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Abstract

The Ambient Calculusisaprocess cal culus where processes may re-
sidewithinahierarchy of locationsand modify it. The purpose of the
calculusis to study mobility, which is seen as the change of spatial
configurations over time. In order to describe properties of mobile
computations we devise amodal logic that can talk about space &
well astime, and that has the Ambient Calculus as amodel.

1 Introduction

In the @murse of our ongdng work on mohility [3,4,5,12], we have
often struggled to express precisely certain properties of mobile
computations. Informally, these ae properties such as*the agent has
gone away”, “eventually the agent crosses the firewall”, “every
agent always carries a suitcase”, “somewhere there is a virus’, or
“there is always at most one agent called n here’. There are severa
conceivable ways of formalizing these assertions. It is passible to
express me of them in terms of equations [12], but thisis ome-
times difficult or unnatural. It is easier to express some of them as
properties of computational traces, but thisis very low-level.

Modal logics (particularly, temporal logics) have emnerged in
many damains as a good compromise between expressvenessand
abstraction. In addition, many modal logics sippat useful computa-
tional applications, such asmodel checking. In ou context, it makes
sense to talk abou propertiesthat hold at particular locations, and it
becomes natural to consider spatial modalities for properties that
hadd at a certain location, at some location, or at every location.

Space

Interesting spatial structures can be represented conveniently as ur-
ordered edge-labeled trees, where edge labels correspondto names
of sublocations, and subtrees correspornd to sublocations. Such arep-
resentation d locations is shared by the Ambient Calculus [3], the
Distributed Join Calculus [10], the Seal Calculus [20], and trivialy
by the many dstributed process calculi with aflat location structure
(eg-:[2).

The following edge-labeled tree represents two contiguous lo-
cations, a and b, such that b has no sublocations, and a has a sublo-
cation called p. The diagram on the right gives a more intuitive but
equivalent description d location contiguity and containment:
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In the Ambient Calculus, contiguous locations (or processes)
are represented by standard perallel compasition (P | Q), and remed
locations are represented by ambients (n[P]) which name alocation
n with contents P. This fragment of the Ambient Calculus, together
with avoid process(0) and simple syntactic equivalences, amounts
to atextual representation d edge-labeled trees. The example ébove
could be written as a[p[Q]] | b[0], assuming there are no active pro-
cesses within the locations.

Even before considering processexecution, we can talk about
spatial properties and spatial specifications. For example, we have
the following correspondence between spatial constructsin the Am-
bient Calculus and certain formulas of the logic we develop | ater:

Processs
0 (void)
n[P] (location)
P|Q (composition)

Formulas
0 (thereis nathing here)
n[<4] (thereis onething here)
A|B (there aetwo things here)

We have alogica constant O that is stisfied bythe process O repre-
senting vad. We have logical propasitions of the form n[%7] (mean-
ing that 4 hdds at location n) that are satisfied by processes of the
form n[P] (meaning that process P is located at n) provided that P
satisfies 4. We have logical propasitions of the form 2 | B (mean-
ing that 7 and B hald contiguausly) which are satisfied by contigu-
ous proceses of theform P | Qif P satisfies 7 and Q setisfies B, or
viceversa

Time
Spatial configurations evolve over time as a consequence of the ac-
tivities of processes. For example, our initial treemay go throughthe

following two steps of evolution, as the result of a processmoving
thelocation p from a to b through the eher in between.
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We @n think of processes as ditting a the nodes of edge-labeled
trees, and directing the movement of those nodes through the trees.
So, the steps above muld be cused by a process executing move-
ment instructions at the node under p.

Mobhility

We regard mohility as the evolution d spatial configurations over
time. A specification logic for mobility shoud be able to talk about
the structure of spatial configurations and abou their evolution
throughtime; that is, it should be amodal logic of space and time.

A typical specification would say that the mnfiguration looks
initialy like a certain tree, and eventualy like some other tree. In
some cases we may want to be very precise about describing the
structure of locations, even thouch this runs against the traditional
attitude in logics for process calculi that prevents “counting” the
number of processes (or locations) involved. Our logic can be very
specific, in this sense.

Of course, since we ae dealing with specifications, we may
aso want to be ableto beimprecise, and describe things that happen
“somewhere”’ or “sometime”’. Rarely, though we want to be very
precise abou particular execution steps, so that the same flavor of
logic of mohility seems applicableto avariety of calculi. Infact, the
nation d mobility asevolution of location treesis shared by several
calculi, including Ambients, Join, and Seal, athoughthe mechanism
and properties of mohility steps differ greatly between them.

