
Interactive Construction of 3D Models from Panoramic Mosaics

Heung-Yeung Shum
Microsoft Research

Mei Han
Carnegie Mellon University

Richard Szeliski
Microsoft Research

Abstract
This paper presents an interactive modeling system that
constructs 3D models from a collection of panoramic im-
age mosaics. A panoramic mosaic consists of a set of
images taken around the same viewpoint, and a transfor-
mation matrix associated with each input image. Our sys-
tem first recovers the camera pose for each mosaic from
known line directions and points, and then constructs the
3D model using all available geometrical constraints. We
partition constraints intosoftandhard linear constraints so
that the modeling process can be formulated as alinearly-
constrained least-squaresproblem, which can be solved
efficiently using QR factorization. The results of extract-
ing wire frame and texture-mapped 3D models from single
and multiple panoramas are presented.

1 Introduction
A great deal of effort has been expended on 3D scene
reconstruction from image sequences (with calibrated or
uncalibrated cameras, e.g., [FSL+95]) using computer vi-
sion techniques. Unfortunately, the results from most au-
tomatic modeling systems are disappointing and unreliable
due to the complexity of the real scene and the fragility of
the vision techniques. Part of the reason is the demand for
accurate correspondences (e.g., point correspondence) re-
quired by many computer vision techniques such as stereo
and structure from motion. Moreover, such correspon-
dences may not be available if the scene consists of large
untextured regions.

Fortunately, for many real scenes, it is relatively
straightforward to interactively specify corresponding
points, or lines, or planes. For example, building inte-
riors and exteriors provide vertical and horizontal lines
and parallel and perpendicular planes. These constraints
have been exploited in several interactive modeling sys-
tems. For example, PhotoModeler1 is a commecial prod-
uct which constructs 3D models from several images, us-
ing photogrammetry techniques and manually specified
points. Explicit camera calibration is therefore necessary.

1www.photomodeler.com

The TotalCalib system2, on the other hand, estimates the
fundemental matrix from a few selected matched points
[BR97]. It then predicts other possible matching points
from one image to others. In Becker’s modeling system3,
the problem of lens distortion (encounted in images taken
with wide field of view lens) is also considered [BB95].
By employing the known structure of building exteriors,
the Facade system4 directly recovers a solid 3D model
(blocks) from multiple images [TDM96].

Our system differs from previous interactive modeling
systems in that we use multiple panoramic image mosaics
(therefore large fields of view), instead of multiple images
(generally small fields of view). A panoramic mosaic is a
collection of images taken from the same viewpoint, and
registered together to form one large image. Panoramas
offer several advantages over regular images. First, we
can decouple the modeling problem into a zero baseline
problem (building panoramas from images taken with ro-
tating camera) and a wide baseline stereo or structure from
motion problem (recovering 3D model from one or more
panoramas). Second, the camera calibration problem is
implicitly recovered as part of the panorama construction
[Ste95, KW97, SK97]. Due to recent advances, it is now
possible to construct panoramas even with hand-held cam-
eras [SS97b].

Previous work on 3D reconstruction from multiple
panoramas [MB95, KS96] has not attempted to exploit
important regularities present in the environment, such
as walls with known orientations. Fortunately, the man-
made world is full of constraints such as parallel lines,
lines with known directions, planes with lines and points
on them, etc.. Using these constraints, we can construct a
fairly complex 3D model from even a single panorama. Of
course the model recovered is only up to a scale, unless we
have some knowledge of the scene (e.g., length or width of
a room). Using multiple panoramas, more complete and
accurate 3D models can be constructed.

We introduce our interactive modeling system in Sec-

2www.inria.fr/robotvis/personnel/sbougnou
3sbeck.www.media.mit.edu/people/sbeck
4www.cs.berkeley.edu/debevec/Research



O

Oc

Os

World Coordinate

Camera Coordinate Screen Coordinate

T

(R, t)

Figure 1: Coordinate systems.

tion 2, explain how to estimate camera orientations us-
ing known line directions in Section 3, recover line direc-
tions and plane normals in Section 4, and recover camera
translations in Section 5. Section 6 presents our approach
of combining all possible constraints to form a linearly-
constrained least-squares problem. Techniques for build-
ing models from multiple panoramas are discussed in Sec-
tion 7. Examples of 3D models from single and multiple
panoramas are shown in Section 8. We close the paper
with a discussion of potential extentions to the system.

