the best knownalgorithm for online cycle detection performs a full depth-�rst search for half of all edge additions [Shm83].Our contribution is to show that partial online cycle de-tection can be performed cheaply by traversing only cer-tain paths during the search for cycles. This approach isinspired by a non-standard graph representation called in-ductive form (IF) introduced in [AW93]. In practice, ourapproach requires constant time overhead on every edge ad-dition and �nds and eliminates about 80% of all variablesinvolved in cycles. For our benchmarks, this approach radi-cally improves the scaling behavior, making analysis of largeprograms practical. Furthermore, we provide an analyticalmodel to explain the performance of particular graph repre-sentations.Except ours, all implementations of inclusion constraintsolvers we are aware of employ a standard graph represen-tation in which all edges are stored in adjacency lists andvariable-variable edges always appear in successor lists. Forexample, the constraint X � Y, between variables X andY, is represented as a successor edge from node X to nodeY. Our measurements show that this standard form (SF),which is the one described in [Hei92] for use in set-basedanalysis (SBA), can also substantially bene�t from partialonline cycle elimination.As our benchmark we study a points-to analysis forC [And94, SH97] implemented using both SF and IF. Forlarge programs (more than 10000 lines), online cycle elimi-nation reduces the execution time of our SF implementationby up to a factor of 13. Our implementation using IF andpartial online cycle elimination outperforms SF with cycleelimination by up to a factor of 4, resulting in an overallspeedup over standard implementations by up to 50.Our measurement methodology uses a single well-engineered constraint solver to perform a number of exper-1

iments using SF and IF with and without cycle elimination.We validate our results by comparing with Shapiro and Hor-witz's SF implementation (SH) of the same points-to anal-ysis [SH97]. Experiments show that our implementation ofpoints-to analysis using SF without cycle elimination closelymatches SH on our benchmarks.In Section 2, we de�ne a language for set constraints,the particular constraint formalism we shall use. We alsopresent the graph representations SF and IF and describeour cycle elimination algorithm. In Section 3 we describethe version of points-to analysis we study. Section 4 presentsmeasurements illustrating the e�cacy of our cycle elimi-nation algorithm. Section 5 studies an analytical modelthat explains why IF can outperform SF. Finally, Section 6presents related work, and Section 7 concludes.2 De�nitions2.1 Set ConstraintsIn this paper we use a small subset of the full language ofset constraints [HJ90, AW92]. Constraints in our constraintlanguage are of the form L � R, where L and R are setexpressions. Set expressions consist of set variables X ;Y; : : :from a family of variables Vars, terms constructed from n-ary constructors c 2 Con, an empty set 0, and a universalset 1. L;R 2 se ::= X j c(se1; : : : ; sen) j 0 j 1Each constructor c is given a unique signature Sc specifyingthe arity and variance of c. Intuitively, a constructor cis covariant in an argument if the set denoted by a termc(: : :) becomes larger as the argument increases. Similarly,a constructor c is contravariant in an argument if the setdenoted by a term c(: : :) becomes smaller as the argumentincreases.We de�ne solutions to set constraints without restrictingourselves to a particular model1 for set expressions. Wesimply assume that each constructor c is also equipped withan interpretation �c. Given a variable assignment A of setsto variables, set expressions are interpreted as follows2:[[X]] A = A(X)[[c(se1; : : : ; sen)]] A = �c([[se1]] A; : : : ; [[sen]] A)A solution to a system of constraints fLi � Rig is a variableassignment A such that [[Li]] A � [[Ri]] A for all i.2.2 Constraint GraphsSolving a system of constraints involves computing an ex-plicit solved form of all solutions or of a particular solu-tion. We study two distinct solved forms: Standard formSF represents the least solution explicitly and is commonlyused for implementing SBA [Hei92]. Inductive form IF com-putes a representation of all solutions and is usually usedwith more expressive constraints and in type-based analy-ses [AW93, MW97]. As an aside, it is worth noting that forsome analysis problems we require a representation of all so-lutions because no least solution exists. For the purposes of1Standard models are the termset model [Hei92, Koz93] or theideal model [AW93].2The interpretation of 0 and 1 depends on the model and is notshown.

S [fX � Xg , SS [fse � 1g , SS [f0 � seg , SS [fc(se1; : : : ; sen) � c(se 01; : : : ; se 0n)g ,S [Si� fsei � se 0ig c covariant in ifsei � se 0ig c contravariant in iS [fc(: : :) � d(: : :)g , no solutionif d 6= cS [fc(: : :) � 0g , no solutionS [f1 � 0g , no solutionS [f1 � d(: : :)g , no solutionFigure 1: Resolution rules R for SF and IFcomparing the two forms we shall implicitly assume through-out that with respect to the variables of interest constraintsystems have least solutions.The solved form of a constraint system is a directed graphG = (V;E) closed under a transitive closure rule, wherethe edges E represent atomic constraints and the verticesV are variables, sources, and sinks. Sources are constructedterms appearing to the left of an inclusion, and sinks areconstructed terms appearing to the right of an inclusion. Forthe purposes of this paper, we treat 0 and 1 as constructors.A constraint is atomic if it is one of the three formsX � Y variable-variable constraintc(: : :) � X source-variable constraintX � c(: : :) variable-sink constraintWe use the set of resolution rules R shown in Figure 1 totransform constraints into atomic form. Each rule statesthat the system of constraints on the left has the same so-lutions as the system on the right. In a resolution enginethese rules are used as left-to-right rewrite rules.The next sections describe how constraint graphs are rep-resented and closed by the two forms SF and IF. Both formsuse adjacency lists to represent edges. Every edge (X ;Y)in a graph is represented exclusively either as a predecessoredge (X 2 pred(Y)) or as a successor edge (Y 2 succ(X)).2.3 Standard FormStandard form (SF) represents edges in constraint graphs asfollows:X � Y X���-Y successor edgec(: : :) � X c(: : :) ������-X predecessor edgeX � c(: : :) X���-c(: : :) successor edgeWe draw predecessor edges in graphs using dotted arrowsand successor edges using plain arrows. New edges are addedby the transitive closure rule:L ������-X���-R , L � RGiven a predecessor edge L ������-X and a successor edge atX���-R, a new constraint L � R is generated. We generatea constraint instead of an edge because rules in Figure 12

Li � X i = 1::kZ � Ri i = 1::m X � YiYi � Z � i = 1::lSF IFY1 R1L1
RmYlLk ZX Y1 R1L1

