
1

Abstract

The Ambient Calculus is a process calculus where processes may re-
side within a hierarchy of locations and modify it. The purpose of the
calculus is to study mobil ity, which is seen as the change of spatial
configurations over time. In order to describe properties of mobile
computations we devise a modal logic that can talk about space as
well as time, and that has the Ambient Calculus as a model.

1 Introduction

In the course of our ongoing work on mobili ty [3,4,5,12], we have
often struggled to express precisely certain properties of mobile
computations. Informally, these are properties such as “ the agent has
gone away”, “eventually the agent crosses the firewall” , “every
agent always carries a suitcase” , “somewhere there is a virus” , or
“ there is always at most one agent called n here” . There are several
conceivable ways of formalizing these assertions. It is possible to
express some of them in terms of equations [12], but this is some-
times diff icult or unnatural. It is easier to express some of them as
properties of computational traces, but this is very low-level.

Modal logics (particularly, temporal logics) have emerged in
many domains as a good compromise between expressiveness and
abstraction. In addition, many modal logics support useful computa-
tional applications, such as model checking. In our context, it makes
sense to talk about properties that hold at particular locations, and it
becomes natural to consider spatial modali ties for properties that
hold at a certain location, at some location, or at every location.

Space

Interesting spatial structures can be represented conveniently as un-
ordered edge-labeled trees, where edge labels correspond to names
of sublocations, and subtrees correspond to sublocations. Such a rep-
resentation of locations is shared by the Ambient Calculus [3], the
Distributed Join Calculus [10], the Seal Calculus [20], and trivially
by the many distributed process calculi with a flat location structure
(e.g.: [2]).

The following edge-labeled tree represents two contiguous lo-
cations, a and b, such that b has no sublocations, and a has a sublo-
cation called p. The diagram on the right gives a more intuitive but
equivalent description of location contiguity and containment:

In the Ambient Calculus, contiguous locations (or processes)
are represented by standard parallel composition (P | Q), and named
locations are represented by ambients (n[P]) which name a location
n with contents P. This fragment of the Ambient Calculus, together
with a void process (0) and simple syntactic equivalences, amounts
to a textual representation of edge-labeled trees. The example above
could be written as a[p[0]] | b[0], assuming there are no active pro-
cesses within the locations.

Even before considering process execution, we can talk about
spatial properties and spatial specifications. For example, we have
the following correspondence between spatial constructs in the Am-
bient Calculus and certain formulas of the logic we develop later:

We have a logical constant 0 that is satisfied by the process 0 repre-
senting void. We have logical propositions of the form n[$] (mean-
ing that $ holds at location n) that are satisfied by processes of the
form n[P] (meaning that process P is located at n) provided that P
satisfies $. We have logical propositions of the form $ | % (mean-
ing that $�and %�hold contiguously) which are satisfied by contigu-
ous processes of the form P | Q if P satisfies $�and Q satisfies %, or
vice versa.

Time

Spatial configurations evolve over time as a consequence of the ac-
tivities of processes. For example, our initial tree may go through the
following two steps of evolution, as the result of a process moving
the location p from a to b through the ether in between.

Permission to make digita/hard copies of all or part of this material for personal or class-
room use is granted without fee provided that the copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copyright is by permission of the ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires spe-
cific permission and/or fee.
POPL 2000, Boston, USA.
© 2000 ACM.

Processes
0
n[P]
P | Q

(void)
(location)
(composition)

Formulas
0
n[$]
$ | %

(there is nothing here)
(there is one thing here)
(there are two things here)

a b

p

p
a b

Î

a b
p

Î

a b

p

Anytime, Anywhere
Modal Logics for Mobile Ambients

Luca Cardelli, Andrew D. Gordon

Microsoft Research

2

We can think of processes as sitting at the nodes of edge-labeled
trees, and directing the movement of those nodes through the trees.
So, the steps above could be caused by a process executing move-
ment instructions at the node under p.

Mobility

We regard mobili ty as the evolution of spatial configurations over
time. A specification logic for mobil ity should be able to talk about
the structure of spatial configurations and about their evolution
through time; that is, it should be a modal logic of space and time.

A typical specification would say that the configuration looks
initially like a certain tree, and eventually li ke some other tree. In
some cases we may want to be very precise about describing the
structure of locations, even though this runs against the traditional
attitude in logics for process calculi that prevents “counting” the
number of processes (or locations) involved. Our logic can be very
specific, in this sense.

Of course, since we are dealing with specifications, we may
also want to be able to be imprecise, and describe things that happen
“somewhere” or “sometime”. Rarely, though, we want to be very
precise about particular execution steps, so that the same flavor of
logic of mobility seems applicable to a variety of calculi. In fact, the
notion of mobil ity as evolution of location trees is shared by several
calculi, including Ambients, Join, and Seal, although the mechanism
and properties of mobili ty steps differ greatly between them.

In this paper, we concentrate on the Ambient Calculus for con-
creteness, but our main thrust is applicable to any distributed process
calculus that includes a hierarchical and dynamic structure of loca-
tions.

Paper Outline

Spatial modali ties have an intensional flavor that distinguishes our
logic from other modal logics for concurrency. Previous work in the
area concentrates on properties that are invariant up to strong equiv-
alences such as bisimulation [15,6], while our properties are invari-
ant only up to simple spatial rearrangements. Some of our tech-
niques can be usefully applied to other process calculi, even ones
that do not have locations, such as CCS.

We start from a computational basis: a process calculus, sum-
marized in Section 2, that acts as a model for the logic. In Section 3
we introduce logical formulas and a notion of satisfaction. In Section
4, we derive logical inference rules, including rules for time, space,
and satisfiability modalities, and novel rules for locations and pro-
cess composition (the rules are summarized in the Appendix). At the
end of this section we give a detailed example of logical inference.
In Section 5 we investigate model checking of mobile programs, on
the basis of the satisfaction relation between processes and formulas.
Finally, in Section 6, we compare our logic with relevant and linear
logics.

2 The Ambient Calculus with Public Names

In this paper we consider only ambients having public names; that is
we do not deal with name restriction and scope extrusion. Handling
of private names in a logic is a very interesting topic, but we leave it
for future work.

2.1 Ambients

We summarize a modified version of the basic Ambient Calculus of
[3]. The changes consist in removing name restriction, and in

strengthening the definition of structural congruence so that it char-
acterizes the intended equivalence on spatial configurations.

The following table summarizes the syntax of processes. We
have separated the process constructs into spatial and temporal; this
is similar to the distinction between static and dynamic constructs in
CCS [17]. This paper focuses on the spatial constructs; the temporal
constructs and the dynamic behavior are necessary but secondary for
our current purposes.

Processes

The set of free names of a process P, written fn(P), is defined as usu-
al; the only binder is in the input action. We write P{ n←M} for the
substitution of the message M for each free occurrence of the name
n in the process P. Similarly for M{ n←M’ } . The 0 process is often
omitted in the contexts n[0] and M.0, yielding n[] and M.

2.2 Structural Congruence and Reduction

Structural congruence is a relation between processes; it is used
heavily in the logic, as well as in the reduction semantics. Intuitively,
structural congruence equates processes up to simple “rearrange-
ment” of parts, without any computational significance. We can
identify five groups of rules in the following table: for equivalence,
for congruence of spatial operators, for composition, for replication,
and for temporal operators and paths.

Structural Congruence

P,Q,R ::=
0
P | Q
!P
M[P]
M.P
(n).P
jMk

processes
void
composition
replication
ambient
capabil ity action
input action
output action

M ::=
n
in M
out M
open M
ε
M.M’

messages
name
can enter into M
can exit out of M
can open M
null
composite

P � P
P � Q ⇒ Q � P
P � Q, Q � R ⇒ P � R

P � Q ⇒ P | R � Q | R
P � Q ⇒ !P � !Q
P � Q ⇒ M[P] � M[Q]

P | Q � Q | P
(P | Q) | R � P | (Q | R)
P | 0 � P

(Struct Refl)
(Struct Symm)
(Struct Trans)

(Struct Par)
(Struct Repl)
(Struct Amb)

(Struct Par Comm)
(Struct Par Assoc)
(Struct Par Zero)

!(P | Q) � !P | !Q
!0 � 0
!P � P | !P
!P � !!P

(Struct Repl Par)
(Struct Repl Zero)
(Struct Repl Copy)
(Struct Repl Repl)

spatial

temporal

capabilities

paths

names

3

Spatial configurations are ambient configurations consisting
only of spatial operators. For example, a[b[0] | !c[0 | 0] | !0] is a spa-
tial configuration. These configurations have a natural interpretation
as edge-labeled finite-depth trees, where replication introduces infi-
nite branching. The rules for structural congruence are sound and
complete for equivalence of these trees. We do not elaborate this fur-
ther, but it suffices to say that this completeness result motivates the
choice of axioms for structural congruence, and particularly the ax-
ioms for replication (which are the same as in Engelfriet’s work on
the π-calculus [9]).

Reduction

The reduction relation describes the dynamic behavior of am-
bients. In particular, the rules (Red In), (Red Out) and (Red Open)
represent mobility, while (Red Comm) represents local communica-
tion (see [3] for an extended discussion). For example, the process:

represents a packet p that travels out of host a and into host b, where
it is opened, and its contents m are read and used to create a new am-
bient. The process reduces in four steps (illustrating each of the four
reduction rules) to the residual process a[] | b[m[]]. The first three
states correspond to the tree diagrams in the Introduction.

2-1 Facts about Structural Congruence
(1) P | Q ����0 iff P ����0 and Q ����0.

(2) n[P] #�0.

(3) n[P] ��Q | R iff either Q ��n[P] and R ��0, or Q ��0 and R ��n[P].

(4) m[P] �� n[Q] iff m = n and P �� Q.

(5) m[P] | n[Q] ��m’ [P’] | n’ [Q’] iff either m = m’ , n = n’ , P � P’ ,
Q � Q’ , or m = n’ , n = m’ , P � Q’ , Q � P’ .