In this paper, we concentrate onthe Ambient Calculus for con-
creteness, but our main thrust is appli cable to any distributed process
calculus that includes a hierarchical and dynamic structure of loca-
tions.

Paper Outline

Spatial modalities have an intensional flavor that distinguishes our
logic from other modal logicsfor concurrency. Previouswork in the
area concentrates on properties that are invariant up to strong equiv-
alences such as bisimulation [15,6], while our properties are invari-
ant only up to simple spatia rearrangements. Some of our tech-
niques can be usefully applied to ather processcalculi, even ores
that do nd have locations, such as CCS.

We start from a computational basis: a process calculus, sum-
marized in Section 2 that acts asamodel for thelogic. In Section 3
weintroducelogical formulasandanction o satisfaction. In Section
4, we derive logical inference rules, including rules for time, space,
and satisfiability modalities, and nowel rules for locations and pro-
cesscomposition (therules are summarized in the Appendix). At the
end d this sction we give a detailed example of logical inference.
In Section 5 we investigate model checking of mobil e programs, on
the basis of the satisfactionrelation between processes andformulas.
Finally, in Section 6, we mmpare our logic with relevant and linear
logics.

2 The Ambient Calculuswith Public Names

In this paper we onsider only ambients having public names; that is
we do not deal with name restriction and scope extrusion. Handling
of private namesin alogicisavery interestingtopic, but we leave it
for future work.

2.1 Ambients

We summarize amodified version of the basic Ambient Calculus of
[3]. The changes consist in removing rame restriction, and in

strengthening the definition of structural congruence so that it char-
acterizes the intended equivalence on spatial configurations.

The following table summarizes the syntax of processes. We
have separated the process constructsinto spatial andtemporal; this
is $milar to the distinction between static and dyramic constructsin
CCS[17]. This paper focuses onthe spatial constructs; the temporal
constructs and the dynamic behavior are necessary but secondary for
our current purpaoses.

Processes

| PQR:= processes
0 void
PlQ composition spatial
P repli cation
M[P] ambient
M.P capability action
(n).P input action } temporal
(M) output action

M= messages

n name “ names
inM can enter into M
out M can exit out of M} capabilities
openM can open M
€ null
M.M’ composite } paths

The set of free names of aprocess P, written fn(P), is defined as usu-
al; the only binder isin theinput action. We write P{n — M} for the
substitution o the message M for each free occurrence of the name
n in the process P. Similarly for M{n—M’}. The O process is often
omitted in the contexts n[0] and M.0, yielding n[] and M.

2.2 Structural Congruenceand Reduction

Structural congruence is a relation between processes; it is used
heavily inthelogic, aswell asin the reductionsemantics. Intuitively,
structural congruence egquates processes up to simple “rearrange-
ment” of parts, without any computational significance. We @n
identify five groups of rulesin the following table: for equivalence,
for congruence of spatial operators, for composition, for replication,
and for temporal operators and peths.

Structural Congruence
I 1

P=P (Struct Refl)
P=Q 0O Q=P (Struct Symm)
P=Q,Q=R O P=R (Struct Trans)
P=Q O P|R=Q]|R (Struct Par)
P=Q O 'P=IQ (Struct Repl)
P=Q O M[P]=M[Q] (Struct Amb)
P|Q=Q|P (Struct Par Comm)
(PIQ|R=P|(Q|R) (Struct Par Assoc)
P|O=P (Struct Par Zero)
I(PIQ)=!P|!IQ (Struct Repl Par)
10=0 (Struct Repl Zero)
IP=P|!P (Struct Repl Copy)
IP=1IP (Struct Repl Repl)



P=Q O MP=M.Q (Struct Action)
P=Q O (X.P=(X.Q (Struct Inpu)
eP=P (Struct €)
(MM).P=MM.P (Struct .)
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Spatial configurations are ambient configurations consisting
only of spatial operators. For example, a[b[0] |!c[0]0] |!0] isaspa
tial corfiguration. These anfigurations have anatural interpretation
as edge-labeled finite-depth trees, where repli cation introduces infi-
nite branching. The rules for structural congruence are sound and
complete for equivalence of thesetrees. We donot el aborate thisfur-
ther, but it sufficesto say that this completeness result motivates the
choice of axioms for structural congruence, and particularly the ax-
ioms for replication (which are the same as in Engelfriet’s work on
the Tecalculus [9]).