RmYlLk ZX
Y1 R1L1

RmYlLk Z Y1 R1L1
RmYlLk ZX X

Close Close
Figure 2: Example constraints in SF and IFmay apply. Note that in this case, L is always of the formc(: : :). This closure rule combined with rules R of Figure 1produces a �nal graph containing an explicit form of theleast solution LS of the constraints [Hei92].SF makes the least solution explicit by propagatingsources forward to all reachable variables via the closurerule. The particular choice of successor and predecessorrepresentation is motivated by the need to implement theclosure rule locally. Given a variable X , the closure rulemust be applied exactly to all combinations of predecessorand the successor edges of X .Figure 2 shows an example system of constraints, the ini-tial SF graph, and the resulting closed SF graph (left). Theexample assumes that set expressions L1 : : : Lk are sourcesand R1 : : : Rm are sinks. The closure of the standard formadds transitive edges from each source Li to all variablesreachable from X i.e., Y1 : : :Yl;Z. Note that the edges fromL1 : : : Lk to Z are added l times each, namely along all ledges Yi���-Z. The total work of closing the graph is 2kledge additions, of which k(l � 1) additions are redundant,plus the work resulting from the km constraints Li � Rj(not shown).To see why cycle elimination can asymptotically reducethe amount of work to close a graph, suppose there is an ex-tra edge Z���-X in Figure 2, forming a strongly connectedcomponent X ;Y1; : : : ;Yl;Z. If we collapse this componentbefore adding the transitive edges Li ������-Yj , none of the 2kltransitive edge additions Li ������-Yj are performed (the kmconstraints Li � Rj are still produced of course).2.4 Inductive FormInductive form (IF) exploits the fact that a variable-variableconstraint X � Y can be represented either as a successor

edge (Y 2 succ(X)) or as a predecessor edge (X 2 pred(Y)).The representation for a particular edge is chosen as a func-tion of a �xed total order o : Vars ! N on the variables.Edges in the constraint graph are represented as follows:X � Y 8><>: X���-Y if o(X) > o(Y)a successor edgeX ������-Y if o(X) < o(Y)a predecessor edgeThe choice of the order o(�) can have substantial impact onthe size of the closed constraint graph and the amount ofwork required for the closure. We assume that the ordero(�) is randomly chosen. Choosing a good order is hard,and we have found that a random order performs as well orbetter than any other order we picked.The other two kinds of edges are represented as in stan-dard form, and the closure rule also remains unchanged:L ������-X���-R , L � RNotice that L may be a source or a variable|unlike SF,where L is always a source. In IF the closure rule cantherefore directly produce transitive edges between vari-ables. (This is not to say that the closure of SF does notproduce new edges between variables, but for SF such edgesalways involve the resolution rules R of Figure 1.) The clo-sure rule combined with the resolution rules R produces a�nal graph in inductive form [AW93].The least solution of the constraints is not explicit in theclosed inductive form. However, it is easily computed asfollows: LS(Y) =fc(: : :) j c(: : :) ������-Yg [[X ������-Y LS(X) (1)3

i n s e r t s u c c e d g e (ve rtex from , ver tex to)f // v a r i a b l e v e r t i c e s : o (from) > o (to)i f (p r e d cha in (from , to)) f // Cyc le foundc o l l a p s e c y c l e (. . .) ;ge l s ei n s e r t i n t o s u c c e s s o r l i s t (from , to) ;g
p re d cha in (ve rtex from , vertex to)f // TRUE i f pred . cha in to ��> fromi f (from == to) re tu rn (TRUE) ;e l se fmark (from) ; // from i s v i s i t e df or each v in p r e d e c e s s o r s of fromi f (! marked (v) && o(v) < o (from))i f (p r e d cha in (v , to))r etu rn (TRUE) ;r etu rn (FALSE) ;ggFigure 3: Algorithms for cycle detectionBy the ordering o(�), we have o(X) < o(Y) for all X ������-Y .Thus there exists a variable Z1 with minimum index o(Z1)that has no predecessor edges to any other variables andLS(Z1) = fc(: : :) j c(: : :) ������-Z1g. Then LS(Zi) is com-puted using LS(Zj) for j < i and (1). The time to computeLS for all variables is O(pk) worst case, where p is the num-ber of edges and k is the number of distinct sources in the�nal graph. In the rest of the paper, solving a system ofconstraints under IF always includes the computation of theleast solution.The right side of Figure 2 shows the initial and �nalgraph for the example constraints using IF. Note that somevariable-variable edges in IF are predecessor edges (dotted),whereas all variable-variable edges in SF are successor edges(solid). The ordering on the variables assumed in the ex-ample is o(X) < o(Z) < o(Yi). Note the extra variable-variable edge X ������-Z added by the closure rule for IF. Asa result of this edge, the closure of IF adds edges from Xto all Ri. Each of the variables Y1; : : : ;Yl;Z has a singlepredecessor edge to X , and thus their least solution is equalto LS(X) = fL1; : : : ; Lkg. The total work of closing thegraph is l +m edge additions, of which l � 1 additions areredundant, namely the addition of edge X ������-Z through allYi, plus the work for the km transitive constraints Li � Rj(not shown). The work to compute the least solution isproportional to l.2.5 Cycle DetectionIn this subsection we describe our cycle detection algorithm.De�nition 2.1 (Path) A path of length k from a vertex uto a vertex v in a constraint graph G = (V; E) is a sequenceof vertices (v0; : : : ; vk), such that u = v0, v = vk, v1::vk�1are variable nodes, and vi�1���-vi 2 E or vi�1 ������-vi 2 Efor i = 1::k. A path is simple if all vertices on the path aredistinct.De�nition 2.2 (Chain) A chain in a constraint graph isa simple path (X0; : : : ;Xk) consisting entirely of successoredges Xi�1���-Xi for i = 1::k (a successor chain), or con-sisting entirely of predecessor edges Xi�1 ������-Xi for i = 1::k(a predecessor chain).A path (X0; : : : ;Xk) forms a cycle if X0 = Xk and k � 1.As we show in Section 4, cycles in constraint graphs are amajor contributor to constraint resolution times. It is thusimportant to detect and eliminate cycles. Cycles can alwaysbe replaced with a single variable, since all variables on acycle must be equal in all solutions of the constraints.

X2X1 X3Figure 4: A cyclic graph in IFOur algorithm (Figure 3) for online cycle eliminationis a straight-forward implementation of the following idea.When adding a successor edge X���-Y , we search (usingpred chain) along all predecessor edges starting from X for apredecessor chain Y ������-+X . Similarly, if we add a predeces-sor edge X ������-Y , we search (using succ chain, not shown)along all successor edges starting from Y for a successorchain Y���-+X . If such a chain exists, then we have founda cycle that can be eliminated. The search algorithm onthe right in Figure 3 di�ers from depth-�rst-search merelyin that the next visited vertex must be less than the cur-rent vertex in the variable order o(�). Note that for IFthis condition is already implied by the graph representa-tion; we include it for clarity and to make the algorithmwork for SF. Detection for SF is slightly di�erent since allvariable-variable edges in SF are successors. Consequently,when adding a successor edge X���-Y, we search (usingsucc chain) along all successor edges starting from Y for asuccessor chain Y���-+X . The condition that we only fol-low successor edges if they point to lower indexed variablesis crucial for SF. Without it, a full depth-�rst-search is per-formed at every graph update, which is impractical. Re-stricting the search to edges pointing to lower indexed vari-ables reduces search time but results in only partial cycledetection.For IF, cycle detection not only depends on the order o(�)but also on the order in which edges are added to the graph.Consider the example in Figure 4. Our approach detectsthis cycle only if the successor edge X3���-X1 is added last,since in this case, the predecessor chain X1 ������-X2 ������-X3 isfound. If the cycle is closed by adding either of the otheredges the cycle is not detected. However, the closure of IFadds a transitive edge X2���-X1 and the sub-cycle (X1;X2)is detected in all cases. It is a theorem that for any orderingof variables, IF exposes at least a two-cycle for every non-trivial strongly connected component (SCC).3 Thus, usinginductive form guarantees at least part of every non-trivialSCC is eliminated by our method; this result does not holdfor SF.3A non-trivial strongly connected component consists of at leasttwo vertices.4