1

3 The Logic

In a modal logic, the truth of a formula is relative to a state (or
world). In our case, the truth of a space-time modal formula is rela-
tive to the here and now. Each formula talks about the current time,
that is, the current state of execution, and the current place, that is,
the current location. For example, the formula n[0] is read: there is

here and now an empty location called n. The operator n[$] repre-
sents a single step in space, allowing us to talk about the place one
step down into n. Another operator, �$, allows us to talk about an
arbitrary number of steps in space; this is akin to the temporal even-
tuality operator, 2$.

3.1 Logical Formulas

The syntax of logical formulas is summarized below. This is a modal
predicate logic with classical negation. As usual, many standard
connectives are interdefinable. The meaning of the formulas wil l be
given shortly in terms of a satisfaction relation. Informally, the first
three formulas (true, negation, disjunction) give propositional logic.
The next three (void, location, composition) capture spatial config-
urations, as we discussed. Then we have quantification over names,
the two temporal and spatial modalities, and two further operators
that we explain later. Quantified variables range only over names:
these variables may appear in the location and location adjunct con-
structs.

Logical Formulas

The free names of a formula, fn($), are easily defined since there are
no name binders. The free variables of a formula, fv($), are defined
along standard lines: only quantifiers bind variables. A formula $ is
closed if fv($) = Ô.

3.2 Satisfaction

The satisfaction relation P � $�means that the process P satisfies the
closed formula $. This relation is defined inductively in the follow-
ing table, where Π is the sort of processes, Φ is the sort of formulas,
ϑ is the sort of variables, and Λ is the sort of names. We are very ex-
plicit about quantification and sorting of meta-variables because of
subtle scoping issues, particularly in the definition of P � Òx.$. We
use the same syntax for logical connectives at the meta-level and ob-
ject-level, but this is unambiguous.

The meaning of the temporal modality is given by reductions in
the operational semantics of the Ambient Calculus. For the spatial
modality, we need the following definition: the relation P�P’ indi-
cates that P contains P’ within exactly one level of nesting; that is,
P’ is one step away from P in space, in some downward direction.

Then, P�*P’ is the reflexive and transitive closure of the previous re-
lation, indicating that P contains P’ at some nesting level. Note that
P’ consists of either the top level P, or the entire contents of an en-
closed ambient.

P � Q ⇒ M.P � M.Q
P � Q ⇒ (x).P � (x).Q

(Struct Action)
(Struct Input)

ε.P � P
(M.M’).P � M.M’ .P

(Struct ε)
(Struct .)

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R] (Red In)
m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R] (Red Out)
open n. P | n[Q] xyyz P | Q (Red Open)
(n).P | jMk xyyz P{ n←M} (Red Comm)
P xyyz Q ⇒ n[P] xyyz n[Q] (Red Amb)
P xyyz Q ⇒ P | R xyyz Q | R (Red Par)
P’ � P, P xyyz Q, Q � Q’ ⇒ P’ xyyz Q’ (Red �)
xyyz* is the reflexive and transitive closure of xyyz

a[p[out a. in b. jmk]] | b[open p. (x). x[]]

a[p[out a. in b. jmk]] | b[open p. (x). x[]]
xyyz a[] | p[in b. jmk] | b[open p. (x). x[]] (Red Out)
xyyz a[] | b[p[jmk] | open p. (x). x[]] (Red In)
xyyz a[] | b[jmk | (x). x[]] (Red Open)
xyyz a[] | b[m[]] (Red Comm)

η is a name n or a variable x

$, %, & ::=
T true
¬$ negation
$ ∨ % disjunction
0 void
η[$] location
$ | % composition
Òx.$ universal quantification over names
2$ sometime modality
�$ somewhere modali ty
$@η location adjunct
$©% composition adjunct

P�P’ iff Ón, P” . P � n[P’] | P”

4

Satisfaction

We spell out some of these definitions. A process P satisfies the
formula n[$] if there exists a process P’ such that P has the shape
n[P’] with P’ satisfying $. A process P satisfies the formula $ª | $¨
if there exist processes P’ and P” such that P has the shape P’ | P”
with P’ satisfying $ª and P” satisfying $¨. A process P satisfies the
formula 2$ if $ holds in the future for some residual P’ of P, where
“residual” is defined by Pxyz*P’ . A process P satisfies the formula
�$ if $ holds at some sublocation P’ within P, where “sublocation”
is defined by P�*P’ .

The last two connectives, @ and ©, can be used to express as-
sumption/guarantee specifications [1]; they were inspired by the
wish to express security properties. A reading of P � $@n is that P
(together with its context) manages to satisfy $ even when placed
into a location called n. A reading of P � $©% is that P (together
with its context) manages to satisfy % under any possible attack by
an opponent that is bound to satisfy $. Moreover, P � (4$)©(4$)
can be interpreted as saying that P preserves the invariant $. We will
see that these two connectives arise as natural adjuncts to the loca-
tion and composition connectives, respectively.

The definition of satisfaction is based heavily on the structural
congruence relation. This use of structural congruence may appear
arbitrary: other equivalence relations could be used in its place. We
have tried to motivate the choice of structural congruence by dis-
cussing in Section 2.2 how structural congruence precisely captures
the intuition of ambients as spatial configurations. Moreover, struc-
tural congruence is easily decidable, which is useful in model-
checking applications (see Section 5).

The following table lists some derived connectives, illustrating
some properties that can be expressed in the logic. The informal
meanings can be understood better by expanding out the definitions
from the table above. Some discussion follows.

Der ived Connectives

Syntactic conventions: ‘©’ , ‘2’ , ‘4’ , ‘�’ , and ‘�’ bind more strong-
ly than ‘ |’ ; and they all bind more strongly than the standard logical
connectives, which have standard precedences. Quantifiers extend
to the right as far as possible.

Decomposition is the DeMorgan dual of composition. A de-
composition formula $ || % is satisfied if for every parallel decom-
position of the process in question, either one component satisfies $
or the other satisfies %. Then, $Ò means that in every decomposition
either one component satisfies $ or the other satisfies F; since the
latter is impossible, in every possible decomposition one component
must satisfy $. For example: (n[T]⇒n[m[T]])Ò means that every
ambient n that can be found here contains a single subambient m.
The DeMorgan dual of $Ò is $Ó, which means that it is possible to
find a decomposition where one component satisfies $. For exam-
ple, n[m[T]Ó]Ó means that there is at least one ambient n here that
contains at least one subambient m.

Other operators are derived as DeMorgan duals: existential
quantification, and everytime and everywhere modalities. Examples
for these modalities are: 4n[T] (there is always a location called n
here), and �¬(n[T]Ó) (there is now no location called n anywhere).

Fusion, $ ∝ %, is an operator that arises in relevant logic (when
© is seen as relevant implication). In our context, $ ∝ % means that
there is a context satisfying %�that helps ensuring $. The adjunct of
fusion, $ |⇒ %, turns out to be very natural in specifications: it
means that in every decomposition, if one part satisfies $, then the
other part must satisfy %.

The following is a fundamental property of the satisfaction re-
lation; it states that satisfaction is invariant under structural congru-
ence of processes. In other words, logical formulas can only express
properties that are invariant up to structural congruence. The proof
is a simple induction on the structure of $.

3-1 Proposition (Satisfaction is up to �)
(P � $�∧ P � P’) ⇒ P’ � $

1
We end this section with an example of a proof that a certain

process satisfies a certain formula. A proof of even a very simple
negative formula requires techniques for analyzing the derivation of
structural congruences. For example, consider proving the following
assertion, where m ≠ n:

For a contradiction, suppose that m[] | n[] � Óx. x[T] | x[T]. By
definition, this means there is a P such that m[] | n[] � P and there is
a q with P � q[T] | q[T]. This implies that there are processes P’ and
P” such that m[] | n[] ��P’ | P” with P’ � q[T] and P” � q[T]. In
turn, P’ � q[T] implies there is Q’ such that P’ ��q[Q’]. Similarly,
P” � q[T] implies there is Q” such that P” ��q[Q”]. In summary:

According to the Fact 2-1(5), there are two ways in which this equa-
tion can have been derived. In either case, it follows that m = q and
n = q, and therefore m = n. This yields the desired contradiction, as
we are assuming that m ≠ n.

ÒP:Π.
ÒP:Π, $:Φ.

P � T
P � ¬$ $ ¬ P � $

ÒP:Π, $,%:Φ. P � $∨% $ P � $ ∨ P � %

ÒP:Π.
ÒP:Π, n:Λ, $:Φ.
ÒP:Π, $,%:Φ.

ÒP:Π, x:ϑ, $:Φ.
ÒP:Π, $:Φ.
ÒP:Π, $:Φ.

P � 0
P � n[$]
P � $ | %

P � Òx.$
P � 2$

P � �$

$ P � 0
$ ÓP’ :Π. P � n[P’] ∧ P’ � $
$ ÓP’ ,P” :Π. P � P’ |P”

∧ P’ � $ ∧ P” � %
$ Òm:Λ. P � ${ x←m}
$ ÓP’ :Π. Pxyz*P’ ∧ P’ � $
$ ÓP’ :Π. P�*P’ ∧ P’ � $

ÒP:Π, $:Φ.
ÒP:Π, $,%:Φ.

P � $@n
P � $©%

$ n[P] � $
$ ÒP’ :Π. P’ � $ ⇒ P|P’ � %

F $ ¬T
$ ∧ % $ ¬(¬$ ∨ ¬%)

false
conjunction

$ ⇒ % $ ¬$ ∨ % implication
$ ⇔ % $ ($ ⇒ %) ∧ (% ⇒ $) logical equivalence
$ || % $ ¬(¬$ | ¬%)
$Ò $ $ || F
$Ó $ $ | T
Óx.$ $ ¬Òx.¬$

decomposition
every component satisfies $
some component satisfies $
existential quantification

4 $ $ ¬2¬$

�$ $ ¬�¬$

everytime modality
everywhere modality

$ ∝ % $ ¬(% © ¬$)
$ |⇒ % $ ¬($ | ¬%)

fusion
fusion adjunct

m[] | n[] � ¬ Óx. x[T] | x[T]

m[] | n[] ��q[Q’] | q[Q”]

5

4 Validity

In this section, we study valid formulas, valid sequents, and valid
logical inference rules. All these are based on the satisfaction rela-
tion given in the previous section. Once the definition of satisfaction
is fixed, we are basically committed to whatever logic comes out of
it. Therefore, it is important to stress that the satisfaction relation ap-
pears very natural to us. In particular, the definitions of 0, n[$], and
$ | % seem inevitable, once we accept that formulas should be able
to talk about the tree structure of locations, and that they should not
distinguish processes that are surely indistinguishable (up to �). The
connectives $@n and $©%�have natural security motivations. The
modalities 2$�and �$�talk about process evolution and structure in
an undetermined way, which is good for mobility specifications. The
rest is classical predicate logic, with the ability to quantify over lo-
cation names.