Reduction
[

nfinm. P |Q] |mMR] — m[n[P|Q] |R] (Red In)
mnfout m. P | Q] |R] — n[P | Q] |m[R] (Red Out)
openn.P|n[Q] —P|Q (Red Open)
(n).P (M) — P{n-M} (Red Comm)
P—Q O n[Pl —n[qQ] (Red Amb)
P—-Q O P|R—Q|R (Red Par)
P=P,P—-QQ=Q 0 P —Q (Red =)

—* isthereflexive and transitive dosure of —
L |

The reduction relation describes the dynamic behavior of am-
bients. In particular, the rules (Red In), (Red Out) and (Red Open)
represent mohility, while (Red Comm) represents local communica-
tion (see [3] for an extended discussion). For example, the process:

a[p[out a. in b. (m)]] | blopen p. (X). X[]]

represents apacket p that travels out of host a andinto hast b, where
it isopened, andits contents mare read and used to create anew am-
bient. The process reducesin four steps (illustrating each of the four
reduction rules) to the residual process a[] | b[m[]]. The first three
states correspondto the tree diagramsin the Introduction.

a[pout a. in b. (m)]] | blopen p. (x). X[1]

—a[] | p[in b.(m)] | blopen p. (x). X{]] (Red Out)
— al] | b[p[(m)] | open p. (x). x{]] (Red In)

— all | b{(m) | (x). X[I] (Red Open)
— a[] | b[m(]] (Red Comm)

2-1 Factsabout Structural Congruence

() P|Q=0iff P=0andQ=0.

(2) n[P] £ 0.

(3) n[P] = Q| Riff either Q=n[P] andR= 0, or Q= 0andR= n[P].

(4) MP] =nQ] iff m=nandP=Q.

B)mMP] | Q] =m[P]|n[Q]iff éitherm=m',n=n",P=P,
Q=Q,orm=n,n=m,P=Q,Q=P.

O

3 Thelogic

In a modal logic, the truth of a formula is relative to a state (or
world). In ou case, the truth of a space-time modal formulais rela
tive to the here and nav. Each formulatalks about the aurrent time,
that is, the current state of execution, and the current place, that is,
the aurrent location. For example, the formula n[0] is read: thereis

here and row an empty location called n. The operator n[%4] repre-
sents a single step in space, allowing us to talk about the place one
step down into n. Another operator, <-%7, allows us to talk abou an
arbitrary number of stepsin space; thisis akin to the temporal even-
tuality operator, O%4.

3.1 Logical Formulas

The syntax of logical formulasis summarized below. Thisisamodal
predicate logic with classical negation. As usual, many standard
conrectives are interdefinable. The meaning o the formulas will be
given shortly in terms of a satisfaction relation. Informally, the first
three formulas (true, negation, disunction) give propasitional logic.
The next three (void, location, compasition) capture spatial config-
urations, as we discussed. Then we have quantification over names,
the two temporal and spatial modalities, and two further operators
that we explain later. Quantified variables range only over names:
these variables may appear in the location and | ocation adjunct con-
structs.

Logical Formulas
I

n isanamen or avariablex

A, B, C =
T true
-9 negation
A0DB disunction
0 void
n[4] location
A B composition
Vx4 universal quantification over names
o9 sometime modality
g somewhere modality
g@an location adjunct
B compasition adjunct

Thefree names of aformula, fn(%9), are easily defined sincethereare
no reme binders. The free variables of aformula, fv(%4), are defined
alongstandard lines: only quantifiersbind variables. A formula¥Zis
closed if fy(%) = g.

3.2 Satisfaction

The satisfactionrelation P = $2 means that the process P satisfiesthe
closed formula%2. Thisrelationis defined inductively in the follow-
ing table, where N isthe sort of processes, @ isthe sort of formulas,
9 isthe sort of variables, and A isthe sort of names. We are very ex-
plicit abou quantification and sorting d meta-variables because of
subtle scoping issues, particularly in the definition d P F Vx.%4. We
use the same syntax for logical connectives at the meta-level and ol
ject-level, but thisis unambiguous.

The meaning o thetemporal modality isgiven byreductionsin
the operational semantics of the Ambient Calculus. For the spatial
modality, we need the following definition: the relation PL P’ indi-
cates that P contains P’ within exactly ore level of nesting; that is,
P’ isone step away from P in space, in some downward drection.

PP iff In,P".P=n[P]|P”

Then, P{"P’ isthereflexive andtransitive closure of the previousre-
lation, indicating that P contains P’ at some nesting level. Note that
P’ consists of either the top level P, or the entire amntents of an en-
closed ambient.



Satisfaction
[
VP:IM.