2 Interactive modeling system
Our modeling system uses one or more panoramas.5 For
each panorama, we draw points, lines, and planes, set ap-
propriate properties for them, and then recover the 3D
model. These steps of interactively drawing geometric
items, setting up properties, and modeling can be repeated
in any order to refine or modify the model. The model-
ing system attempts to satisfy all possible constraints in a
consistent and coherent way.

2.1 Representation
Three coordinate systems are used in our work (Figure
1). The first is the world coordinate system where the 3D
model geometry (planes, lines, vertices) is defined. The
second is the ‘‘2D’’6 camera coordinate system (panorama
coordinates). The third is the screen coordinate system
where zoom and rotation (pan and tilt, but no roll) are
applied to facilitate user interaction. While each panorama
has a single 2D coordinate system, several views of a given
panorama can be open simultaneously, each with its own
screen coordinate system.

We represent the 3D model by a set of points, lines and
planes. Each point is represented by its 3D coordinatex.
Each line is represented by its line directionm and points
on the line. Each plane is defined by(n, d) wheren is the

5Our system can handle calibrated (non-panoramic) images as well
— these are simply treated as simple, narrow field of view panoramas.
However, the recovered estimates (e.g., vanishing points and hence cam-
era orientations) will not be as accurate with narrow field of view images.

6Each point (or pixel) on the panorama has only two degrees of free-
dom because its distance from camera is not known.

normal,d is the distance to the origin, andn · x + d = 0
or (n, d) · (x, 1) = 0. A plane consists of a set of vertices
and lines on it.

Each ‘‘2D’’ model consists of a set of ‘‘2D’’ points and
lines extracted from a panorama. A panorama consists
of a collection of images and their associated transforma-
tions. A 2D pointx̃ (i.e., on a panorama) represents a
ray going through the 2D model origin (i.e., camera optical
center).7 Likewise, a 2D line (represented by its line direc-
tion m̃) lies on the ‘‘line projection plane’’ (with normal
ñp) which passes through the line and 2D model origin
(Figure 2).8 Therefore, a line direction in a 2D model can
not be uniquely determined by two points in 2D model.

Note that line directions and plane normals have a sign
ambiguity. These ambiguity problems will be discussed
in Section 3.

2.2 Modeling steps
Many constraints exist in real scenes. For example, we
may have known quantities like points, lines, and planes.
Or we may have known relationships such as parallel and
vertical lines and planes, points on a line or a plane. With
multiple panoramas, we have more constraints from cor-
responding points, lines and planes.

Some of these constraints are bilinear. For example, a
point on a plane is a bilinear constraint in both the point lo-
cation and the plane normal. However, plane normals and
line directions can be recovered without knowing plane
distance and points. Thus, in our system we decouple the
modeling process into several linear steps:

• recovering camera orientations (R) from known line
directions

• estimating plane normals (n) and line directions (m)

• recovering camera translations (t) from known points

• estimating plane distances (d), vertex positions (x)

These steps are explained in detail in the next sections.

3 Recovering camera rotation
We discuss in this section how to recover camera orienta-
tions from known line directions. The camera poses de-
scribe the relationship between the 2D models (panorama
coordinate systems) and the 3D model (world coordinate
system).

To recover the camera rotation, we use lines with known
directions. For example, one can easily draw several ver-
tical lines at the intersections of walls and mark them to
be parallel to theZ axis of the world coordinate system.

7We use the notatioñx for a 2D point,x for a 3D point, and̂x for
a 3D point whose position is known. Likewise for line directions, plane
normals, etc..

8If a pixel has the screen coordinate(u, v, 1), its 2D point on the
panorama is represented by(u, v, f) where f is the focal length.



Oc

x2

x1

np

Z Z

X

Figure 2: Camera rotation from 3 line directions.

3.1 Minimum condition
Lemma 1 (Minimum condition) Given two vertical
lines and a horizontal line, the camera rotation matrix
can be recovered.

Each line forms a projection plane (with normalñp)
through the camera origin. Given two pointsx̃1 and x̃2
on a line, the plane normal can be computed by the cross
productñp = x̃1 × x̃2 (Figure 2). The length of̃np is a
good confidence (or certainty) measure of the normalñp.