a = &b;a = &c;*a = &d; a b dc����1PPPPq PPPPq����1Figure 5: Example points-to graphOnce a cycle is found, we must collapse it to obtain anyperformance bene�ts in the subsequent constraint resolu-tion. Collapsing a cycle involves choosing a witness variableon the cycle (we use the lowest indexed variable to preserveinductive form), redirecting the remaining variables on thecycle to the witness (through forwarding pointers), and com-bining the constraints of all variables on the cycle with thoseof the witness.Finally, note that although some cycles may be found inthe initial constraints, many cycles only arise during reso-lution through the application of the resolution rules R. Inthe majority of our benchmarks, less than 20% of the vari-ables that are in strongly connected components in the �nalgraph also appear in strongly connected components in theinitial graph.3 Case Study: Andersen's Points-to AnalysisFor a C program, points-to analysis computes a set of ab-stract memory locations (variables and heap) to which eachexpression could point. Andersen's analysis computes apoints-to graph [And94]. Graph nodes represent abstractmemory locations, and there is an edge from a node x to anode y if x may contain a pointer to y. Informally, Ander-sen's analysis begins with some initial points-to relationshipsand closes the graph under the rule:For an assignment e1 = e2, anything in the points-to set for e2 must also be in the points-to set fore1.Figure 5 shows the points-to graph computed by Andersen'sanalysis for a simple C program.3.1 Formulation using Set ConstraintsAndersen's set formulation of points-to graphs consists of aset of abstract locations fl1; : : : ; lng, together with set vari-ables Xl1 ; : : : ;Xln denoting the set of locations pointed to byl1; : : : ; ln. The example in Figure 5 has the set formulationXla = flb; lcgXlb = fldgXlc = fldgThe association between a location li and its points-to setXli is implicit in Andersen's formulation and results in anad-hoc resolution algorithm. We use a di�erent formulationthat makes this association explicit and enables us to use ageneric set constraint solver. We model locations by pairinglocation names and points-to set variables with a construc-tor ref (flig;Xli) akin to reference types in languages likeML [MTH90].Unlike the type system of ML, which is equality-based,we need inclusion constraints. It is well known that sub-typing of references is unsound in the presence of update

x : ref (lx;Xlx ;Xlx) (Var)e : �&e : ref (0; �; �) (Addr)e : � � � ref (1; T ; 0) T fresh�e : T (Deref)e1 : �1 e2 : �2�1 � ref (1; 1; T1) �2 � ref (1; T2; 0)T2 � T1 T1; T2 freshe1=e2 : �2 (Asst)Figure 6: Constraint generation for Andersen's analysisoperations (e.g., Java arrays [GJS96]). A sound approach isto turn inclusions between references into equality for theircontents: ref (X) � ref (Y), X = Y.We adapt this technique to a purely inclusion-based sys-tem using a novel approach. We intuitively treat a refer-ence lx as an object with a location name and two methodsget : void ! Xlx and set : Xlx ! void, where the points-toset of the location acts both as the range of the get func-tion and the domain of the set function. Updating a lo-cation corresponds to applying the set function to the newvalue. Dereferencing a location corresponds to applying theget function.Translating this intuition, we add a third argument tothe ref constructor that corresponds to the domain of theset function, and is thus contravariant. A location lx isthen represented by ref (lx;Xlx ;Xlx) (to improve readabilitywe overline contravariant arguments). To update an un-known location � with a set T , it su�ces to add a con-straint � � ref (1; 1; T). For example, if ref (lx;Xlx ;Xlx) � � ,then the transitive constraint ref (lx;Xlx ;Xlx) � ref (1; 1; T)is equivalent to T � Xlx (due to contravariance), which isthe desired e�ect. Dereferencing is analogous, but involvesthe covariant points-to set of the ref constructor.To formally express Andersen's points-to graph, we mustassociate with each location lx a set variable Ylx for the set ofabstract location names and a constraint Xlx � ref (Ylx ; 1; 0)that constrains Ylx to be a superset of all names of locationsin the points-to set Xlx . The points-to graph is then de�nedby the least solution for Yli . In our implementation we avoidusing the location names li and the variables Yli , and insteadderive the points-to graph directly from the constraints.3.2 Constraint GenerationFigure 6 gives a subset of the constraint-generation rules forAndersen's analysis. For the full set of rules, see [FFA97].The rules assign a set expression to each program expressionand generate a system of set constraints as side conditions.The solution to the set constraints describes the points-tograph of the program. We write � for set expressions denot-ing locations. To avoid separate rules for L- and R-values, weinfer sets denoting L-values for every expression. In (Var),the type ref (lx;Xlx ;Xlx) associated with x therefore denotesthe location of x and not its contents.We brie
y describe the other rules in Figure 6. The5