PET
VYP:N, A.d. PE-9 2 SPEY
VP:N, 4,B:0. P E 48 2 PEYOPES
VP:IM. PEO 2 pP=0
VP:M, i\, F:d.  PE N4 £ IPMN.P=nPlOP S
VP:N, 4,B:0. PEZ|B £ AP P :MN.P=P|P"

OP ELOP ESB

VP:MM, x93, 4:d. PEVXA & VmA.PEZ{Xx-m}
VP:N, 4.dP. PEOY & IPN.P-"POPER
VYP:M, Z:0. PE+Z 2 IPM.PI'POPES
VP:N, 4., PEY@n 2 n[PIEZ

PE>B 2 VPM.PEZAO PP E®B

VP:N, 4,B:0.
L

We spell out some of these definitions. A process P satisfiesthe
formula n[%]] if there exists a processP’ such that P has the shape
n[P'] with P’ satisfying 4. A processP satisfiesthe formula$d’ | 4"
if there exist proceses P’ and P such that P has the shape P’ | P”
with P’ satisfying 2" and P” satisfying $2”. A processP satisfies the
formula<SZif S2 hddsin the futurefor someresidual P’ of P, where
“residual” is defined by P—="P’. A processP satisfies the formula
$>-9if 4 hddsat somesublocation P’ within P, where“ sublocation”
isdefined by P P'.

The last two conrectives, @ and >, can be used to express as-
sumption/guarantee specifications [1]; they were inspired by the
wish to express seaurity properties. A reading of P E @n isthat P
(together with its context) manages to satisfy %7 even when placed
into alocation called n. A reading o P = >3 is that P (together
with its context) manages to satisfy 3 under any passible attack by
an opporent that is boundto satisfy $4. Moreover, P E (o%4)>(0%)
can beinterpreted as sayingthat P preservestheinvariant 4. Wewill
see that these two connectives arise as natural adjuncts to the loca-
tion and compasition connectives, respectively.

The definition o satisfactionis based heavily onthe structural
conguence relation. This use of structural congruence may appear
arbitrary: other equivalence relations could be used inits place. We
have tried to motivate the choice of structural congruence by ds-
cussing in Section 2.2 how structural congruence precisely captures
the intuition d ambients as gatial configurations. Moreover, struc-
tural conguence is easily decidable, which is useful in model-
checking appli cations (see Section 5).

Thefollowingtable lists sme derived conrectives, ill ustrating
some properties that can be expressed in the logic. The informal
meanings can be understood better by expanding out the definitions
from the table ebove. Some discussion foll ows.

Derived Connectives
[

F AT fase

A0B A= (=-A0-B) conjunction

a0 B A2-94909 implication

AePB A2FADQBOBO A logica equivalence

AN B A2 (= |=DB) decomposition

@ Ag|F every comporent satisfies &
P 29|T some mmporent satisfies &
IxAa L Vx~A existential quantification
oA 209 everytime modality

=47} 2429 everywhere modality

A0B é—!(CBDﬂ% fusion

A0 B 2-EF|-DB) fusion adjunct
L |
Syntactic conventions: ‘>’, ‘<&’ ‘o’, ‘<>’ and‘ X’ bindmore strong-
ly than ‘|’; and they al bind more strongy than the standard logical
conrectives, which have standard precedences. Quantifiers extend
to theright as far aspossble.

Decomposition is the DeMorgan dua of composition. A de-
compositionformula$? || B is stisfied if for every parallel decom-
pasition d the processin question, either one comporent satisfies 7
or the other satisfies B. Then, 4" meansthat in every decompasition
either one comporent satisfies &7 or the other satisfies F; since the
latter isimposshble, in every possible decomposition ane cmomporent
must satisfy Z. For example: (n[T]0 n[m[T]])" means that every
ambient n that can be found tere contains a single subambient m.
The DeMorgan dual of 9" is %, which means that it is possble to
find a decompasition where one component satisfies &. For exam-
ple, nfm[T]?]? means that there is at least one ambient n here that
contains at least one subambient m.

Other operators are derived as DeMorgan duels: existential
quantification, and everytime and everywhere modalities. Examples
for these modalities are: on[T] (there is always a location called n
here), and = (n[T]?) (thereis now nolocation called n anywhere).

Fusion, &2 0 B, isan operator that arisesin relevant logic (when
> is ®en asrelevant implication). In ou context, ¢4 0 B meansthat
thereis a mntext satisfying B that hel ps ensuring &4. The aljunct of
fusion, ¥ |0 B, turns out to be very natural in specifications: it
means that in every decomposition, if one part satisfies &4, then the
other part must satisfy 3.