Through the satisfaction relation, our logic is based on solid
computational intuitions. We should now approach the task of dis-
covering the rules of the logic without preconceptions. As we shall
see, what we get has famil iar as well as novel aspects.

4.1 The Meaning of Rules

A closed formula is valid if it is satisfied by every process. (For the
moment, we consider only validity for closed formulas, i.e., propo-
sitional validity.) We use validity for interpreting logical inference
rules, as described in the next definition. We use a linearized nota-
tion for inference rules, where the usual horizontal bar separating an-
tecedents from consequents is written ‘’ in-line, and ‘ ;’ is used to
separate antecedents.

Validity, Sequents, and Rules

We adopt a non-standard formulation of sequents, where each
sequent has exactly one assumption and one conclusion: $�L} %. Our
intention in doing so is to avoid pre-judging the interpretation of the
structural operator “ ,” in standard sequents. In our logic, by taking ∧
on the left and ∨ on the right of�L} as structural operators (i.e., as “ ,”),
all the standard rules of sequent and natural deduction systems with
multiple premises/conclusions can be derived. Instead, by taking | on
the left of�L} as a structural operator, all the rules of intuitionistic lin-
ear logic can be derived. Finally, by taking nestings of ∧ and | on the
left of L} as structural “bunches” , we obtain a bunched logic [18]. We
discuss this further in Section 6.

Noticeably, we abandon Gentzen’s distinction between struc-
tural rules and other logical rules, which has been a staple of formal
logic since [11]. We do not see this as a fundamental or irrevocable
step. Not all l ogics fit easily into Gentzen’s initial approach, and
many alternative sequent structures have been studied [7]. There-

fore, there may be formulations of our logic which identify a set of
structural rules, perhaps along the lines of [18]. At the current stage
in the development of our logic, however, it is unclear how to pro-
ceed in that direction.

4.2 Rules of the Logic

In the sequel, we organize our results into tables of Rules, which are
validated in the model, and into tables of Corollaries, which are de-
rived purely logically from the inference rules.

4.2.1 Propositions

The following is a non-standard presentation of the propositional se-
quent calculus [14], based on our single-assumption single-conclu-
sion sequents. In this presentation, the rules of propositional logic
become very symmetrical, and many proofs become more regular,
having to consider only single formulas instead of sequences of for-
mulas.

Propositional Rules

The standard deduction rules of propositional logic, both for the se-
quent calculus and for natural deduction (interpreting “ ,” as ∧ on the
left and ∨ on the right), are derivable from the rules in the table.

4.2.2 Composition

The logical rules of composition apply not only to our calculus but
also to any calculus that includes a standard process composition op-
erator, for example, CCS.

Composition Rules

The first two rules assert that 0 is part of any process, and that
if a part is non-0 so is the whole. The next three rules give associa-
tivity, commutativity, and congruence of composition.

The converse of the |-∨ distribution rule (| ∨), namely $ | &�∨
% | & L} ($∨%) | &, is derivable. So is a |-∧ distribution rule, ($∧%)

vld($) $ ÒP:Π. P � $ Validity for (closed) $

$�L} % $ vld($ ⇒ %) Sequent

$�xML} % $ $�L} % ∧ %�L} $ Double Sequent

$1�L} %1; ...; $n�L} %n� $0�L} %0 $ Inference Rule (n≥0)
$1�L} %1 ∧ ... ∧ $n�L} %n ⇒ $0�L} %0

$1�L} %1; ...; $n�L} %n� $�xML} % $ Double Conclusion
$1�L} %1 ∧ ... ∧ $n�L} %n ⇒ $0�xML} %0

$1�L} %1  $2�L} %2 $ Double Rule
$1�L} %1  $2�L} %2 ∧ $2�L} %2  $1�L} %1

(A-L) $∧(&∧')�L} %  ($∧&)∧'�L} %
(A-R) $�L} (&∨')∨%  $�L} &∨('∨%)
(X-L) $∧&�L} %  &∧$�L} %
(X-R) $�L} &∨%  $�L} %∨&
(C-L) $∧$�L} %  $�L} %
(C-R) $�L} %∨%  $�L} %
(W-L) $�L} %  $∧&�L} %
(W-R) $�L} %  $�L} &∨%
(Id)  $�L} $
(Cut) $�L} &∨%; $ª∧&�L} %ª  $∧$ª�L} %∨%ª

(T) $∧T�L} %  $ L} %
(F) $�L} F∨%  $ L} %
(¬-L) $�L} &∨%  $∧¬&�L} %
(¬-R) $∧&�L} %  $�L} ¬&∨%

(| 0)  $ | 0 xML} $
(| ¬0)  $ | ¬0 L} ¬0
(A |)  $ | (% | &) xML} ($ | %) | &
(X |)  $ | % L} % | $
(| L}) $ª�L} %ª; $¨�L} %¨  $ª | $¨ L} %ª | %¨

(| ∨)  ($∨%) | & L} $ | &�∨ % | &
(| ||)  $ª | $¨ L} ($ª | %¨)�∨ (%ª | $¨)�∨ (¬%ª | ¬%¨)
(| ©) $ | &�L} %  $�L} &©%

6

| & L} $ | &�∧ % | &. However, the converse of that, namely $ | &�∧ %
| & L} ($∧%) | &, is not sound. (Take $ = n[m[T]], % = n[p[T]] , & =
n[T], and P = n[m[]] | n[p[]]; then P � $ | & and P � % | &, but ¬ P
� ($∧%) | &.) As a consequence, one cannot always “push | inside
∧” on the left-hand side of a sequent. In particular, after an applica-
tion of (| L}) one cannot in general renormalize a sequent to bring ∧
(or “ ,”) to the top level.

The decomposition axiom, (| ||), can be used to analyze a com-
position $ª | $¨ with respect to arbitrarily chosen %ª�and %¨. An easy
consequence of it is ¬($ | %) L} ($ | T) ⇒ (T | ¬%), which means
that if a process cannot be decomposed into parts that satisfy $ and
%, but can be decomposed in such a way that a part satisfies $, then
it can also be decomposed in such a way that a part does not satisfy
%. An even simpler consequence is that ¬(T | %) L} T | ¬%, which
is one of the few cases in which one can push ¬ across |.

The rule (| ©) states that $ | %�and $©% are logical adjuncts1.
This has a large number of interesting consequences, most of them
deriving from the adjunction along standard lines.

Some Composition Corollar ies

It is worth pointing out that some composition rules produce in-
teresting interactions between the ∧ and | fragments of the logic. For
example, ($ | %) ∧ 0 L} $�is derivable using (| ||) and (| ¬0).

4.2.3 Locations

The location rules are specific to calculi with tree-structured loca-
tions, such as the Ambient Calculus.

Location Rules

The first two rules assert that locations are non-void and are not
decomposable. The next three rules give congruence and distributiv-

ity of locations with respect to ∧ and ∨. The rule (n[] @) states that
$@n and n[$] are adjuncts, and the rule (¬ @) states that the loca-
tion adjunct @ is self-dual.

Note that (n[] �L}) holds in both directions, and that the inverse
directions of (n[] ∧) and (n[] ∨) are derivable; hence, the location
fragment of the logic is particularly simple to handle.

Some Location Corollar ies

4.2.4 Time and Space Modalities

The “somewhere” modality was our starting point in developing our
logic. We can now investigate its properties.

Time and Space Modality Rules

The operators 2 and � obey the rules of S4 modalities (the first
6 rules in each column); these follow simply from reflexivity and
transitivity of xyyz* and �*. These operators, however, are not S5 mo-
dali ties, that is, 2$ L} 42$ is not valid (if $ may happen along some
reduction branch, it wil l not necessarily happen starting from every
reduction point), and neither is �$ L} ��$ (if $ holds in some sub-
location, it does not necessarily hold in some sublocation of every
sublocation).

The modalities differ prominently in the way they distribute
over compositions and locations, as seen in the subsequent 4 rules.

The last rule shows that the two modalities permute in one di-
rection: somewhere sometime implies sometime somewhere. But
the other direction is not sound. (Consider P = (open n. m[p[]]) | n[] .
Then P ��2�p[0], but P ¡��2p[0]).

Some Modali ty Corollar ies

1. We say that two binary operators -,. are logical adjuncts if $-&

L} %  $� L} &.%. The main adjunction of logic is given by the
pair ∧,⇒. Moreover, we say that two unary operators -,. are log-
ical adjuncts if -$�L} %  $�L} .%.