Let the camera rotationR = [rxryrz]. Each vertical
line parallel to theZ axis (and the plane formed with the
origin) gives a constraint̃np · rz = 0.

From two known vertical lines,̃np1 · rz = 0, andñp2 ·
rz = 0, we haverz = ñp1 × ñp2. Note that there is a sign
ambiguity for the recoveredrz. If we have more vertical
lines, we can formulate the recovery ofrz as a standard
minimum eigenvalue problem.

With a known horizontal line (e.g., parallel to theX
axis), we have a constraint onrx (ñpj · rx = 0). Thus
rx = rz × ñpj becauserz · rx = 0. Again there is a
sign ambiguity for the recoveredrx. Finallyry = rz ×rx

completesR.
Obviously, the camera rotation can also be computed

if two horizontal lines (e.g., parallel to theX axis) and a
vertical line are known.

3.2 Overconstrained problem
Lemma 2 (General condition) Given at least two sets of
parallel lines of known directions, the camera rotation ma-
trix can be recovered.

We now show how to incorporate all constraints to re-
cover camera pose using unit quaternion. As shown above,
if we have a pair of parallel lines with ‘‘line projection
plane’’ normals as̃npj andñpk, the line directionm̃i can
be estimated as̃npj × ñpk. Again, rather than normaliz-
ing m̃i, we can leave it unnormalized since its magnitude
denotes own confidence in this measurement. Given the
true line directionm̂i in the world coordinate, we can for-
mulate the camera pose recovery as

arg max
R

N∑
i=1

m̂i · (RT m̃i) (1)

with N ≥ 2, which leads to a maximum eigenvalue prob-
lem using unit quaternion.

However, the resulting camera rotationR can still be
ambiguous due to the sign ambiguities in line directions
m̃. We solve this problem by specifying a few vertices
with known coordinates, rather than asking the user to
specify a direction for each line.

3.3 Line direction from parallel lines
More generally, the line direction recovery problem can be
formulated as a standard minimum eigenvector problem.
Because each ‘‘line projection plane’’ is perpendicular to
the line (i.e.,̃npi · m̃ = 0), we want to minimize

e =
∑

i

(ñpi · m̃)2 = m̃T (
∑

i

ñpiñT
pi)m̃. (2)

This is equivalent to finding the vanishing point of the lines
[CW90]. The advantage of the above formulation is that
the sign ambiguity of̃npi can be ignored. When only two
parallel lines are given, the solution is simply the cross
product of two line projection plane normals.

4 Estimating plane normals
Once we have camera pose, we can recover the scene ge-
ometry (i.e., points, lines, and planes). Because of the bi-
linear nature of some constraints (such as points on planes),
we recover plane normals (n) before solving for plane dis-
tances (d) and points (x). If a normal is given (north, south,
up, down, etc.), it can be enforced as a hard constraint (see
Section 6.1). Otherwise, we compute the plane normaln
by finding two line directions on the plane.

If we draw two pairs of parallel lines (a parallelogram)
on a plane, we can recover the plane normal. Because
R has been estimated, and we know how to compute a
line direction (̃m) from two parallel lines, we obtainm =
RT m̃. From two line directionsm1 andm2 on a plane,
the plane normal can be computed asn = m1 × m2.

A rectangle is a special case of parallelogram. We can
recover the plane normal of a rectangle if we have 3 lines of
the rectangle. As with the parallelogram, we get one line
directionm1 from 2 parallel lines. And becausem1·m2 =
0 andnp2 · m2 = 0, wherenp2 = RT ñp2, we obtain the
other line directionm2 = m1 × np2. Unlike [Har89], we
do not need to know specify all four corners of a rectangle.

Using the techniques described above, we can therefore
recover the surface orientation of an arbitrary plane (e.g.,
tilted ceiling) provided either we can draw a parallelogram
(or rectangle) on the plane.