The followingis afundamental property of the satisfaction re-
lation; it states that satisfactionisinvariant under structural congru-
ence of processes. In ather words, logical formulas can only express
properties that are invariant up to structural congruence. The proof
isasimple induction an the structure of .

3-1 Proposition (Satisfaction isup to =)
(PEQOP=P)0PEZ

O

We end this section with an example of a proof that a certain
process stisfies a certain formula. A proof of even a very simple
negative formularequires techniques for analyzing the derivation o
structural congruences. For example, consider provingthefoll owing
assertion, where m# n:

m | n[] E = 3Ix. X[T] | X[T]

For acontradiction, suppcse that m[] | n[] E 3x. X[T] | X[T]. By
definition, thismeansthereisaP such that m[] | n[] = P andthereis
agwithPEqT] | g[T]. Thisimpliesthat there ae processes P’ and
P’ suchthat m[] |n[] =P |P” with P’ E qT] and P” £ q[T]. In
turn, P’ E q[T] implies thereis Q' such that P’ = q[Q’]. Similarly,
P’ Eq[T] impliesthereisQ” suchthat P* = q[Q"]. In summary:

mf] [n[] =q[Q]0[Q"]

Accordingto the Fact 2-1(5), there ae two waysin which this equa-
tion can have been derived. In either case, it follows that m = g and
n = g, and therefore m = n. This yields the desired contradiction, as
we ae saming that m# n.



4 Validity

In this sction, we study valid formulas, valid sequents, and valid
logical inference rules. All these ae based onthe satisfaction rela-
tion gvenin the previous section. Once the definition o satisfaction
isfixed, we are basically committed to whatever logic comes out of
it. Therefore, it isimportant to stressthat the satisfactionrelation ap-
pears very natural to us. In particular, the definitions of 0, n[%4], and
S| B seem inevitable, once we acept that formulas shoud be ele
to talk about the tree structure of locations, and that they should not
distinguish processesthat are surely indistinguishable (upto =). The
conrectives $2@n and $9>3B have natural security motivations. The
modalities 0% and <-$Ztalk about process evolutionand structurein
an undetermined way, which isgoodfor mohility specifications. The
rest is classical predicate logic, with the &bility to quantify over lo-
cation remes.

Throughthe satisfaction relation, our logic is based on solid
computational intuitions. We shoudd now approach the task of dis-
covering the rules of the logic without preconceptions. As we shall
see, what we get has familiar aswell as novel aspects.

4.1 The Meaning o Rules

A closed formulaisvalid if it is stisfied by every process (For the
moment, we consider only validity for closed formulas, i.e., propo
sitional validity.) We use validity for interpreting logical inference
rules, as described in the next definition. We use alinearized nda-
tionfor inferencerules, wherethe usual horizontal bar separating an-
tecedents from consequents is written ‘0 in-line, and *;’ is used to
Separate antecedents.

Validity, Sequents, and Rules
"Vd@) & VPN.PED

A+ B vid@&@ O B)
A4+B & A+-B 0O B+-A

gl'—CBl; ...;gnl‘%n Dgol‘(Bo 4
B 0. 090+ By O S+ By

Dk By; ., DB OG- B A
DB 0. 0%+ B O Ho 4+ By

D+ B[O+ B, A DouldeRule
G- B OBy, O Do By 04 By

Validity for (closed) 7

Sequent
Double Sequent

1>

Inference Rule (n=0)

Doule Conclusion

We adopt a non-standard formulation o sequents, where each
sequent has exactly one assumptionand ore conclusion: 4+ B. Our
intention in dang so isto avoid pre-judging the interpretation of the
structural operator “,” in standard sequents. In our logic, by taking O
ontheleft and dontheright of - as gructural operators(i.e., as“,”),
al the standard rules of sequent and natural deduction systems with
multiple premises/conclusions can bederived. Instead, by taking [on
the left of - asastructural operator, al therules of intuitionistic lin-
ear logic can be derived. Finally, by teking restings of Jand |onthe
left of I- as gructural “bunches’, we obtain abunched logic[18]. We
discuss this further in Section 6.

Noticeably, we @andm Gentzen's distinction between struc-
tural rulesand other logical rules, which has been a staple of formal
logic since[11]. We do not see this as afundamental or irrevocable
step. Not al logics fit easily into Gentzen's initial approach, and
many alternative sequent structures have been studied [7]. There-

fore, there may be formulations of our logic which identify a set of
structural rules, perhaps alongthe lines of [18]. At the aurrent stage
in the development of our logic, however, it is unclear how to pro-
ceed in that direction.

4.2 Rulesof theLogic

In the sequel, we organize our resultsinto tables of Rules, which are
validated in the model, and into tables of Corollaries, which are de-
rived puely logicaly from the inference rules.