(©�L}) $ª�L} $; %�L} %ª  $©%�L} $ª©%ª

(©�|)  ($©%) | $ L} %
(©©)  ($©%) | (%©&) L} $©&
(©-L) ' L} $; % L} &  ' | ($©%) L} &
(| T)  $ L} $ | T
(| F)  $ | F L} F
(| ∧)  ($∧%) | & L} $ | &�∧ % | &
(| ∨)  $ | &�∨ % | & L} ($∨%) | &
(T ©)  T©$ L} $
(F ©)  T L} F©$
(©∧∨)  $©% L} ($∧&)©%.  $©(%∧&) xML} $ ©%�∧ $ ©&

 $©(&∧%) L} $©%.  ($∨&)©% xML} $ ©%�∧ & ©%
 $©% L} $©(&∨%).  $ ©%�∨ $ ©& L} $©(%∨&)
 ($∨&)©% L} $©%.  $ ©%�∨ & ©% L} ($∧&)©%

(n[]�¬0)  n[$]�L} ¬0
(n[]�¬ |)  n[$]�L} ¬(¬0 | ¬0)
(n[]�L}) $�L} %  n[$]�L} n[%]
(n[] ∧)  n[$]∧n[%]�L} n[$∧%]
(n[] ∨)  n[$∨%] L} n[$]∨n[%]
(n[] @) n[$]�L} %  $�L} %@n
(¬ @)  $@n�xML} ¬((¬$)@n)

(n[] F)  n[F]�L} F
(n[] ∧)  n[$∧%]�L} n[$]∧n[%]
(n[] ∨)  n[$]∨n[%] L} n[$∨%]
(@ L}) $�L} %  $@n�L} %@n

(n[$@n])  n[$@n]�L} $
(n[$]@n)  $�xML} n[$]@n

(n[¬$])  n[¬$]�L} ¬n[$]
(¬n[$])  ¬n[$]�xML} n[T] ⇒ n[¬$]

(2)  2$ xML} ¬4¬$ (�)  �$ xML} ¬�¬$

(4 K)  4($⇒%) L} 4$⇒4% (� K)  �($⇒%) L} �$⇒�%

(4 T)  4$ L} $ (� T)  �$ L} $
(4 4)  4$ L} 44$ (� 4)  �$ L} ��$

(4 T)  T L} 4T (� T)  T L} �T
(4 L}) $�L} %  4$�L} 4% (� L}) $�L} %  �$�L} �%

(2n[])  n[2$]�L} 2n[$] (�n[])  n[�$]�L} �$

(2 |)  2$ | 2%�L} 2($ | %) (� |)  �$ | %�L} �($ | T)

(�2)  �2$ L} 2�$

(2 L}) $�L} %  2$�L} 2% (� L}) $�L} %  �$�L} �%

(4 ∧)  4($∧%)�xML} 4$∧4% (� ∧)  �($∧%)�xML} �$∧�%

(2 T)  $ L} 2$ (� T)  $ L} �$

(4 2)  4$ L} 2$ (� �)  �$ L} �$

(2 K)  2$⇒2% L} 2($⇒%) (� K)  �$⇒�% L} �($⇒%)
(2 4)  22$ L} 2$ (� 4)  ��$ L} �$

(2 ∨)  2($∨%)�xML} 2$∨2% (� ∨)  �($∨%)�xML} �$∨�%
(2 F)  2F�L} F (� F)  �F�L} F

7

4.2.5 Satisfiability

Validity and satisfiability can be reflected into the logic by means of
the $F�operator (here we use $¬ for ¬$):

From the definitions of ©�and F, we obtain that P � $F ⇔ (ÒP’ :Π.
P’ � $ ⇒ P|P’ � F) ⇔ (ÒP’ :Π. ¬P’ � $). I.e., P � $F iff $�is un-
satisfiable, independently of P.

One of the main properties of $F is that $ | $F L} F, by (©�|).
That is, $�cannot be both satisfiable and unsatisfiable. In addition we
obtain, from the model, the following rules, from which it is possible
to show within the logic that Vld and Sat obey the rules of S5 modal
operators:

Satisfiabil ity Rules

Some Satisfiabil ity Corollar ies

4.2.6 Predicates

So far we have considered only propositional validity; when consid-
ering quantifiers, we need to extend our notion of validity. If
fv($)={ x1, ..., xk} are the free variables of $ and ϕÐfv($)→Λ is a
substitution of variables for names, we write $ϕ�for ${ x1←ϕ(x1), ...,
xk←ϕ(xk)} , and we define:

This definition of predicate validity generalizes the previous defini-
tion of vld, which was restricted to the case of fv($) = Ô. It similarly
generalizes the definitions of sequents and rules.

We can now introduce quantifiers and their rules:

Quantifier Rules

As an example, �Òx.¬(x[T]Ó) is the formula for “somewhere there
are no ambients” . Since there are no infinite spatial paths P1 � P2 �
P3 � ..., we can show in the model that this formula is valid. On the
other hand, its temporal dual, “sometime there are no ambients” ,
2Òx.¬(x[T]Ó), is invalid; for instance, it is not satisfied by n[] .

The following lemma yields a substitution principle for predi-
cate validity, allowing us to replace logically equivalent formulas in
larger contexts. Let %{ −} be a formula with a set of formula holes,
indicated by −, and let %{$} denote the formula obtained by fill ing
those holes with the formula $.

4-1 Lemma (Substitution)
vld($ª ⇔ $¨) ⇒ vld(%{$ª} ⇔ %{$¨})

1

4-2 Corollary (Substitution Pr inciple)
$ª�xML} $¨ ⇒ %{$ª} �xML} %{$¨}

1

4.2.7 Name Equality

It is possible to encode name equali ty within the logic in terms of lo-
cation adjuncts, by taking:

We obtain, for all ϕÐfv(η)∪fv(µ)→Λ and all P:Π:

As an example, the following formula means “any two ambi-
ents here have different names”, which can be read as a no-spoofing
security property:

4.2.8 Lifting Propositional Validity

Using equali ty, we can extend propositional validity to predicate va-
lidity in the sense of the proposition proved at the end of this section,
Proposition 4-9. This way, we can systematically extend to predicate
logic the rules we have derived so far for propositional logic.

To prove this proposition, we need renaming lemmas for satis-
faction, Lemma 4-6, and for validity, Lemmas 4-7 and 4-8. First, we
state three auxiliary lemmas.

4-3 Lemma (Fresh renaming preserves ��)
Consider any process P and names m, m’ , with m’Ñ fn(P). For all
P’ , if P � P’ then m’Ñfn(P’) and P{ m←m’ } � P’ { m←m’ } . More-
over, for all Q, if P{ m←m’ } � Q then there is a P’ with P � P’ ,
m’Ñfn(P’) and Q = P’ { m←m’ } .

1

4-4 Lemma (Fresh renaming preserves xyz)
Consider any process P and names m, m’ , with m’Ñfn(P). For all
P’ , if PxyzP’ then m’Ñfn(P’) and P{ m←m’ } xyzP’ { m←m’ } . More-
over, for all Q, if P{ m←m’ } xyzQ then there is a P’ with PxyzP’ ,
m’Ñfn(P’) and Q = P’ { m←m’ } .

1

4-5 Lemma (Fresh renaming preserves �)
Consider any process P and names m, m’ , with m’Ñfn(P). For all
P’ , if P�P’ then m’Ñfn(P’) and P{ m←m’ }�P’ { m←m’ } . More-
over, for all Q, if P{ m←m’ }�Q then there is a P’ with P�P’ ,
m’Ñfn(P’) and Q = P’ { m←m’ } .

1

(4�)  4�$ L} �4$
(4 n[])  4n[$]�L} n[4$]
(������4�@)  (4$)@n L} $@n
(������2�@)  $@n L} (2$)@n.  2($@n) xML} (2$)@n

(������4�©)  $©% L} (4$)©%
(������2�©)  (2$)©% L} $©%.  2($©%) L} (2$)©(2%)

$F $ $©F
Vld $ $ $¬F

Sat $ $ $F¬

$ is unsatisfiable
$ is valid
$ is satisfiable

P � $F

P � Vld $
P � Sat $

iff ÒP’ :Π. ¬P’ � $
iff ÒP’ :Π. P’ � $
iff ÓP’ :Π. P’ � $

(©F ¬)  $F L} $¬

(¬ ©F)  $F¬ L} $FF
if $ is unsatisfiable then $�is false
if $ is satisfiable then $F�is not

(| ©F)  $ | $F L} F
(©F�L}) %�L} $  $F�L} %F

(©F�©)  %©$ L} $F©%F

(F ©F)  T xML} FF

(T ©F)  F xML} TF

(¬ ©F)  $¬F L} $¬¬.  $FF L} $F¬

 $¬F L} $FF.  $¬¬ L} $F¬

vld($) $ ÒϕÐfv($)→Λ. ÒP:Π. P � $ϕ

(Ò-L) ${ x←η} �L} %  Òx.$�L} % (η a name or a variable)
(Ò-R) $�L} %  $�L} Òx.% where x Ñ�fv($)

η�= µ $ η[T]@µ

P � (η = µ)ϕ ⇔ ϕ(η) = ϕ(µ)

Òx. Òy. x[T] | y[T] | T ⇒ ¬ x = y

8

4-6 Lemma (Fresh renaming preserves �)
For all closed formulas $, processes P, and names m, m’ , if m’Ñ
fn(P)∪fn($) then P � $ ⇔ P{ m←m’ } � ${ m←m’ } .

Proof
The proof is by induction on the number of symbols in the closed
formula $. Note that the number of symbols in a formula is un-
changed by substituting a name for a variable or another name. Con-
sider an arbitrary process P, and any names m and m’ . If m=m’ the
lemma holds trivially, so we may assume that m≠m’ . We show only
the case for parallel composition and the case for universal quantifi-
cation.

Case for |: We prove each half of the following separately, where
m’Ñfn(P)∪fn($ | %).

P � $ | % ⇔ P{ m←m’ } � ($ | %){ m←m’ } .

(⇒) Assume P � $ | %. We are to show that there are Q’ , Q” such
that P{ m←m’ } � Q’ | Q” , Q’ � ${ m←m’ } , and Q” � %{ m←m’ } .
By assumption, there are P’ , P” such that P � P’ | P” , P’ � $, and
P” � %. Let Q’ = P’ { m←m’ } and Q” = P” { m←m’ } . By Lemma 4-
3, P � P’ | P” and m’Ñfn(P) imply that m’Ñfn(P’)∪fn(P”) and
P{ m←m’ } � Q’ | Q” . By induction hypothesis, m’Ñfn(P’)∪fn($)
and P’ � $ imply that Q’ � ${ m←m’ } , and also m’Ñfn(P”)∪fn(%)
and P” � % imply that Q” � %{ m←m’ } .
(⇐) Assume P{ m←m’ } � ($ | %){ m←m’ } . We are to show that
there are P’ , P” such that P � P’ | P” , P’ � $, and P” � %. By as-
sumption, there are Q’ , Q” such that P{ m←m’ } � Q’ | Q” , Q’ �
${ m←m’ } , and Q” � %{ m←m’ } . By Lemma 4-3, P{ m←m’ } � Q’ |
Q” and m’Ñfn(P) imply there is R with P � R, m’Ñfn(R) and Q’ | Q”
= R{ m←m’ } , and hence that there are P’ , P” such that R = P’ | P” ,
m’Ñfn(P’), m’Ñfn(P”), Q’ = P’ { m←m’ } , and Q” = P” { m←m’ } . By
induction hypothesis, m’Ñfn(P’)∪fn($) and Q’ � ${ m←m’ } imply
that P’ � $, and also m’Ñfn(P”)∪fn(%) and Q” � %{ m←m’ } imply
that P” � %.