Strongly Connected Components (SCC)AST Total Initial Initial graph Final graphBenchmark Nodes LOC #Vars Nodes Edges #Vars #SCC max #Vars #SCC maxallroots 700 428 171 264 141 5 2 3 19 5 10diff.diffh 935 293 319 537 297 6 3 2 13 6 3anagram 1078 344 219 360 216 10 5 2 23 9 5genetic 1412 324 264 415 249 4 2 2 14 5 4ks 2284 574 335 515 329 6 3 2 37 3 33ul 2395 445 207 325 176 4 2 2 7 3 3ft 3027 1179 510 859 487 0 0 | 70 5 57compress 3333 652 241 364 241 17 7 4 27 9 6ratfor 5269 1540 1024 1804 1020 20 7 6 104 8 80compiler 5326 1895 1378 2028 1292 12 6 2 39 9 20assembler 6516 2987 1811 2885 1497 9 4 3 96 10 27ML-typecheck 6752 4903 1855 3096 1908 29 9 9 296 15 185eqntott 8117 2316 1371 2209 1442 50 15 12 232 21 137simulator 10946 4230 2764 4578 2317 6 3 2 290 5 267less-177 15179 12046 3527 6171 3389 30 12 4 357 14 288li 16828 5761 7111 12213 6283 24 10 4 1736 5 1727flex-2.4.7 29960 9358 5617 9694 5591 57 19 11 355 19 281pmake 31210 25129 7009 11530 6507 63 24 8 775 23 690make-3.72.1 36892 15214 7839 12514 6994 156 63 7 966 57 727inform-5.5 38874 12845 9565 15058 8687 34 15 6 505 19 410tar-1.11.2 41497 18312 6095 9735 6459 347 89 29 831 79 515screen-3.5.2 49292 23943 12806 18706 8631 108 46 6 894 31 822cvs-1.3 51223 31195 13848 20735 10497 340 87 31 755 92 408sgmls-1.1 53874 35155 9539 15372 9740 91 37 9 1201 41 1071espresso 56938 21583 11490 19067 12271 333 149 10 1773 170 1355gawk-3.0.3 71091 27381 11590 18083 10658 400 58 86 1796 40 1573povray-2.2 87391 59689 13401 21837 11937 198 87 9 1578 80 1299Table 1: Benchmark data common to all experimentsaddress-of operator (Addr) adds a level of indirection to itsoperand by adding a ref constructor. The dereferencing op-erator (Deref) does the opposite, removing a ref and makingthe fresh variable T a superset of the points-to set of � . Thesecond constraint in the assignment rule (Asst) transformsthe right-hand side �2 from an L-value to an R-value T2,as in (Deref) (recall these rules infer sets representing L-values). The �rst constraint �1 � ref (1; 1; T1) makes T1 asubset of the points-to set of �1. The �nal constraint T2 � T1expresses exactly the intuitive meaning of assignment: thepoints-to set T1 of the left-hand side contains at least thepoints-to set T2 of the right-hand side. For example, the�rst statement of Figure 5, a = &b, generates the constraints�1 = ref (la;Xla ;Xla) � ref (1; 1; T1), and so T1 � Xla ,and �2 = ref (0; ref (lb;Xlb ;Xlb); : : :) � ref (1; T2; 0), and soref (lb;Xlb ;Xlb) � T2. The �nal constraint T2 � T1 impliesthe desired e�ect, namely ref (lb;Xlb ;Xlb) � Xla .4 MeasurementsIn this section we compare the commonly used implementa-tion strategy of set-based analysis [Hei92], which representsconstraint graphs in standard form (SF), with the inductiveform (IF) of [AW93]. We give empirical evidence that cyclesin the constraint graph are the key inhibitors to scalabil-ity for both forms and that our online cycle elimination ischeap and improves the running times of both forms signif-icantly. Using online cycle elimination, analysis times us-ing inductive form come close to analysis times with perfectand zero-cost cycle elimination (measured using an oracle topredict cycles). Furthermore, on medium to large programsIF outperforms SF by factors of 2{4. This latter result issurprising, and we explore it on a more analytical level inSection 5.Our measurements use the C benchmark programsshown in Table 1. For each benchmark, the table lists thenumber of abstract syntax tree (AST) nodes, the number oflines in the preprocessed source, the number of set variables,the total number of distinct nodes in the graph (sources,variables, and sinks), and the number of edges in the initial

Experiment DescriptionSF-Plain Standard form, no cycle eliminationIF-Plain Inductive form, no cycle eliminationSF-Oracle Standard form, with full (oracle) cycle eliminationIF-Oracle Inductive form, with full (oracle) cycle eliminationSF-Online Standard from, using IF online cycle eliminationIF-Online Inductive form, with online cycle eliminationTable 4: Experimentsconstraints (before closing the graph). Furthermore, thetable contains the combined size of all non-trivial stronglyconnected components (SCC), the number of components,and the size of the largest component, both for the initialgraph (before closure) and for the �nal graph (in any experi-ment). The di�erence in the combined size of SCCs betweenthe initial and the �nal graph shows the need for online cycleelimination. If all cycles were present in the initial graph,online cycle elimination would be unnecessary.We use a single well-engineered constraint resolution li-brary to compare SF and IF. To validate that our results arenot a product of our particular implementation, we compareour implementation of standard form to an independent im-plementation of points-to analysis written in C by Shapiroand Horwitz [SH97]. Their implementation corresponds toSF without cycle elimination, and we empirically verify thatour implementation of SF produces the same trend on ourbenchmark suite. The scatter plot in Figure 12 shows thatour implementation of SF without cycle elimination is usu-ally between 2 times faster and 2 times slower than SH (hor-izontal lines) on a subset of the benchmarks4 with a fewexceptions where our implementation is signi�cantly faster(flex, li, cvs, inform), and one program where our imple-mentation is substantially slower (tar).We performed the six experiments shown in Table 4. The�rst two are plain runs of the points-to analysis using SF andIF without cycle elimination. SF-Plain corresponds to clas-sic implementations of set-based analyses. The experimentsSF-Oracle and IF-Oracle precompute the strongly connectedcomponents of the �nal graph and use that information as4Not all benchmarks ran through SH.6