4.2.1 Propositions

Thefollowingisanon-standard presentation d the propasitional se-
quent calculus [14], based on ou single-assumption single-conclu-
sion sequents. In this presentation, the rules of propasitional logic
become very symmetrical, and many proofs become more regular,
havingto consider only single formulasinstead of sequences of for-
mulas.

Propositional Rules

I

(A-L) “COD)FB M (AL)IDF-B
(A-R) 4+ (COD)IB M A C(DIB)
(X-L) SCHB OCA-B

X-R) “+-COB 09+ BIC

(C-L) A4+ BOA-B

(C-R) H+BIB OA+DB

(W-L) -3 0ALHDB

(W-R) Y+B 04-COB

(Id) 0ar-9

(Cut) A COB; ATCHDB 0O AT + BB’

(M AM+-BP OA-B

(F) A+-FOB 04+ DB

(=-L) HA-COB OARCEFDB

(--R) YCHB OAF-CB
L |
The standard deduction rules of propasitional logic, bath for the se-
quent calculus and for natural deduction (interpreting“,” as Jonthe
left and O on theright), are derivable from the rules in the table.

4.2.2 Composition

The logical rules of compaosition apply nat only to ou calculus but
also to any calculusthat includes astandard processcompaosition op
erator, for example, CCS.

Composition Rules
I 1

(10) 01049
(|1-00 0O%|-0+-0
A  0ABIO4EAID)IC
X1 OA|BFB|A
(1) AP, A+B OA A B | B
(1D 0@ |C-|1casB|C
() 0ANA @@ D) 0B |1A) 0B |-B)
(1>) AIC+-B MDA C>B
L |
Thefirst two rules assert that 0 is part of any process, and that
if apart isnon0 so isthe whole. The next three rules give asocia
tivity, commutativity, and congruence of compasition.
The @mnverse of the |-O distribution rule (| ), namely 7 |C O
B |CH (ATB) | C, isderivable. Soisal-Odistribution rule, ((90B)




|CH92|C OB |C. However, the converse of that, namely 7 |C 0B
|CH(AOB) | C, isnat sound (Take 2 = n[m[T]], B =n[p[T]],C=
n[T], andP =n[m(]] | n[p[]]; thenPE A |CandPE B |C, but = P
E (4B) | C.) As a consequence, one @nna always “push | inside
[ onthe left-hand side of a sequent. In particular, after an applica-
tion d (|F) one @nna in general renormalize a sequent to bring O
(or“,”) tothetoplevel.

The decompositionaxiom, ( | || ), can beused to analyze a am-
position$4” |2” with respect to arbitrarily chosen 3" and3". An easy
consequence of it is= (A | B) - (A | T) O (T | =<B), which means
that if a process canna be decomposed into parts that satisfy %7 and
B, but can be decompased in such away that a part satisfies 2, then
it can also be decomposed in such away that a part does not satisfy
B. An even simpler consequenceisthat = (T | B) - T | =B, which
is one of the few cases in which one an pwsh - across|.

Therule (| 1>) states that &4 | B and 4>B arelogica adjuncts.
This has alarge number of interesting consequences, most of them
deriving from the ajunction along standard lines.

Some Composition Corollaries
[

R A BEB ODB-A>D
1) O (@>DB) | A+ B

®>>) 0 (>B) | (B>C) - a>C

(>-L) DA, B-C OD|(A>B)FC
(1D 04992 |T

(|IF) O9|FrF
(10  0@IB)|C-Z|COB|C
(10 O09D|CUB|CH(@IB)|C

(Tr) OTpARSA

(Fp) OTrHFP>A

OO OB EIO>B. 09> (BEC)4-A>BOA>C
09> (COB) Fa>B. O F@IO)>BA-A>BOCH>DB
OB EA>COB). O0A>PBOA>CE A>(BOC)
0 (FO)>B + A>B.

0963 0C>B - (A0)>B
|

Itisworth pointing ou that some compasitionrules producein-
teresting interactions between the O and |fragments of the logic. For
example, (| B) D0+ Aisderivableusing (| |) and (| -0).

4.2.3 Locations

The location rules are specific to calculi with tree-structured loca-
tions, such as the Ambient Calculus.