5 Recovering camera translation
A point on a 2D model (panorama) represents a ray from
the camera origin through the pixel on the image. This con-
straint can be expressed in different ways. For example,
we can relate each point in 3D model to its 2D counterpart
by a scalek, i.e.,

(x − t) = kRT x̃. (3)

Alternatively, the 3D point should lie on the ray repre-
sented by the 2D point,

(x − t) × RT x̃ = 0, (4)

which is equivalent to

(x − t) · (RT p̃j) = 0, j = 0, 1, 2, (5)

wherep̃0 = (−x2, x1, 0), p̃1 = (−x3, 0, x1) andp̃2 =
(0,−x3, x2) are three directions perpendicular to the ray
x̃ = (x1, x2, x3). Note that only two of the three con-
straints are linearly independent.9 Thus, camera transla-
tion t can be recovered as a linear least-squares problem if
we have two or more given points. Given a single known
point, t can be recovered only up to a scale. In practice,
it is convenient to fix a few points in 3D model, such as
the origin (0, 0, 0). These given points are also used to
eliminate the ambiguities in recovering camera pose.

For a single panorama, the translationt is set to zero if
no point in 3D model is given. This implies that the camera
coordinate coincides with the 3D model coordinate. We
should point out that it is not necessary to recover camera
translation independently; it can be solved for along with
plane distance and points as shown in the next section.

6 Estimating the 3D model
6.1 Hard and soft constraints
Given camera pose, line directions, and plane normals,
recovering plane distances (d), 3D points (x), and camera
translationt if desired, can be formulated as a linear system
consisting of all possible constraints. By differentiating
hard constraints from soft ones, we obtain a least-squares
system with equality constraints. Intuitively, the differ-
ence between soft and hard constraints is their weights in
the least-squares formulation. Soft constraints have unit
weights, while hard constraints have very large weights
[GV96].

Some constraints (e.g., a point is known) are inherently
hard, therefore equality constraints. Some constraints
(e.g., a feature location on a 2D model or panorama) are
most appropriate as soft constraints because they are based
on noisy image measurements. But most constraints can

9The third constraint with minimum‖p̃i‖2 is eliminated.

Type Constraint n Soft Hard

Known point x̂i 3 x
Known plane d̂i 1 x
‖ planes di − dj 1 x
Point/model (x − t) · pj = 0 2 x
Point/plane xi · n̂k + dk = 0 1 x
Point/plane xi · nk + dk = 0 1 x
Points/line (xi − xj) × m̂ = 0 2 x
Points/line (xi − xj) × m = 0 2 x
known length xi − xj = cm̂ 3 x
known length xi − xj = cm 3 x

Table 1: Hard and soft constraints (the third columnn
represents the number of constraints)

be considered as either hard or soft. It is a design deci-
sion why and when those constraints should be considered
hard. Table 1 lists all constraints used in our modeling sys-
tem. Again, we use the notationŝm andn̂ to represent the
given line directionm and plane normaln, respectively.

Take a point on a plane for an example. If the plane
normaln̂k is given, we consider the constraint (xi · n̂k +
dk = 0) as hard. This implies that the point has to be on
the plane, only its location can be adjusted. On the other
hand, if the plane normalnk is estimated, we consider the
constraint (xi · nk + dk = 0) as soft. This could lead to
an estimated point that is not on the plane at all. So why
not make the constraint (xi · nk + dk = 0) hard as well?

The reason is that we may end up with a very bad model
if some of the estimated normals have large errors. One
has to be cautious not to have too many hard constraints,
which could conflict with one another or make other soft
constraints insignificant.

6.2 Equality-constrained L-S
To satisfy all possible constraints, we formulate our model-
ing process as an equality-constrained least-squares prob-
lem. In other words, we would like to solve the linear
system (soft constraints)

Ax = b (6)

subject to (hard constraints)

Cx = q (7)

whereA is m × n, C is p × n.
A solution to the above problem is to use the QR fac-

torization [GV96]. SupposeC is of full rank. Let

CT = Q
[

R
0

]
(8)

be the QR factorization ofCT whereQ (n × n) is or-
thorgonal,QQT = I, and R is p × p. If we define



QT x =
[

x1
x2

]
, AQ = (A1,A2), whereA1 is m × p,

A2 is m × (n − p), x1 is p × 1, andx2 is (n − p) × 1 we
can recoverx1 becauseR is upper triangular and

Cx = CQQT x = RT x1 = q. (9)

Then we obtainx2 from the unconstrained least-squares
‖A2x2 − (b − A1x1)‖2 because

Ax − b = AQQT x − b
= A1x1 + A2x2 − b
= A2x2 − (b − A1x1).

Finally x = Q
[

x1
x2

]
.

If C is not of full rank, other approaches such as the
elimination method [SS97a] can be used.