IF-Plain SF-Plain IF-Oracle SF-OracleBenchmark Edges Work Time(s) Edges Work Time(s) Edges Work Time(s) Edges Work Time(s)allroots 384 441 0.06 290 309 0.05 322 367 0.06 261 284 0.07diff.diffh 711 782 0.13 606 651 0.11 686 762 0.10 588 637 0.10anagram 510 557 0.09 412 450 0.10 450 483 0.07 369 393 0.09genetic 515 572 0.13 446 496 0.10 488 542 0.10 432 481 0.14ks 3385 15562 0.46 1278 2332 0.17 663 978 0.15 850 1181 0.15ul 315 428 0.11 280 381 0.10 301 414 0.13 272 373 0.11ft 3766 19821 0.61 1204 1733 0.19 1008 1251 0.33 832 1024 0.21compress 492 742 0.15 356 529 0.14 376 570 0.13 317 493 0.13ratfor 5777 24987 1.30 3158 5070 0.59 2302 3309 0.62 2407 3470 0.63compiler 2733 3548 0.61 3027 3992 0.59 2571 3378 0.72 2655 3476 0.74assembler 5219 9844 1.21 4016 4916 0.85 3552 4326 1.44 3640 4367 0.83ML-typecheck 17908 159253 5.38 21850 149501 3.45 3826 6005 1.24 6606 9592 1.15eqntott 15667 132250 3.63 4291 7985 0.85 2927 4030 1.06 2692 3808 0.81simulator 29935 571836 14.48 35280 282857 6.07 4838 6578 1.98 12967 16740 2.05less-177 76789 3047615 64.43 72045 678170 12.51 8412 13796 3.31 34029 49028 3.79li 1130427 177872021 4349.04 1740142 103639138 1629.02 13360 76391 10.62 470945 786496 29.73flex-2.4.7 98301 2231558 52.20 15736 27498 4.70 12954 20795 6.61 13100 21147 4.99pmake 364732 28462390 669.97 306775 8582058 134.45 15485 47806 6.90 133477 234533 12.71make-3.72.1 747878 96349223 2287.20 693860 43941197 624.01 19967 119389 12.24 268863 484661 21.24inform-5.5 236017 15236795 359.31 222182 5505608 90.64 31991 95132 14.53 115437 178675 13.44tar-1.11.2 278820 19175919 433.98 250474 5842839 89.30 18711 37250 6.81 94316 136277 8.15screen-3.5.2 963242 130598316 2988.00 640161 38797130 610.87 | | | | | |cvs-1.3 214229 6702126 161.33 116513 891083 22.96 26364 43685 9.98 67253 106422 11.28sgmls-1.1 1706442 362826558 8686.45 1472647 140857874 2077.24 25050 179301 19.15 532076 905743 44.35espresso 859093 78018098 1903.74 741876 23276456 373.30 32318 123335 15.46 343268 591392 28.83gawk-3.0.3 1653812 267208993 6605.69 922422 45499857 686.92 | | | | | |povray-2.2 2710342 490070572 12159.00 1984147 179010002 2966.48 | | | | | |Table 2: Benchmark data for IF-Plain, SF-Plain, IF-Oracle, and SF-OracleSCC IF-Online SF-OnlineBenchmark AST #Vars Elim. Edges Work Time(s) Elim. Edges Work Time(s)allroots 700 19 10 360 408 0.09 7 286 303 0.06diff.diffh 935 13 7 697 767 0.11 6 607 656 0.12anagram 1078 23 13 493 536 0.11 6 407 441 0.09genetic 1412 14 6 502 556 0.13 2 444 494 0.11ks 2284 37 31 1136 1742 0.23 13 1182 2006 0.20ul 2395 7 4 306 419 0.11 1 279 380 0.11ft 3027 70 44 1390 1809 0.29 22 1241 1828 0.24compress 3333 27 15 448 669 0.16 10 356 526 0.14ratfor 5269 104 64 2893 4168 0.97 15 3079 4849 0.71compiler 5326 39 17 2703 3524 0.72 6 3013 3961 0.64assembler 6516 96 70 4061 5016 1.13 25 4004 4831 1.00ML-typecheck 6752 296 238 6519 11168 1.67 40 21158 148172 4.00eqntott 8117 232 163 4074 6264 1.10 56 3931 6408 1.02simulator 10946 290 206 7344 14365 2.89 91 32521 130041 4.40less-177 15179 357 259 10943 18121 3.65 141 58195 126138 5.83li 16828 1736 1284 28386 166951 30.25 678 1260930 3285073 96.86flex-2.4.7 29960 355 279 14678 23842 6.50 125 15246 25828 4.92pmake 31210 775 550 21413 83686 14.94 291 213492 484218 21.85make-3.72.1 36892 966 785 40498 283025 40.50 479 471810 1740032 54.40inform-5.5 38874 505 422 35374 110442 18.64 260 168979 378157 20.13tar-1.11.2 41497 831 674 24216 50122 9.29 413 153572 347858 14.92screen-3.5.2 49292 894 781 39728 255411 40.57 553 384980 1044965 46.29cvs-1.3 51223 755 581 30677 52408 12.91 263 89744 171794 13.20sgmls-1.1 53874 1201 1075 46568 314633 53.55 830 901331 4086287 113.63espresso 56938 1773 1231 41390 155881 27.89 515 545501 1126267 55.61gawk-3.0.3 71091 1796 1438 36193 176097 31.16 615 590639 1575731 74.42povray-2.2 87391 1578 1292 87139 336573 58.63 782 1382071 8037796 224.89Table 3: Benchmark data for IF-Online and SF-Onlinean oracle. Whenever a fresh set variable is created, the or-acle predicts to which strongly connected component thevariable will eventually belong. We substitute the witnessvariable of that component for the fresh variable. As a re-sult, the oracle experiment uses only a single variable (wit-ness) for each strongly connected component, and thus thegraphs are acyclic. Since the oracle experiments avoid allunnecessary work related to cycles in the constraint graph(perfect cycle elimination), they provide lower bounds forthe last two experiments, IF-Online and SF-Online, whichuse the online cycle detection and elimination algorithm de-scribed in Section 2.5. Furthermore, the oracle experimentsdirectly compare the graph representations of IF and SF,independently of cycle elimination.Table 2 shows the results for the �rst four experiments.For each benchmark and experiment, we report the numberof edges in the �nal graph, the total number of edge addi-tions (Work) including redundant ones, and the executiontime in seconds. Note the large number of redundant edgeadditions for SF-Plain and IF-Plain. All experiments wereperformed using a single processor on a SPARC Enterprise-

5000. The reported CPU times are best out of three runs.As mentioned in Section 2.4, all reported times for IF includethe time to compute the least solution. Figure 7 plots theanalysis time for both SF-Plain and IF-Plain without cycleelimination against the number of AST nodes of the parsedprogram. As the size exceeds 15000 AST nodes there aremany benchmarks where the analysis becomes impractical.Without cycle elimination, SF generally outperforms IF be-cause cycles add many redundant variable-variable edges inIF that lead to redundant work.The low numbers for the oracle runs IF-Oracle and SF-Oracle in Table 2 show that the bulk of work and executiontime is attributable to strongly connected components inthe constraint graph. Without cycles, the points-to analysisscales very well for both IF and SF. Our oracle approachfailed for the three programs, screen, gawk, and povray,hence the missing points.Table 3 reports the measurement results for the onlinecycle elimination experiments. In addition to the informa-tion shown for the plain and oracle experiments, the ta-ble contains the number of variables that were eliminated7

0

2000

4000

6000

8000

10000

12000

14000

20000 40000 60000 80000

T
im

e(
s)

AST nodes

IF-Plain
SF-Plain

Figure 7: SF and IF without cycle elimination 0

50

100

150

200

250

20000 40000 60000 80000

T
im

e(
s)

AST nodes

IF-Online
SF-Online
IF-Oracle

SF-Oracle

Figure 8: Analysis times with cycle detection and oracle

0.5

1

2

5

10

20

50

100

0.01 0.1 1 10 100 1000 10000

S
pe

ed
up

s

Absolute time(s) SF-Plain

IF-Online/SF-Plain
SF-Online/SF-Plain

Figure 9: Speedups through online cycle detection 0.66

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20000 40000 60000 80000

T
im

e
ra

tio
 S

F
-O

nl
in

e/
IF

-O
nl

in
e

AST nodesFigure 10: Speedups through inductive formthrough cycle detection. Online cycle elimination is verye�ective for medium and large programs. Figure 8 plotsthe analysis times for online cycle elimination and the ora-cle experiments (note the scale change). The fastest analy-sis times are achieved by IF-Oracle, followed by SF-Oracle,IF-Online, and then SF-Online. IF-Online stays relativelyclose to the oracle times, while SF-Online performs some-what worse. This indicates that while our cycle detectionalgorithm is not perfect, it comes close.Figure 9 shows the total speedup of our approach overstandard implementations (IF-Online over SF-Plain), andthe speedup obtained solely through online cycle elimina-tion (SF-Online over SF-Plain). To show that our techniqueshelp scaling, we plot the speedups vs. the absolute executiontime of SF-Plain. As the execution time of the standardimplementation grows, our speedup also grows. For verysmall programs, the cost of cycle elimination outweighs thebene�ts, but for medium and large programs, online cycleelimination improves analysis times substantially, for largeprograms by more than an order of magnitude.The performance bene�t of inductive over standard formis illustrated more clearly in Figure 10. In this plot, we