L ocation Rules
[ 1

(n[] —|O) O n[??] =0

(1 =1) O +F-(=0]-0)
(n[1+H) A+ B M) Fn[DB]
(n[] O 0 n[S9] On[B] + n[ATXB]
(n[] O O n[S900B] + n[S9]On[B]
(n[] @) N4+ B M A+ B@n
(- @ 0 g@n -+~ ((-A)@n)

Thefirst two rules assert that locations are nonrvoid and are not
decomposable. The next threerules give cmngruence and dstributiv-

1 We say that two binary operators 0,0 are logicad adjuncts if ZOC
F B M COB. The main adjunction of logic is given by the
pair (0,01 . Moreover, we say that two unary operators 0,0 are log-
icd adjunctsif O+ B A+ OB.

ity of locations with respect to Oand (0. Therule (n]] @) states that
SA@n and n[¥] are adjuncts, and therule (- @) states that the loca-
tionadjunct @ is sif-dual.

Note that (n[] ) haldsin bah drections, and that the inverse
directions of (n[] ) and (n[] 0) are derivable; hence, the location
fragment of thelogic is particularly simpleto handle.

Some Location Corollaries
I

(n] F) OnFl-F

(n O O n[&A0B] + n[<4)0n[B]
(n O O n[Z]0n[B] - n[SA0B]
(@) A+B O0A@Nn+F B@n
(n[“@n]) O n[&@n) -4

(N[44 @n) 044 n[4]@n

(n[=<])) O n[-=4] F=n[4]

(=n[=]) O =n[4] 4 n[T] O n[-4]

4.2.4 Time and Space Modalities

The “somewhere” modality was our starting pant in developing our
logic. We @n now investigate its properties.

Time and Space Modality Rules
[

(©) O0AA--o-9A ) OG- -=-9

(oK) Do@0B) FoAloB (X K) O (A0 B) - x40 2B
@T) OoA+A (XT) OxA+-9A

(o4) UOo4rooA (X 4) OrYF ey

oT) OT +aT (xT) OTFXT

(ok) A+BOA+-oB (X k) A-BORAF 1B

(©n[]) On[OA] F <On[4] (*-n[l) On[<>4A] + A
() OOA|OCBEOHA|B) (¥]|) OLA|BE(A|T)

(0) OO0 OA
L |
The operators & and <~ obey therules of S4 modalities (thefirst
6 rules in each column); these follow simply from reflexivity and
transitivity of —* and | ". These operators, however, are not S5 mo-
dalities, that is, 04+ oo isnat vaid (if 2 may happen along some
reduction kranch, it will not necessarily happen starting from every
reduction pant), and neither is <2+ X <-4 (if 2 hddsin some sub-
location, it does nat necessarily had in some sublocation d every
sublocation).
The modalities differ prominently in the way they distribute
over compositions and locations, as sen in the subsequent 4 rules.
The last rule shows that the two modalities permute in ore di-
rection. somewhere sometime implies sometime somewhere. But
the other directionisnot sound (Consider P = (open n. m[p[l]) | n].
Then P E O<-p[0], but P <-<p[0]).
Some Modality Corollaries

I

(OF) BB OO OB
oD Oo(@0B3) - oAnB
(©T) 044 *T) 09k <4

(@ ©) OogE A (X ) OG- 94

(¢ K) 0090 OB - O(FL B) (X K) 040 B <-(40 B)
(©4) O0CAROA (X 4) OSP4 <9

(© D OO(ATB) 4 OAODB (- O) O-(AIB) 4k +AB
(©F) OOFFF (*F) O%F+F

(¢ F) B 043
(= O) Ox(AOB) 4+ A0 B



(ox) Oox%+ 2o%

(@ n]) Oon[4] F n[o%]

(0 @ O@EA@nt+“@n

(¢ @) I¥@nt+ (OF)@n. OO(H@N) - (OA)@n
(@>) 093+ (0A)>B

(O D) O(CAP>BEA>B.  OO(A>B) F (CA>(ODB)

4.2.5 Satisfiability

Validity and satisfiability can be reflected into the logic by means of
the 4" operator (herewe use &~ for = 4):

aF A gpF Hisunsatisfiable
vidg & aF Aisvalid

Sayg & g Aissatisfiable
PESF iff VP:MN.-PES
PEVIdSZ iff VP:MN.PEY
PESa® iff IPN.PEYZ

From the definitions of I> and F, we obtain that P E 47 = (VP':M.
PEZOPPEF) « (VP:N.=P ER). le, PEF iff Disun
satisfiable, independently of P.