6.3 Decomposing the linear system
Before we can apply the equality-constrained linear system
solver, we must check whether the linear system formed by
all constraints is solvable. In general, the system may con-
sist of several subsystems (connected components) which
can be solved independently. For example, when model-
ing a room with a computer monitor floating in the space
not connected with any wall, ceiling or floor, we may have
a system with two connected components. To find all
connected components, we use depth first search to step
through the linear system. For each connected components
we check that:

• the number of equations10 is no fewer than the number
of unknowns,

• the right hand side is a non-zero vector, i.e., some
minimal ground truth data has been provided11

• the hard constraints are consistent.12

If any of the above is not satisfied, the system is declared
unsolvable, and a warning message is then generated to
indicate which set of unknowns cannot be recovered.

7 Multiple panoramas
To build 3D models from multiple panoramas, we do:

1. insert a new panorama

2. repeat steps of modeling from a single panorama to
obtain a rough camera pose for current view

10This includes both hard and soft constraints.
11In principle, we can still solve the system without any ground truth

for multiple panoramas, but this requires finding the unit norm solution
of the homogeneous set of equations.

12We can use QR decomposition ofC = Q1R1, or R1x = QT
1 q

to check if all zero rows ofR1 correspond to zero entries ofQT
1 q.

3. project the existing model onto the new panorama
using the rough camera pose

4. fix up the predicted feature locations by dragging
them to the right positions

5. recover a new model using all constraints available in
the multiple panoramas.

To recover the 3D model using multiple panoramas, we
use bundle adjustment, i.e., either we update(d,x, t) using
linear least-squares, or we also update(R,m,n) using full
bilinearly constrained non-linear least-squares. However,
to better handle feature measurements taken from different
viewpoints, it is more optimal [Zha97] to modify Eq.(5)
s.t.

(x − t)
‖x − t‖ · (RT p̃j) = 0, j = 0, 1. (10)

8 Experiments
We have implemented our system on a PC and tested it
with single and multiple panoramas. The system consists
of two parts: the interface (viewing the panorama with
pan, tilt, and zoom control) and the modeler (recovering
the camera pose and the 3D model). Figure 3 shows a
spherical panoramic image on the left and a simple recon-
structed 3D model on the right. The coordinate system on
the left corner (red) is the world coordinate, and the coor-
dinate system in the middle (green) is the camera coordi-
nate. The panorama is composed of 60 images using the
method of creating full-view panorama [SS97a]. Corre-
sponding (6) texture maps (without top and bottom faces)
are shown in Figure 4. Notice how the texture maps in
Figure 4 have different sampling rates from the original
images. The sampling is the best (e.g., Figure 4(b)) when
the surface normal is parallel with the viewing direction
from the camera center, and the worst (e.g., Figure 4(d))
when perpendicular. This also explains why the sampling
on the left is better than that on the right in Figure 4(a).

Figure 5 shows two views of our interactive modeling
system. Green lines and points are the 2D items that are
manually drawn and assigned with properties, and blue
lines and points are projections of the recovered 3D model.
The system is easy to use. It took about 15 minutes for
the authors to build the simple model in Figure 3. In 30
minutes, we can construct the more complicated model
shown in Figure 6.

Figures 7 and 8 show an example of building 3D models
from multiple panoramas. Figure 7 shows two spherical
panoramas built from image sequences taken with a hand-
held digital video camera. Figure 8 shows two views of
reconstructed 3D wireframe model from the two panora-
mas in Figure 7. Notice that the occluded middle area in
the first panorama (behind the tree) is recovered because
it is visible in the second panorama.



Figure 3: 3D model from a single panorama.

(a) (b)

(c) (d) (e) (f)
Figure 4: Texture maps (6) for the 3D model.

Figure 5: Two views of the interactive system.

Figure 6: A more complex 3D model from a single panorama.

Figure 7: Two input panoramas of an indoor scene.



Figure 8: Two views of a 3D model from multiple panoramas.

9 Discussion and conclusions
In this paper, we have presented a system for interactively
constructing 3D models from one or more panoramas. Our
system decomposes the modeling process into a zero base-
line problem (panorama construction) and a wide baseline
problem (stereo or structure from motion). Our system
first recovers the camera pose for each panorama from
known line directions, and then constructs the 3D model
using all possible constraints. In particular, we carefully
partition the recovery problem into a series of linear esti-
mation stages, and divide the constraints into ‘‘hard’’ and
‘‘soft’’ constraints so that each estimation stage becomes a
linearly-constrained least-squares problem.