Case for Ò: We prove each direction of the following separately,
where m’Ñfn(P)∪fn(Òx.$).

P � Òx.$ ⇔ P{ m←m’ } � (Òx.$){ m←m’ } .

(⇒) Assume P � Òx.$. Pick any name n. We are to show that
P{ m←m’ } � ${ m←m’ }{ x←n} . We spli t the proof into three cases.
First, suppose that m=n. Pick a fresh name m” such that m” Ñ fn(P)∪
fn($)∪{ m,m’ } . By assumption, P � ${ x←m” } . Since m’Ñfn(P)∪
fn(${ x←m” }), the induction hypothesis implies that P{ m←m’ } �
${ x←m” }{ m←m’ } . Recall that m≠m’ . Then, since mÑfn(P{ m
←m’ }) and mÑfn(${ x←m” }{ m←m’ }), we get that P{ m←m’ }
{ m” ←m} � ${ x←m” }{ m←m’ }{ m” ←m} by a second application
of the induction hypothesis. But because of the freshness of m” , we
have P{ m←m’ }{ m” ←m} = P{ m←m’ } and ${ x←m” }{ m←m’ }
{ m” ←m} = ${ m←m’ }{ x←m} . Since m=n, we have shown
P{ m←m’ } � ${ m←m’ } { x←n} .
Second, suppose that m≠n and m’=n. By assumption, P � ${ x←m} .
In general we know that m’Ñfn(P)∪fn($) and m≠m’ . Therefore, we
can apply the induction hypothesis to obtain P{ m←m’ } � ${ x←m}
{ m←m’ } . We have ${ x←m}{ m←m’ } = ${ m←m’ } { x←m’ } . Since
m’=n, we have shown P{ m←m’ } � ${ m←m’ }{ x←n} .
Third, suppose that m≠n and m’≠n. By assumption, P � ${ x←n} .
We have that m’Ñfn(P)∪fn($) and in this case we know that m’≠n.
Therefore, we can apply the induction hypothesis to obtain
P{ m←m’ } � ${ x←n}{ m←m’ } . Since m≠n we have ${ x←n}
{ m←m’ } = ${ m←m’ }{ x←n} . So we have shown P{ m←m’ } �
${ m←m’ } { x←n} .

(⇐⇐) Assume P{ m←←m’ } �� (ÒÒx.$){ m←←m’ } . Pick any name n. We
are to show that P �� ${ x←←n} . We split the proof into three cases.
First, suppose n=m’ . Pick a fresh name m” such that m” Ñfn(P)∪
fn($)∪{ m,m’ } . By assumption, we have P{ m←m’ } � ${ m←m’ }
{ x←m” } . We can calculate ${ m←m’ }{ x←m” } = ${ x←m” }
{ m←m’ } since m≠m” . Then, since m’Ñfn(P)∪fn(${ x←m” }), the
induction hypothesis implies P � ${ x←m” } . Again, since m’Ñfn(P)
and m’Ñfn(${ x←m” }), the induction hypothesis implies P{ m”
←m’ } � ${ x←m” } { m” ←m’ } . But because of the freshness of m” ,
this is P � ${ x←m’ } . Therefore, since n=m’ , we have shown P �
${ x←n} .
Second, take n≠m’ but n=m. By assumption, P{ m←m’ } �
${ m←m’ } { x←m’ } . From m≠m’, we get ${ m←m’ }{ x←m’ } =
${ x←m’ }{ m←m’ } . Moreover, we also get mÑfn(P{ m←m’ }) and
mÑfn(${ x←m’ } { m←m’ } . Hence, the induction hypothesis implies
P{ m←m’ }{ m’←m} � ${ x←m’ }{ m←m’ }{ m’←m} . Since m’Ñ
fn(P)∪fn($), we can calculate P{ m←m’ }{ m’←m} = P and
${ x←m’ } { m←m’ }{ m’←m} = ${ x←m} . Therefore, we have
shown P ��${ x←n} .
Third, suppose n≠m’ and n≠m. By assumption, P{ m←m’ } �
${ m←m’ } { x←n} . Since n≠m we have ${ m←m’ }{ x←n} =
${ x←n}{ m←m’ } . Since n≠m’ , m’Ñfn(P)∪fn(${ x←n}). Hence, the
induction hypothesis implies P � ${ x←n} .
1

4-7 Lemma (Fresh renaming preserves validity)
If $�is closed and valid and m’Ñfn($) then ${ m←m’ } is closed
and valid.

Proof
We can assume that m’≠m. Take any P and two distinct names n,n’Ñ
fn(P)∪fn($)∪{ m,m’ } . Since $ is valid we have, in particular, that
P{ m←n}{ m’←m} � $. By Lemma 4-6, since m’Ñfn(P{ m←n}
{ m’←m})∪fn($), we obtain P{ m←n}{ m’←m}{ m←m’ } � ${ m←
m’ } . This is the same as P{ m←n} � ${ m←m’ } . Again by Lemma
4-6, since mÑfn(P{ m←n})∪fn(${ m←m’ }), we obtain P{ m←n}
{ n←m} � ${ m←m’ }{ n←m} . This is the same as P � ${ m←m’ } .
Hence ${ m←m’ } is valid. Since $ is closed, so is ${ m←m’ } .
1

4-8 Lemma (Injective complete renaming preserves validity)
If $ is closed and valid and ρÐfn($)→Λ is an injective renaming,
then $ρ is closed and valid.

Proof
Let ρ = { m1←n1, ..., mk←nk} , where { m1, ..., mk} = fn($) and all the
ni are distinct. Take fresh p1, ..., pk Ñ { m1, n1, ..., mk, nk} . By induc-
tion on i ranging from 1 to k, since $ is closed and valid and
piÑfn(${ m1←p1} ...{ mi-1←pi-1}), by using Lemma 4-7 at each step,
we obtain that $ª�$�${ m1←p1} ...{ mk←pk} is closed and valid. Note
that fn($ª) = { p1, ..., pk} . Then again, by induction on i ranging from
1 to k, since niÑfn($ª{ p1←n1} ...{ pi-1←ni-1}), by using Lemma 4-7 at
each step, we obtain that $¨�$�$ª{ p1←n1} ...{ pk←nk} is closed and
valid. Since p1, ..., pk are fresh, $¨�= $ρ.
1

4-9 Proposition (L ift ing propositional validity)
If $�is closed and valid, then for any injective map ψÐfn($)→ϑ
from names to variables, the formula (dfn($)⇒$)ψ is valid,
where dfn($) is the conjunction of all inequalities ¬n=m such
that n,m are distinct names in fn($).

9

Proof
Assume that $�is closed and valid and that ψÐfn($)→ϑ is injective.
By construction, we also have that dfn($)⇒$�is closed and valid.
Take any ϕÐfv((dfn($)⇒$)ψ)→Λ (with rng(ψ)=dom(ϕ)) and con-
sider ϕ�ψ. There are two cases. If ϕ is not injective then dfn($)ϕ�ψ is
equivalent to F, and therefore (dfn($)⇒$)ϕ�ψ is valid. Otherwise, if
ϕ is injective, then ϕ�ψ is also injective with dom(ϕ�ψ) = fn($) =
fn(dfn($)⇒$). By Lemma 4-8, since dfn($)⇒$ is closed and valid,
we have that (dfn($)⇒$)ϕ�ψ is closed and valid. We have shown
that ÒϕÐfv((dfn($)⇒$)ψ)→Λ. ÒP:Π. P � (dfn($)⇒$)ϕ�ψ; that is,
vld((dfn($)⇒$)ψ).
1

For example, the valid proposition: n[T] ⇒ ¬m[T] is trans-
formed into the valid predicate ¬x=y ⇒ (x[T] ⇒ ¬y[T]). However,
without the assumption ¬x=y, the predicate x[T] ⇒ ¬y[T] is not val-
id: for predicate validity one must consider also the substitutions that
map x and y to the same name.

4.2.9 Case Analysis Principle

When reasoning about equality, it is often convenient to reason by
cases on whether the equality is true or false. To this end, we intro-
duce a case analysis principle.

4-10 Definition (Classical Predicates)
$ is classical i ff ÒϕÐfv($)→Λ. { P @�P � $ϕ} Ð {Π, Ô} .

1
The predicates T, F, and η=µ are classical. So is the disjunction

and negation of classical predicates.

4-11 Proposition (Case Analysis Pr inciple)
Let 6{ −} be a sequent with a set of formula holes, and $ be a
classical predicate. Then 6{ T} ∧ 6{ F} ⇒ 6{$} .

Proof
Taking 6{ −} = %ª{ −} �L} %¨{ −} and %{ −} $ %ª{ −} ⇒ %¨{ −} , it is
suff icient to show that vld(%{ T}) ∧ vld(%{ F}) ⇒ vld(%{$}). As-
sume vld(%{ T}) ∧ vld(%{ F}). Take any ϕÐfv(%{$})→Λ and P:Π.
By assumption we have P � %ϕ{ T} and P � %ϕ{ F} . Since $�is clas-
sical, we have also that { Q @�Q � $ϕ} Ð {Π, Ô} . Consider the case
where { Q @�Q � $ϕ} = Π so that for any P, P � $ϕ iff P � T. By Lem-
ma 4-1, P � %ϕ{$ϕ} iff P � %ϕ{ T} , hence we obtain P � %ϕ{$ϕ} .
Consider the case where { Q @�Q � $ϕ} = Ô so that for any P, P � $ϕ
iff P � F. By Lemma 4-1, P � %ϕ{$ϕ} iff P � %ϕ{ F} , hence we have
P � %ϕ{$ϕ} . In both cases, we have shown that ÒϕÐfv(%{$})→Λ.
ÒP:Π. P � %ϕ{$ϕ} , that is, vld(%{$}).
1

4.3 Logical Properties of Type Systems

In this section we briefly discuss applications of our logic to express
properties guaranteed by type systems, beyond the standard state-
ments of subject reduction. This section assumes knowledge of type
systems for the Ambient Calculus [5].