can see that IF-Online is consistently faster for medium andlarge-sized programs (at least 10,000 AST nodes) than SF-Online.5 For large programs the di�erence is signi�cant,with IF-Online outperforming SF-Online by over a factor of3.8 for the largest program. For very small programs, IF isat most 50% slower than SF, which in absolute times meansonly fractions of seconds.We can explain the performance di�erence of IF and SFby comparing the fraction of variables on cycles found byIF-Online and SF-Online (Figure 11). Throughout, SF �ndsonly about half as many variables on cycles as IF, and theremaining cycles slow down SF. One reason for this di�er-ence is that for SF, the cycle detection only searches suc-cessor chains. The analog to predecessor chains in SF areincreasing chains. Searching increasing chains in SF resultsin a higher detection rate (57%), but the much higher costoutweighs any bene�ts.Our model in Section 5 explains why SF �nds fewer cy-cles. The probability of �nding chains of length greater than5The outlier is the program flex; although flex is a large program,it contains large initialized arrays. Thus as far as points-to analysisis concerned, it actually behaves like a small program.8

0

0.2

0.4

0.6

0.8

1

1.2

0 20000 40000 60000 80000

F
ra

ct
io

n
of

 v
ar

ia
bl

es
 o

n
cy

cl
es

 fo
un

d
on

lin
e

AST nodes

IF-Online
SF-Online

Figure 11: Fraction of variables on cycles found online 0.1

0.5

1

2

10

100 1000 10000 100000

T
im

e
ra

tio
 S

H
/S

F
-P

la
in

AST nodesFigure 12: Relative execution times of Shapiro and Horwitz'sSF implementation of C points-to analysis (SH) over SF-Plain2 is small. Thus cycles of larger size are detected with smallprobability. IF counteracts this trend by adding transitivevariable-variable edges, thereby shortening cycle lengths.5 An Analytical ModelIn the last section, we saw that IF-Online and IF-Oracle bothoutperform SF-Online and SF-Oracle respectively, and thatthe simple online cycle elimination strategy is very e�ective,especially for IF. In this section we analytically compare thetwo di�erent representations and answer three questions:(Q1) Why is IF a better representation than SF?(Q2) Why is partial online cycle elimination fast?(Q3) Why is the cycle elimination strategy more e�ectivefor IF?To answer these questions analytically, we need atractable model of constraint graphs. We use the follow-ing simpli�cations and assumptions:� We assume that graph closure adds no edges throughthe resolution rules R. That is, we only consider edgesadded directly through the graph closure rule.� We consider random graphs G = (V;E) with n variablenodes, m source or sink nodes, and we assume for allpairs of distinct nodes u and v there is an edge (u; v) 2E with probability p, for some constant p.� We consider only edges added through simple paths.Thus, the results correspond to the cases where we haveperfect cycle detection i.e., IF-Oracle and SF-Oracle.These are strong assumptions. Nevertheless, this model pre-dicts our measurements quite well. The following two theo-rems summarize the results in this section.Theorem 5.1 For random graphs with p = 1n and ratiomn = 23 , the expected number of edge additions for SF isapproximately 2.5 times more than that for IF.

Theorem 5.2 For random graphs with p = 2n , the ex-pected number of variable nodes reachable through prede-cessor or successor chains in IF from any given node is nomore than 2.2.The parameters p and mn are taken from our experimentsdescribed in Section 4. The probabilities p = 1n and p = 2nare the the approximate densities of the initial and �nal IFgraphs, respectively.Theorem 5.1 answers the �rst question (Q1). It explainswhy SF-Oracle does on average 4.1 times more work thanIF-Oracle. The second question (Q2) is answered by Theo-rem 5.2. We expect partial online cycle detection to followvery few edges. We observe empirically that the number ofreachable variables is close to two. To answer the third ques-tion (Q3), notice that since cycle detection searches chainsin order of variable index, the probability of detecting a longcycle is exponentially small. However, in IF edges betweenvariables are added to the constraint graph, thus shorteningsome long cycles and increasing the probability of detectingcycles. Although the same idea for detecting cycles can beapplied to SF, it does not work as well since SF adds notransitive edges between variables. Figure 11 shows that forIF our simple strategy �nds on average 80% of the variablesinvolved in cycles, whereas the same strategy �nds only 40%when used with SF.In the rest of the section, we establish Theorem 5.1 andTheorem 5.2. We introduce some notation and terminologyused in the following discussion. We use u and v to denoteeither variable nodes or source and sink nodes, X or Xi todenote variable nodes, and c or c0 to denote source and sinknodes. A total order on the n variables is chosen uniformlyat random from among all n! possible permutations. Finally,we say a graph edge (u; v) is added through a path � if (u; v)would be added by the graph closure rule considering onlythe nodes and edges of �.5.1 Edge Additions in Standard FormDuring the graph closure process edges may be added morethan once because an edge may be implied by more thanone path in the constraint graph (cf. Figure 2). Thus, a9

constraint solver does work proportional to the number ofedge additions, including redundant additions along di�er-ent paths.De�ne the random variables XSF(u;v) to be the number ofadditions of the edge (u; v) through simple paths from u to vfor the standard form. To calculate the total expected num-ber of edge additions, it su�ces to calculate the expectednumber of additions E(XSF(u;v)) of a given edge (u; v) andsum over all possible edges.For the standard form we consider two kinds of edges,(c;X) and (c; c0). We now calculate E(XSF(c;X)) andE(XSF(c;c0)). Notice that the edge (c;X) must be addedthrough a simple path from c to X . For edges of the form(c; c0), we also need only consider the simple paths from cto c0.For each simple path from c to X of length i + 1, thereare �n�1i � choices of intermediate variable nodes. For eachsimple path from c to c0 of length i+1, there are �ni� choicesof intermediate variable nodes. In both cases, each combi-nation of variable nodes may appear in i! possible orders.The probability that any particular sequence of the i + 2nodes (including c and X or c and c0) is a path is pi+1. Weobtain the following:E(XSF(c;X)) = n�1Xi=1 n� 1i !i!pi+1E(XSF(c;c0)) = nXi=1 ni!i!pi+1Since there are mn possible edges of the form (c;X) andm(m � 1) possible edges of the form (c; c0), the expectednumber of edge additions for the standard form is given byE(XSF) = mnE(XSF(c;X)) +m(m� 1)E(XSF(c;c0))5.2 Edge Additions in Inductive FormDe�ne the random variables X IF(u;v) to be the number of ad-ditions of the edge (u; v) through simple paths from u tov for the inductive form. We need to consider four kindsof edges: (X1;X2), (X ; c), (c;X), and (c1; c2). Notice thatthe probability that a given edge (u; v) is added through asimple path � of l � 3 nodes from u to v depends only onl. Thus we let Pi(u; v) denote the probability that the edge(u; v) is added through a simple path from u to v with inodes. We have the following equations:E(X IF(X1;X2)) = n�2Xi=1 n� 2i !i!pi+1Pi+2(X1;X2)E(X IF(X ;c)) = E(X IF(c;X))= n�1Xi=1 n� 1i !i!pi+1Pi+2(X ; c)E(X IF(c;c0)) = nXi=1 ni!i!pi+1Pi+2(c; c0)We next calculate for any l � 3 the probability Pl(u; v)for any nodes u and v.Lemma 5.3 Let o(�) be a random total order on the vari-ables. Given a simple path � from u to v with l nodes, thefollowing holds:

1. Pl(u; v) = 2l(l�1) if u and v are variable nodes;2. Pl(u; v) = 1l�1 if one of u and v is a variable node andthe other is a constructed node;3. Pl(u; v) = 1 if both u and v are constructed nodes.Proof. We prove the �rst case. Similar arguments apply tothe other two cases.We �rst show Pl(u; v) � 2l(l�1) . Recall that o(X) is theindex of variable X . Assume the edge (u; v) is added througha path (u;X1; : : : ;Xl�2; v), we claim that o(u) and o(v) arethe smallest indices on the path, i.e., o(u) < o(Xi) ando(v) < o(Xi) for all 1 � i � l � 2. For paths with threenodes, this claim is true by the closure rule, since the edgeis only added if u ������-X1 and X1 �! v are in the graph andthese edges imply that o(u) and o(v) are less than o(X1).Suppose the claim is true for paths with at most k � 3nodes. Consider a path (u;X1; : : : ;Xk�1; v) with k+1 nodessuch that the edge (u; v) is added through the path. Noticethere must exist a Xi with 1 � i � k � 1 such that theedges (u;Xi) and (Xi; v) are added and o(u) < o(Xi) ando(v) < o(Xi). By induction, the claim holds for the shorterpaths (u; : : : ;Xi) and (Xi; : : : ; v). Thus, o(u) and o(v) mustbe the smallest indices on the path. There are n! possibleorderings on the n variables and we claim that there are�nl�(2(l� 2)!)(n� l)! of them satisfying the above condition.There are �nl� possible ways of choosing the indices for thel variables on the path. There are 2 ways of ordering u andv, and (l � 2)! ways of ordering the rest of the variables onthe path. For the other (n� l) variables we can order themin (n� l)! ways. Thus we havePl(u; v) � �nl�(2(l� 2)!)(n� l)!n!= 2l(l� 1) :We now show Pl(u; v) � 2l(l�1) . Let o(�) be an orderingsuch that o(u) and o(v) are the smallest indices on the path(u;X1; : : : ;Xl; v). We show that the edge (u; v) is addedthrough the path. The claim is clearly true for paths withthree nodes. Suppose the claim holds for paths with at mostk nodes. Consider a path (u;X1; : : : ;Xk�1; v) with k + 1nodes such that o(u) and o(v) have the smallest indices. LetXi be the node such that o(Xi) < o(Xj) for all 1 � j � k�1with i 6= j. By induction, the claim holds for the two sub-paths (u; : : : ;Xi) and (Xi; : : : ; v), i.e., the edges (u;Xi) and(Xi; v) are added through the respective subpaths. Thus,the edge (u; v) is added through the given path. Therefore,Pl(u; v) � 2l(l�1) . 2Since there are m(m� 1) edges of the form (c; c0), 2mnedges of the form (X ; c) or (c;X), and n(n� 1) edges of theform (X1;X2), the expected number of edge additions forthe inductive form is given byE(X IF) = m(m� 1)E(X IF(c;c0)) +2mnE(X IF(X ;c)) +n(n� 1)E(X IF(X1;X2))5.3 ComparisonTo directly compare SF and IF it is necessary to make anadditional assumption about the density of the initial graph.10

In the following calculation, we assume p = 1n , which saysthat a typical initial graph has (n+m)2n edges. In practice,initial constraint graphs are sparse; all our benchmark pro-grams produce initial graphs of approximately this density.We have the following approximation [Knu73]nXi=1 ni!i!� 1n�i � r�n2 (2)Using equation (2) we simplify E(XSF) and E(X IF) asfollowsE(XSF) � m�r�n2 � 1�+ m(m� 1)n r�n2= �m+ m(m� 1)n �r�n2 �mE(X IF) � m(m� 1)n r�n2 + 2m lnn+ nTo obtain Theorem 5.1, we relate the expected edge ad-ditions to the amount of work done to close the constraintgraphs. Since we consider only simple paths, the expectednumber of edge additions corresponds to the case wherethere are no cycles (i.e., the oracle runs in Section 4). Forour benchmark programs, the typical ratio of mn is about23 (See Table 1). Thus, asymptotically, E(XSF)=E(X IF) isabout 2.5, i.e., using the standard form, we expect to do 2.5times as much work as using the inductive form. On ourbenchmarks we have measured an average of 4.1 times morework for SF.5.4 Cost of Online Cycle EliminationNext we establish that the expected number of reachablenodes from any given node is small. This result explainswhy the simple heuristic for detecting cycles is very cheap.Let X be any variable node and let RX be the randomvariable denoting the number of nodes reachable from Xthrough a predecessor chain. Using the same method forcalculating the expected number of edge additions, we con-sider all simple paths starting with X involving only variablenodes. We thus haveE(RX) � n�1Xi=1 n� 1i !i!pi 1(i+ 1)!Next, we approximate E(RX). Let p = kn for some con-stant k. ThenE(RX) � n�1Xi=1 n� 1i !i!(kn)i 1(i+ 1)!< 1k (ek � 1� k)The value of p here is the probability of an edge beingpresent in the �nal constraint graph, not the initial one. Ifp = 2n , i.e., k = 2 (which holds roughly for our benchmarks)we have E(RX) < 12 (e2 � 1� 2)� 2:2completing the proof of Theorem 5.2. Note that for graphsdenser than p = 2n the value E(RX) climbs sharply|ourmethod relies on sparse graphs.