Our modeling system constructs accurate wire-frame
and realistic texture-mapped 3D models. Our modeling
approach has much less ambiguity than traditional struc-
ture from motion approaches because it uses wide field of
view images and therefore obtains better estimate of cam-
era rotation. It also exploits geometrical regularities and
therefore obtains more accurate estimates of the 3D model.
Our results show that it is desirable and practical for the
modeling system to take advantage of as many regulari-
ties and priori knowledge about man-made environments
[WH88] (such as vertice lines and planes) as possible.

We are working on several extensions to improve the us-
ability of our system. For example, we have implemented
an automatic line snapping technique which snaps lines to
their closest edges present in the panorama. We also plan
to incorporate automatic line detection, corner detection
as well as inter-image correspondence and other feature
detections to further automate the system. If we use more
features with automatic feature extraction and correspon-
dence techniques, robust modeling techniques should also
be developed.

We are also actively studying the problem of inverse
texture mapping. In particular, we want to develop tech-
niques for optimally extracting texture maps from multi-
ple panoramas, given an accurate 3D model or a rough
3D model. Another direction of future research is to apply
multiple baseline stereo algorithms [KS96, TDM96] using
the initial model from our interative system. Combining
all of these into one interactive modeling system will en-
able users to easily construct complex photorealistic 3D
models from images.

References
[BB95] S. Becker and V. M. Bove. Semiautomatic 3-D
model extraction from uncalibrated 2-d camera views. InSPIE
Vol. 2410, Visual Data ExplorationII, pages 447–461, Feb. 1995.

[BR97] S. Bougnoux and L. Robert. Totalcalib: a fast and
reliable system for off-line calibration of image sequences. In
CVPR’97, June 1997. The Demo Session.

[CW90] R. T. Collins and R. S. Weiss. Vanish point calculation
as a statistical inference on the unit sphere. InICCV’90, pages
400–403, Dec. 1990.

[FSL+95] O. D. Faugeras, Laveau S., Robert L., Csurka G., and
Zeller C. 3-D reconstruction of urban scenes from sequences of
images. Technical Report 2572, INRIA, 1995.

[GV96] G. Golub and C. F. Van Loan.Matrix Computation,
third edition. The John Hopkins University Press, 1996.

[Har89] R. M. Haralick. Determining camera parameters from
the perspective projection of a rectangle.Pattern Recognition,
22(3):225–230, 1989.

[KS96] S. B. Kang and R. Szeliski. 3-D scene data recovery
using omnidirectional multibaseline stereo. InCVPR’96, pages
364–370, June 1996.

[KW97] S. B. Kang and R Weiss. Characterization of errors
in compositing panoramic images. InCVPR’97, pages 103–109,
June 1997.

[MB95] L. McMillan and G. Bishop. Plenoptic modeling: An
image-based rendering system.SIGGRAPH’95, pages 39–46,
August 1995.

[SK97] H. S. Sawhney and R. Kumar. True multi-image align-
ment and its application to mosaicing and lens distortion correc-
tion. In CVPR’97, pages 450–456, June 1997.

[SS97a] H.-Y. Shum and R. Szeliski. Panoramic image mo-
saicing. Technical Report MSR-TR-97-23, Microsoft Research,
1997.

[SS97b] R. Szeliski and H.-Y. Shum. Creating full view
panoramic image mosaics and texture-mapped models.SIG-
GRAPH’95, pages 251–258, August 1997.

[Ste95] G. Stein. Accurate internal camera calibration using
rotation, with analysis of sources of error. InICCV’95, pages
230–236, June 1995.

[TDM96] C. J. Taylor, P. E. Debevec, and J. Malik. Reconstruct-
ing polyhedral models of architectural scenes from photographs.
In ECCV’96, volume 2, pages 659–668, April 1996.

[WH88] E. L. Walker and M. Herman. Geometric reasoning
for constructing 3D scene descriptions from images.Artificial
Intelligence, 37:275–290, 1988.

[Zha97] Z. Zhang. Determining the epipolar geometry and its
uncertainty: A review.IJCV, accepted 1997.