Consider the system of locking and mobili ty types for the Am-
bient Calculus [5], recast for the calculus of this paper. The assump-
tion p:Amb•[S] ensures that ambients named p are locked, that is,
they cannot be dissolved by an open. We can prove that if E,
p:Amb•[S], E’ �L} P : T, then P � 4(�(p[T]Ó) ⇒ 4�(p[T]Ó)). This ex-
presses that in a well-typed process, once a locked ambient named p
somewhere comes into being, ever after there wil l somewhere be an
ambient named p.

Moreover, the assumption q:Amb•[RS’] ensures that ambients

named q are locked and immobile, that is, they cannot be moved by
in or out, nor dissolved by open. We can prove that if E,
q:Amb•[RS’], E’ �L} P : T, then P � 4(q[T]Ó ⇒ 4q[T]Ó). This expresses
that in a well-typed process, once a locked, immobile ambient ap-
pears at the top-level of the process, it will stay there ever after.
Moreover, we can prove that if E, p:Amb•[S], q:Amb•[RS’], E’ �L} P :
T, then P � 4(�(p[q[T]Ó]Ó) ⇒ 4�(p[q[T]Ó]Ó)). This expresses that
in a well-typed process, once a locked, immobile ambient named q
is somewhere a child of a locked ambient named p, ever after there
will somewhere be a q child of p.

4.4 An Example

In this example we use the laws of 2, | , and ©, to analyze the con-
sequences of composing two logical specifications.

The specifications describe two subsystems: a Shopper and a
Thief, and focus on what happens to the shopper’s wallet. The wallet
is described simply by the formula Wallet[T], leaving the contents
of the wallet unspecified. The absence of a wallet in a given location
is described by the formula NoWallet, defined as ¬(Wallet[T] | T),
meaning that it is not possible to decompose the current location into
a part containing a wallet and some other part.

A thief is somebody who, in the direct presence of a wallet, can
make the wallet disappear. Its specification is Wallet[T] ©
2NoWallet, and its implementation in the Ambient Calculus could
simply be given by open Wallet.

A shopper is, initially, a person with a wallet (a Looker) who is
later likely to become a Buyer. A buyer is a person who has pulled
out the wallet, presumably to buy something. When a wallet has
been pulled out, it becomes vulnerable to a nearby thief.

In the following derivation, we show that the interaction of a
shopper with a thief (possibly in some larger context) may result in
a CrimeScene, which is a situation in which the shopper has no wal-
let, and also there is no wallet to be found nearby.

We begin with the system Buyer | Thief; using the rules (©�|) and (�|
L}) we obtain:

Buyer | Thief
= Person[NoWallet] | Wallet[T] | (Wallet[T] ©�2NoWallet)
L} Person[NoWallet] | 2NoWallet

From the rules (2T)  $�L}�2$, (Id), and (�| L}) we obtain, in general,
$�| (2%)�L}�(2$)�| (2%). Then, by (2 |)  (2$) | (2%)�L} 2($ | %)
and transitivity (derivable from (Cut)) we obtain $�| (2%)�L}�2($�|
%). Using this fact in our example we obtain, by transitivity:

Buyer | Thief L}�2(Person[NoWallet]�| NoWallet)
= 2CrimeScene

Using the rules (2�L}) $�L}�%� 2$�L}�2%, and (2�4)  22$�L}�2$,
we derive:

2(Buyer | Thief) L}�22CrimeScene
22CrimeScene L}�2CrimeScene

As before, we can derive (2$)�| %�L}�2($�| %); therefore:
(2Buyer) | Thief L}�2(Buyer | Thief)

and, by transitivity from above:

NoWallet $ ¬(Wallet[T] | T)
Looker $ Person[Wallet[T] | T]
Buyer $ Person[NoWallet] | Wallet[T]
Shopper $ Looker ∧ 2Buyer
Thief $ Wallet[T] ©�2NoWallet
CrimeScene $ Person[NoWallet] | NoWallet

10

(2Buyer) | Thief L}�2CrimeScene
then, by weakening (W-L):

(Looker | Thief) ∧ ((2Buyer) | Thief) L}�2CrimeScene
Now let’s consider the system Shopper | Thief. By the distribution of
| over ∧ ((| ∧), from section 4.2.2) we have:

Shopper | Thief = (Looker ∧ 2Buyer) | Thief
L} (Looker | Thief) ∧ ((2Buyer) | Thief)

and finally, by transitivity from above, we obtain:

5 A Decidable Sublogic

A model checker is an algorithm that determines the truth of an as-
sertion P � $, given process P and formula $ as input. We describe
a model checker for the case where P is replication-free and $�is ©-
free. The model checker depends on putting any replication-free
process into a normal form, given by a finite product of prime pro-
cesses:

Products, Pr imes, and Normal Forms

The following recursive algorithm maps any replication-free
process to a list of prime processes representing a normal form struc-
turally congruent to the original process. We write li sts of processes
in the notation [P1, ..., Pk].

Normal Form for a Replication-Free Process

5-1 Lemma
If Norm(P) = [π1, ..., πk] then P ��ΠiÐ1..k πi.

1
To check the sometime and somewhere modalities, we depend

on two routines Reachable and SubLocations that given a process P
compute a representation of the sets of processes Q such that P xyyz*
Q and P �* Q, respectively. We omit the straightforward definitions
of these routines. Instead, we state their desired properties, which are
proved using techniques developed previously [12].

5-2 Lemma
If Reachable(P) = [P1, ..., Pk] then for all iÐ1..k, P xyyz* Pi, and for
all Q, if P xyyz* Q then Q ��Pi for some iÐ1..k.

If SubLocations(P) = [P1, ..., Pk] then for all iÐ1..k, P �* Pi, and
for all Q, if P �* Q then Q ��Pi for some iÐ1..k.

1

Next, we define our model checking algorithm, and state its
correctness property, Proposition 5-4, together with the main lem-
mas used in its proof.

Checking Whether Process P Satisfies Closed Formula $

5-3 Lemmas
(1) For all replication-free processes P and Q, and all replication-

free primes π1, ..., πk, P | Q ��ΠiÐ1..k πi if and only if there are sets
I and J such that I∪J = 1..k, I∩J = Ô, P ��ΠiÐI πi, and Q ��ΠiÐJ πi.

(2) For all replication-free processes P, and all replication-free
primes π1, ..., πk, n[P] ��ΠiÐ1..k πi if and only if k = 1 and there is
Q with π1 = n[Q] and P � Q.

(3) For all replication-free processes P and ©-free closed formulas
Òx.$, if { m1, ..., mk} = fn(P)∪fn($) and m0Ñ{ m1, ..., mk} , then: P
� Òx.$ if and only if ÒiÐ0..k. P � ${ x←mi} .

1

5-4 Proposition
For all replication-free processes P and ©-free closed formulas $,
P � $ if and only if Check(P, $) = T.

1
Since all the recursive calls are on subformulas of the original

formula, the algorithm always terminates. When computing
Check(P, $ | %) with Norm(P) = [π1, ..., πk] there are 2k different
subsets of 1..k, and so 2k different choices of the sets I and J. There-
fore, in general the time complexity of Check(P, $) is at least expo-
nential in the size of P. (The practical performance of this algorithm
can be greatly improved by special-casing and heuristics.)

Examples: define an n $ n[T]Ó, and p parents q $ p[q[T]Ó]Ó,
and let P = a[p[out a. in b. jmk]] | b[open p. (x). x[]] , as in Section
2.2. The algorithm returns the following results on various example
formulas:

In summary, Proposition 5-4 shows that the model checking
problem for the sublogic without © and the subcalculus without ! is

Shopper | Thief L}�2CrimeScene

ΠiÐ1..k Pi $ P1 | ... | Pk | 0
π ::= M[P] @ n.P @ in M.P @ out M.P @ open M.P

@ (n).P @ jMk
ΠiÐ1..k πi

product
prime process

normal form

Norm(0) $ []
Norm(P | P’) $ [π1, ..., πk, π’1, ..., π’k’]

if Norm(P) = [π1, ..., πk] and Norm(P’) = [π’1, ..., π’ k’]
Norm(M[P]) $ [M[P]]
Norm(M.P) $ [M.P] if M Ð�{ n, in N, out N, open N}
Norm(ε.P) $ Norm(P)
Norm((M.N).P) $ Norm(M.(N.P))
Norm((n).P) $ [(n).P]
Norm(jMk) $ [jMk]

Check(P, T) $ T
Check(P, ¬$) $ ¬Check(P, $)
Check(P, $ ∨ %) $ Check(P, $) ∨ Check(P, %)
Check(P, 0) $ if Norm(P) = [] then T else F
Check(P, n[$]) $

if Norm(P) = [n[Q]] for some Q, then Check(Q, $), else F
Check(P, $ | %) $

let Norm(P) = [π1, ..., πk]
in ÓI,J. I∪J=1..k ∧ I∩J=Ô ∧

Check(ΠiÐI πi, $) ∧ Check(ΠiÐJ πi, %)
Check(P, Òx.$) $

let { m1, ..., mk} = fn(P)∪fn($) and m0Ñ{ m1, ..., mk}
in ÒiÐ0..k. Check(P, ${ x←mi})

Check(P, 2$) $
let [P1, ..., Pk] = Reachable(P) in ÓiÐ1..k. Check(Pi, $)

Check(P, �$) $
let [P1, ..., Pk] = SubLocations(P) in ÓiÐ1..k. Check(Pi, $)

Check(P, $@n) $ Check(n[P], $)

Check(P, an a) = T
Check(P, an b) = T
Check(P, an p) = F
Check(P, �an p) = T

Check(P, 2�an m) = T
Check(P, a parents p) = T
Check(P, b parents p) = F
Check(P, 2b parents p) = T

11

decidable. It is not clear in general how to extend this algorithm to
include either ! or ©, because in principle an unbounded number of
processes needs to be considered. For example, checking the truth of
P � T©$ in principle requires showing for all processes P’ that P |
P’ � $. Similarly, checking the truth of !P � ¬($ | T) in principle
requires showing that neither !P � $�nor Pk � $ for all k ≥ 0.