6 Related WorkThere are three strands of related work: constraint simpli�-cation, points-to analysis, and sub-cubic time analyses.The importance of simpli�cations on constraint graphshas been recognized before. In contrast to our online ap-proach, prior work has focused on periodic simpli�cation.In [FA96] the authors describe several simpli�cations to re-duce the heap requirements of graphs for a more complexconstraint language. They give performance results ob-tained through simpli�cations at regular depths in the ab-stract syntax tree traversal. Simpli�cation cost outweighspotential bene�ts when simpli�cations are performed fre-quently.Several papers explore the theoretical foundations of con-straint simpli�cation [TS96, Pot96, FF97]. Among these,[FF97] implemented several simpli�cations in the context ofa static debugger for Scheme. Constraint graphs are gen-erated separately for each module, simpli�ed, and �nallymerged. They report substantial reduction in constraintgraph sizes and speedups of analysis times.Marlow and Wadler use set constraints in a type systemfor Erlang [MW97]. Their system performs simpli�cationssimilar to [FA96, FF97] for every function declaration. Theyreport that performance is poor for large sets of mutuallyrecursive functions, which must be analyzed together.Points-to analysis with set constraints is in Andersen'sthesis [And94]. Recent work by Shapiro and Horwitz [SH97]contrasts Andersen's set based points-to analysis with theuni�cation based points-to analysis of Steensgaard [Ste96].They conclude that while Andersen's analysis is substan-tially more precise than Steensgaard's, its running time isimpractical. However, our implementation of Andersen'spoints-to analysis is generally competitive with [SH97]'s im-plementation of Steensgaard's algorithm.Inclusion constraint resolution algorithms usually have atleast O(n3) time complexity. The lack of progress in achiev-ing scalable implementations of these algorithms has encour-aged interest in asymptotically faster algorithms that are ei-ther less precise or designed for special cases. Steensgaard'ssystem is an example of the former; the linear time closure-analysis algorithm for functional programs with boundedtype size is an example of the latter [Mos96, HM97]. Weplan to study the impact of online cycle elimination on theperformance of closure analysis in future work.7 ConclusionsWe have shown that online elimination of cyclic constraintsin inclusion constraint based program analyses yields orders-of-magnitude improvements in execution time. Our partialonline cycle detection algorithm is cheap but e�ective andworks best on a non-standard representation of constraintgraphs.AcknowledgmentsWe would like to thank David Gay, Raph Levien, and theanonymous referees for helpful comments on improving thepaper. Special thanks go to Mark Shapiro and Susan Hor-witz for providing their Points-to implementations for com-parison.11

References[And94] L. O. Andersen. Program Analysis and Special-ization for the C Programming Language. PhDthesis, DIKU, University of Copenhagen, May1994. DIKU report 94/19.[AW92] A. Aiken and E. Wimmers. Solving Systems ofSet Constraints. In Symposium on Logic in Com-puter Science, pages 329{340, June 1992.[AW93] A. Aiken and E. Wimmers. Type Inclusion Con-straints and Type Inference. In Proceedings ofthe 1993 Conference on Functional ProgrammingLanguages and Computer Architecture, pages 31{41, Copenhagen, Denmark, June 1993.[AWL94] A. Aiken, E. Wimmers, and T.K. Lakshman. Softtyping with conditional types. In Twenty-FirstAnnual ACM Symposium on Principles of Pro-gramming Languages, January 1994.[FA96] M. F�ahndrich and A. Aiken. Making Set-Constraint Based Program Analyses Scale. InFirst Workshop on Set Constraints at CP'96,Cambridge, MA, August 1996. Available asTechnical Report CSD-TR-96-917, University ofCalifornia at Berkeley.[FF97] C. Flanagan and M. Felleisen. Componential Set-Based Analysis. In PLDI'97 [PLD97].[FFA97] J. Foster, M. F�ahndrich, and A. Aiken. Flow-Insensitive Points-to Analysis with Term and SetConstraints. Technical Report UCB//CSD-97-964, U. of California, Berkeley, August 1997.[FFK+96] C. Flanagan, M. Flatt, S. Krishnamurthi,S. Weirich, and M. Felleisen. Catching Bugs inthe Web of Program Invariants. In Proceedingsof the 1996 ACM SIGPLAN Conference on Pro-gramming Language Design and Implementation,pages 23{32, May 1996.[GJS96] James Gosling, Bill Joy, and Guy Steele. TheJava Language Speci�cation, chapter 10, pages199{200. Addison Wesley, 1996.[Hei92] N. Heintze. Set Based Program Analysis. PhDthesis, Carnegie Mellon University, 1992.[Hei94] N. Heintze. Set Based Analysis of ML Programs.In Proceedings of the 1994 ACM Conference onLISP and Functional Programming, pages 306{17, June 1994.[HJ90] N. Heintze and J. Ja�ar. A decision procedurefor a class of Herbrand set constraints. In Sympo-sium on Logic in Computer Science, pages 42{51,June 1990.[HM97] N. Heintze and D. McAllester. Linear-Time Sub-transitive Control Flow Analysis. In PLDI'97[PLD97].[JM79] N. D. Jones and S. S. Muchnick. Flow Anal-ysis and Optimization of LISP-like Structures.In Sixth Annual ACM Symposium on Principlesof Programming Languages, pages 244{256, Jan-uary 1979.

[Knu73] D. Knuth. The Art of Computer Programming,Fundamental Algorithms, volume 1. Addison-Wesley, Reading, Mass., 2 edition, 1973.[Koz93] D. Kozen. Logical Aspects of Set Constraints. InE. B�orger, Y. Gurevich, and K. Meinke, editors,Proc. 1993 Conf. Computer Science Logic (CSL'93), volume 832 of Lecture Notes in ComputerScience, pages 175{188. Springer-Verlag, 1993.[Mos96] C. Mossin. Flow Analysis of Typed Higher-OrderPrograms. PhD thesis, DIKU, Department ofComputer Science, University of Copenhagen,1996.[MTH90] Robin Milner, Mads Tofte, and Robert Harper.The De�nition of Standard ML. MIT Press,1990.[MW97] S. Marlow and P. Wadler. A Practical SubtypingSystem For Erlang. In Proceedings of the Inter-national Conference on Functional Programming(ICFP '97), June 1997.[PLD97] Proceedings of the 1997 ACM SIGPLAN Confer-ence on Programming Language Design and Im-plementation, June 1997.[Pot96] F. Pottier. Simplifying Subtyping Constraints. InProceedings of the 1996 ACM SIGPLAN Inter-national Conference on Functional Programming(ICFP '96), pages 122{133, January 1996.[PS91] J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Inference. In Proceedings of theACM Conference on Object-Oriented program-ming: Systems, Languages, and Applications,October 1991.[Rey69] J. C. Reynolds. Automatic Computation of DataSet De�nitions, pages 456{461. Information Pro-cessing 68. North-Holland, 1969.[SH97] M. Shapiro and S. Horwitz. Fast and Accu-rate Flow-Insensitive Points-To Analysis. In Pro-ceedings of the 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-ming Languages, pages 1{14, January 1997.[Shi88] O. Shivers. Control Flow Analysis in Scheme. InProceedings of the ACM SIGPLAN '88 Confer-ence on Programming Language Design and Im-plementation, pages 164{174, June 1988.[Shm83] O. Shmueli. Dynamic Cycle Detection. Informa-tion Processing Letters, 17(4):185{188, 8 Novem-ber 1983.[Ste96] B. Steensgaard. Points-to Analysis in AlmostLinear Time. In Proceedings of the 23rd AnnualACM SIGPLAN-SIGACT Symposium on Prin-ciples of Programming Languages, pages 32{41,January 1996.[TS96] V. Trifonov and S. Smith. Subtyping Con-strained Types. In Proceedings of the 3rd Inter-national Static Analysis Symposium, pages 349{365, September 1996.12