6 Connections with Other Logics

In this final section we compare our logic with well known substruc-
tural logics.

6.1 Relevant Logic

The shape of our definition of the satisfaction relation turns out to be
very similar to Urquhart’s semantics of relevant logic [19]. (Thanks
to Peter O’Hearn and David Pym for pointing this out.) In particular
$_% is similar to intensional conjunction, and $©% is similar to
relevant implication in that semantics. The main difference with
standard formulations of relevant logic is that we do not have con-
traction: this rule is not sound for process calculi , because P_P ≠ P
under any reasonable equivalence.

Moreover, we use an equivalence, �, instead of a Kripke-style
partial order as in Urquhart’s general case. If we were to adopt a par-
tial order (perhaps some asymmetric form of structural congruence),
then the classical fragment of our logic would have to be replaced by
an intuitionistic fragment, in order to maintain the analogue of Prop-
osition 3-1. This seems to be the deep reason why we can get by with
classical implication.

6.2 Bunched Logic

Peter O’Hearn and David Pym study bunched logics [18], where se-
quents have two structural combinators, instead of the standard sin-
gle “ ,” combinator (usually meaning ∧ or ⊗ on the left) found in
most presentations of logic. Thus, sequents are bunches of formulas,
instead of lists of formulas. Correspondingly, there are two implica-
tions that arise as the adjuncts of the two structural combinators.

The situation is very similar to our combinators | and ∧, which
can combine to irreducible bunches of formulas in sequents, and to
our two implications ⇒ and ©. However, we have a classical and a
linear implication, while bunched logics have so far had an intuition-
istic and a linear implication.

6.3 L inear Logic

We now relate a fragment of our logic to intuitionistic linear logic.
Although the connections with some parts of linear logic are slightly
degenerate, we can make them quite precise.

First note that, when considering | as a structural connective, we
must reject weakening, which entails $ L} 0, and contraction, which
entails $ L} $ | $: both are unsound in our process model. Therefore,
we are at least somewhat close in spirit to linear logic. Our sequents
are linear in the sense that we must have the same number of process
components on the left and right of L}. In other words, space cannot
be instantaneously created or destroyed. Consequently, the implica-
tion © arising as an adjunct of | is a linear implication: note that in
the definition of $©% the attacker that satisfies $� is used exactly
once in the system that satisfies %.

Multiplicative intuitionistic linear logic (MILL) can be cap-
tured faithfully by identifying xyµMILL = ©, ⊗MILL = |, and 1MILL = 0:
the rules of MILL and the subset of our rules that involve only those
connectives (plus a derivable cut rule for | corresponding to the

MILL cut rule) are interderivable. However, this precise match is
obtained by paring down both linear logic and our logic. We can go
further and draw a connection with full intuitionistic linear logic,
both syntactically and semantically.

First, syntactically, intuitionistic linear logic (ILL) [13,16,8]
can be embedded in our logic by the mapping:

This mapping is such that the rules of ILL can be derived within our
logic, so $1, ..., $n LL}}ILL % implies $1| ...| $n LL}} %. In particular, we
can derive the “strong” rules for !$�that correspond to an interpreta-
tion of ! as a maximal fixpoint [13,16,8]:

We omit the proof of correctness of the embedding; this is not hard,
but it requires gradual build-up and some experience with our logic.

The semantic connection is made through quantales [8]. We re-
call that a (commutative) quantale 4 is a structure <S:Set, ≤:
S2→Bool, r:3(S)→S, ⊗:S2→S, 1:S> such that ≤ and r form a com-
plete join semilattice, ⊗ and 1 form a commutative monoid, and p ⊗
rQ = r{ p ⊗ q @ q Ð�Q} for all p Ð�S and Q ⊆ S. It is folklore that
quantales are sound and complete models of intuitionistic linear log-
ic, according to the following interpretation ?$A4�(we omit the sub-
script when 4�is unambiguous):

The validity of ILL sequents and the soundness and completeness
properties are stated as follows:

Now, sets of Ambient Calculus processes closed under struc-
tural congruence form a quantale. More precisely, the structure Θ $
<Φ, ⊆, t, ⊗, 1> is a quantale, where, for A,B ⊆ Π, and for A� $�{ P
@ ÓQ Ð�A. P�Q} , we take Φ $�{ A� @ A ⊆ Π} , A ⊗ B $�{ P | Q @ P Ð�A
∧ Q Ð�B} �, and 1 $�{ 0} �. Our logic is interpreted as follows: ?$A�$
{ PÐΠ @ P � $} ; note that, by Proposition 3-1, ?$A�= ?$A�.

6-1 Proposition (Soundness of the ILL interpretation)
The syntactically defined ILL constants and operators correspond
to their quantale definitions in Θ.

$ ⊕ %� $ $ ∨ %
$ & %� $ $ ∧ %
$ ⊗ %� $ $ | %
$ xyµ %� $ $ © %
!$� $ 0 ∧ (0 ⇒ $)¬F

1ILL� $ 0
�ILL� $ F
�ILL� $ T
0ILL� $ F

(! L1) ILL !$ L}ILL 1ILL

(! L2) ILL !$ L}ILL $
(! L3) ILL !$ L}ILL !$�⊗ !$
(! R) % L}ILL 1ILL; % L}ILL $; % L}ILL %�⊗ % ILL % L}ILL !$

?$ ⊕ %A� $ r{ ?$A, ?%A}
?$ & %A� $ r{ C @ C ≤ ?$A ∧ C ≤ ?%A}
?$ ⊗ %A� $?$A ⊗ ?%A
?$ xyµ %A� $ r{ C @ C ⊗ ?$A ≤ ?%A}

?!$A� $ υX. ?1ILL & $ & (X⊗X)A
?1ILLA� $ 1
?�ILLA� $ any element of S
?�ILLA� $ rS

?0ILLA� $ rÔ
where υX. A{ X} � $ r{ C @ C ≤ A{ C} }

vldILL($1, ..., $n L}ILL %)4 $
?$1A4 ⊗4 ... ⊗4 ?$nA4 ≤4 ?%A4

$1, ..., $n L}ILL % ⇔
for all quantales4, vldILL($1, ..., $n L}ILL %)4

12

Proof
We detail the most interesting cases, for ⊗, xyµ, and !.

Case for ⊗: ?$ ⊗ %A = ?$A ⊗ ?%A.
(P Ð ?$ ⊗ %A)�⇔�(P Ð ?$ | %A)�⇔�(P � $ | %)�⇔�(ÓP’ ,P” :Π. P �
P’ | P” ∧ P’ � $ ∧ P” � %)�⇔�(P Ð { P’ | P” @ P’ � $ ∧ P” � %} ��)
⇔�(P Ð { P’ | P” @ P’ Ð ?$A ∧ P” Ð ?%A} ��)�⇔�(P Ð ?$A ⊗ ?%A)

Case for xyµ: ?$ xyµ %A = ?$A xyµ ?%A.
Let A = ?$A�and B = ?%A. (P Ð ?$A xyµ ?%A)�⇔�(P Ð A xyµ B)�⇔�(P Ð
t{ C @ C ⊗ A ⊆ B})�⇔�(ÓC. P Ð C ∧ C ⊗ A ⊆ B)�⇔�(ÓC. P Ð C ∧
ÒQ. (ÓQ’,Q” . Q � Q’ | Q” ∧ Q’ Ð C ∧ Q” Ð A) ⇒ Q Ð B) ⇔ (ÒQ” .
Q” Ð A ⇒ P | Q” Ð B). The last step is derived as follows:
1) Assume ÓC. P Ð C ∧ ÒQ. (ÓQ’,Q” . Q � Q’ | Q” ∧ Q’ Ð C ∧ Q”
Ð A) ⇒ Q Ð B. Take any R and assume R Ð A. Instantiate the assump-
tion with P | R for Q and take Q’=P and Q” =R; we obtain P | R Ð B.
2) Conversely, assume ÒR. R Ð A ⇒ P | R Ð B. Take C={ P} �, take
any Q, and assume (ÓQ’,Q” . Q � Q’ | Q” ∧ Q’ Ð { P} � ∧ Q” Ð A).
Instantiating the assumption with Q” for R, we obtain P | Q” Ð B.
Now, Q’ ��P by assumption, hence P | Q” ��Q’ | Q” � Q. Since B
is �-closed, we obtain Q Ð B.
Hence, (P Ð ?$A xyµ ?%A) ⇔ (ÒQ” . Q” Ð A ⇒ P | Q” Ð B) ⇔ (ÒQ” .
Q” � $ ⇒ P | Q” � %) ⇔ (P � $ © %) ⇔ (P Ð ?$ © %A) ⇔ (P Ð
?$ xyµ %A).

Case for !: ?!$A = !?$A.
First we show that ÒP. 0 � $ ⇔ P � (0 ⇒ $)¬F.
Take any P; by definition of ©, we have P � (0 ⇒ $)¬F ⇔ (ÒQ. Q
� 0 ⇒ $). Then, (ÒQ. Q � 0 ⇒ $) ⇔ (ÒQ. Q � 0 ⇒ Q � $) ⇔ 0
� $. The last step is by instantiation of Q with 0, in one direction,
and by Proposition 3-1, in the other direction.
Then we compute: (P Ð ?!$A) ⇔ (P Ð ?0 ∧ (0 ⇒ $)¬FA) ⇔ (P � 0 ∧
P � (0 ⇒ $)¬F) ⇔ (P � 0 ∧ 0 � $).
Now, in a quantale !A = υX. 1 & A & (X⊗X), which in Θ means υX.
{ 0} � ∩ A ∩ (X | X). If 0 Ñ A then {0} � ∩ A = Ô, and !A = Ô. If instead
0 Ð A, then {0} � ∩ A = { 0} �, and !A = υX. { 0} � ∩ (X | X). We have
that { 0} � is a fixpoint of λX. { 0} � ∩ (X | X); moreover, if B = { 0} �

∩ (B | B) then B ⊆ {0} �, hence { 0}� is the greatest fixpoint, and !A
= { 0} �. In conclusion: if 0 Ñ A then !A = Ô�else if 0 Ð A then !A =
{ 0} � and, by contrapositive, if !A ≠ Ô then 0 Ð A.
Hence P Ð !?$A �⇒ !?$A ≠ Ô ⇒ 0 Ð ?$A ⇒ !?$A = { 0}� ⇒ P Ð
{ 0} �; that is P Ð !?$A ⇒ P � 0 ∧ 0 � $. Conversely, if P � 0 ∧ 0 �
$, then 0 Ð ?$A ⇒ !?$A = { 0} � ⇒ P Ð !?$A.
In conclusion P Ð !?$A �⇔ �P � 0 ∧ 0 � $ �⇔ �P Ð ?!$A.
1

Moreover, in our model the linear notion of validity matches
our notion of validity:

6-2 Proposition
Let $1, ..., $n, % be formulas in ILL.

vldILL($1, ..., $n L}ILL %)Θ� ⇔ vld($1 | ... | $n L} %)

(For n=0 this means: vldILL(�L}ILL %)Θ� ⇔ vld(0 L} %).)

Proof
(ÒP. P � $1 | ... | $n ⇒ %) ⇔ (ÒP. P � $1 | ... | $n ⇒ P � %)
⇔ (ÒP. P Ð ?$1 | ... | $nA ⇒ P Ð ?%A) ⇔ ?$1 | ... | $nA ⊆ ?%A
⇔ ?$1A ⊗ ... ⊗ ?$nA ⊆ ?%A.
The last step is as in the ⊗ case of Proposition 6-1.
1

The discrepancies with ILL are as follows. We identify �ILL

and 0ILL (as F); therefore, $� acquires special properties. The addi-
tives ⊕ and & distribute over each other (both semantically and as a

derived rule). The semantic interpretation of !$ is rather degenerate;
in particular, !$ xyµ %�does not seem to have an interesting meaning.

Conclusions and Fur ther Work

We have introduced an expressive logic that can describe properties
of spatial configurations and of mobile computation, including secu-
rity properties. Although some attack scenarios can already be de-
scribed, many interesting security properties require the use of name
restriction (which is already present in our full Ambient Calculus):
we intend to study extensions of our logic in that direction. We also
intend to study recursive modal formulas. Finally, we should consid-
er issues of logical completeness: these have not been looked at be-
cause our focus has been on studying properties of the model. The
only sense in which we feel we have a “large enough” set of rules is
that we can logically derive the rules of intuitionistic linear logic.

We have previously developed type systems for mobility; now
we have a model-checking algorithm for a decidable sublogic, and a
more complete logic of mobility. These can be seen as three progres-
sive stages in the screening of mobile code, corresponding to byte-
code verification by type checking, by model checking, and by proof
checking (as in proof-carrying code). In all these cases, it is possible
to express and verify properties of mobile code that allow the code
to move around after verification, safely removing the constraints of
rigid sandboxing policies.

Acknowledgments

Giorgio Ghelli participated in the initial discussions leading to this
logic. Barney Hilken and Peter O’Hearn both pointed out that ‘©’ �is
adjunct to ‘ |’ . Glynn Winskel directed us to the connection with in-
tuitionistic linear logic. Peter O’Hearn and David Pym pointed us to
literature on relevant logic. Gordon Plotkin suggested the new axi-
oms for structural congruence. Useful comments were made by
Martín Abadi and Todd Knoblock.

References

[1] Abadi, M., Plotkin, G.D.: A Logical View of Composition.
TCS 114(1), 3-30, 1993.

[2] Amadio, R.M., Prasad, S.: Localities and failures. FST &
TCS '94, LNCS 880, 205-216, Springer, 1994.

[3] Cardelli , L., Gordon, A.D.: Mobile Ambients. FoSSaCS’98,
LNCS 1378, 140-155, Springer, 1998.

[4] Cardelli , L., Gordon, A.D.: Types for M obile Ambients.
POPL’99, 79-92, 1999.

[5] Cardelli , L., Ghell i, G., Gordon, A.D.: Mobility Types for
Mobile Ambients. ICALP’99. LNCS 1644, 230-239, Spring-
er, 1999.

[6] Dam, M.: Relevance Logic and Concurr ent Composition.
LICS’88, 178-185, 1988.

[7] Došen, K.: A Histor ical Introduction to Substructural Log-
ics. In: Schroeder-Heistler, P., Došen, K. (eds.): Substructural
Logics. Studies in Logic and Computation 2, 1-30, Clarendon
Press, 1994.

[8] Engberg, U.H., Winskel, G.: Linear Logic on Petr i Nets.
BRICS Report RS-94-3, 1994.

[9] Engelfriet, J.: A Multiset Semantics for the π-calculus with
Replication. TCS 153, 65-94, 1996.

13

[10] Fournet, C., Gonthier, G.: A Calculus of Mobile Agents.
CONCUR’96, LNCS 1119, Springer, 1999.

[11] Gentzen, G.: Untersuchungen über das logische Schließen.
Mathematische Zeitschrift 39, 176-210, 405-431, 1935. En-
glish translation in: The collected papers of Gerhard Gentzen.
M.E.Szabo (ed.), 132-213, North Holland, 1969.

[12] Gordon, A.D., Cardell i, L.: Equational Properties of Mobile
Ambients. FoSSaCS’99, LNCS 1578, 212-226, Springer,
1996.

[13] Girard, J.-Y., Lafont, Y.: Linear Logic and Lazy Computa-
tion. TAPSOFT 87, LNCS 250 vol 2, 53-66, Springer, 1987.

[14] Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cam-
bridge University Press, 1989.

[15] Hennessy, H., Milner, R.: Algebraic Laws for Nondetermin-
ism and Concurrency. JACM, 32(1)137-161, 1985.

[16] Lafont, Y.: The L inear Abstract Machine. TCS (59)157-
180, 1988.

[17] Milner, R.: Flowgraphs and Flow Algebras. JACM 26(4),
1979.

[18] O’Hearn, P.W., Pym, D.: The Logic of Bunched Implica-
tions. Bulletin of Symbolic Logic. To appear, 1999.

[19] Urquhart, A.: Semantics for Relevant Logics. Journal of
Symbolic Logic 37(1)159-169, 1972.

[20] Vitek, J., Castagna, G.: Seal: A Framework for Secure Mo-
bile Computations. Internet Programming Languages, LNCS
1686, 47-77, Springer, 1999.

Appendix: Rules of the Ambient Logic

This appendix collects information already presented in the paper.

Sequents: $�L} %
Rules: $1�L} %1; ...; $n�L} %n� $�L} % (n≥0)

Abbreviations: xML}�means L}�in both directions;  means �in both
directions.

Propositional Rules

(A-L) $∧(&∧')�L} %  ($∧&)∧'�L} %
(A-R) $�L} (&∨')∨%  $�L} &∨('∨%)
(X-L) $∧&�L} %  &∧$�L} %
(X-R) $�L} &∨%  $�L} %∨&
(C-L) $∧$�L} %  $�L} %
(C-R) $�L} %∨%  $�L} %
(W-L) $�L} %  $∧&�L} %
(W-R) $�L} %  $�L} &∨%
(Id)  $�L} $
(Cut) $�L} &∨%; $ª∧&�L} %ª  $∧$ª�L} %∨%ª

(T) $∧T�L} %  $ L} %
(F) $�L} F∨%  $ L} %
(¬-L) $�L} &∨%  $∧¬&�L} %
(¬-R) $∧&�L} %  $�L} ¬&∨%

Quantifier Rules

(Ò-L) ${ x←η} �L} %  Òx.$�L} % (η is a name or a variable)
(Ò-R) $�L} %  $�L} Òx.% where x Ñ�fv($)

Composition Rules

(| 0)  $ | 0 xML} $
(| ¬0)  $ | ¬0 L} ¬0
(A |)  $ | (% | &) xML} ($ | %) | &
(X |)  $ | % L} % | $
(| L}) $ª�L} %ª; $¨�L} %¨  $ª | $¨ L} %ª | %¨

(| ∨)  ($∨%) | & L} $ | &�∨ % | &
(| ||)  $ª | $¨ L} ($ª | %¨)�∨ (%ª | $¨)�∨ (¬%ª | ¬%¨)

(| ©) $ | &�L} %  $�L} &©%
(©F ¬)  $F L} $¬

(¬ ©F)  $F¬ L} $FF

Location Rules

(n[] �¬0)  n[$]�L} ¬0
(n[] �¬ |)  n[$]�L} ¬(¬0 | ¬0)
(n[] �L}) $�L} %  n[$]�L} n[%]
(n[] ∧)  n[$]∧n[%]�L} n[$∧%]
(n[] ∨)  n[$∨%] L} n[$]∨n[%]

(n[] @) n[$]�L} %  $�L} %@n
(¬ @)  $@n�xML} ¬((¬$)@n)

Time and Space Modality Rules

(2)  2$ xML} ¬4¬$

(4 K)  4($ ⇒ %) L} 4$ ⇒ 4%
(4 T)  4$ L} $
(4 4)  4$ L} 44$
(4 T)  T L} 4T
(4 L}) $�L} %  4$�L} 4%

(�)  �$ xML} ¬�¬$

(� K)  �($ ⇒ %) L} �$ ⇒ �%

(� T)  �$ L} $
(� 4)  �$ L} ��$

(� T)  T L} �T
(� L}) $�L} %  �$�L} �%

(2 n[])  n[2$]�L} 2n[$]
(2 |)  2$ | 2%�L} 2($ | %)

(� n[])  n[�$]�L} �$

(� |)  �$ | %�L} �($ | T)

(�2)  �2$ L} 2�$