One of the main properties of 4 isthat F |4 + F, by (> |).
That is, 4 canna be both satisfiable and wnsatisfiable. In additionwe
obtain, from themodel, thefollowingrules, fromwhich it ispossble
to show within the logic that VId and Sa obey the rules of S5 modal
operators:

Satisfiability Rules
(>F=) OF R
(->F) 09 +9F

L

Some Satisfiability Corollaries

if Zisunsatisfiable then Fisfase
it Zis satisfiable then ZF is not

(|>F) O9|F+F

>GFH) BrZ OF +BF

>Fp) O0B>A+A>BF

(F>F) OT-FF

(T>F) OF4-TF

->F OFFra. OAF -9
09 F -9, 09 g

4.2.6 Predicates

So far we have considered orly propasitiona vali dity; when consid-
ering quantifiers, we need to extend ou notion o validity. If
V(EAD)={ x4, ..., ¢ are the free variables of 7 and pefv(4) -~ A isa
substitution o variablesfor names, we write 4 for SA{ X1 — §(xa), ...,
Xk < ®(x)}, and we define:

V@) & Voel(@) A VPN PES,

This definition d predicate validity generali zes the previous defini-
tion d vid, which was restricted to the case of fv(%4) = g. It similarly
generalizes the definitions of sequents and rules.

We @n now introduce quantifiers and their rules:

Quantifier Rules

I (V-L) HAxen}+-B OVXAEDB (n anameor avariable) I
(V-R) A+B OAFVYXB where x ¢ fv(%4)
L

Asan example, <-Vx.= (X[ T]?) is the formula for “somewhere there
are noambients’. Since there ae noinfinite spatial paths Py | Py |
P3| ..., we can show in the model that thisformulaisvalid. On the
other hand, its temporal dual, “sometime there ae no ambients’,
OVxa(T]?), isinvalid; for instance, it is not satisfied bynf].

The following lemma yields a substitution principle for predi-
cate validity, allowing usto replace logicdly equivalent formulasin
larger contexts. Let B{-} be aformulawith a set of formula hdles,
indicated by —, and let B{4} denate the formula obtained byfilling
those holes with the formula 4.

4-1 Lemma (Substitution)
VId(A = A7)0 VIA(B{A} = B{A})
O

4-2 Corallary (Substitution Principle)
A A-A" 0 B{A} 4+ B{A"}
|

4.2.7 Name Equality

It ispossbleto encode name equality within thelogic in termsof lo-
cation adjuncts, by taking:

n=u £ n[Tl@u
We obtain, for al ¢pefv(n)Ofv(n) - A andal P:M:
PEM=Wp = ¢(M)=0(W)

As an example, the foll owing formula means “any two ambi-
ents here have diff erent names”, which can be read asano-spoding

security property:
V. Vy. X[T] |Y[T]|TO = x=y

4.2.8 Lifting Propositional Validity

Usingequality, we can extend propasitional validity to predicate va-
lidity in the sense of the propasition proved at the end of thissection,
Propasition 49. Thisway, we @n systematically extendto predicate
logic the rules we have derived so far for propasitional logic.

To prove this propasition, we need renaming lemmas for satis-
faction, Lemma4-6, andfor vaidity, Lemmas4-7 and 4-8. First, we
state three auxiliary lemmas.

4-3 Lemma (Fresh renaming preserves =)
Consider any process P and namesm, m', with m' ¢ fn(P). For all
P,ifP=P thenm ¢fn(P’) andP{m-m'} =P'{m-m'}. More-
over, for al Q, if P{m—m'} = Q thenthereisaP’ withP =P,
m ¢fn(P’) and Q =P’ {m~m'}.

|

4-4 Lemma (Fresh renaming preserves —)
Consider any processP and rames m, n', with m' ¢ fn(P). For al
P, if P—=P thenm ¢fn(P’) andP{mm'} =P’ {m~m'}. More-
over, for dl Q, if P{m<m'}—Q then thereisa P’ with P—P’,
m ¢fn(P’) and Q =P’ {m~m'}.

O

4-5 L emma (Fresh renaming preserves |)
Consider any processP and rames m, m', with m' ¢ fn(P). For al
P, if P{P" then m' ¢fn(P’) and P{m—m'}{P{m<m’}. More-
over, for al Q, if P{m—m}{Q then thereis a P’ with PLP’,
m ¢fn(P’)and Q=P {mm'}.

O



4-6 Lemma (Fresh renaming preservesF)

For all closed formulas ¢4, processes P, and names m, m', if m' ¢

fn(P)Ofn(A) thenPE A = P{m—m'} E S m—m'}.
Proof
The prodf is by induction on the number of symbads in the dosed
formula $4. Note that the number of symbols in a formula is un-
changed by substituting aname for a variable or another name. Con-
sider an arbitrary processP, and any namesmand m'. If m=m'’ the
lemmahddstrivialy, so we may assume that mzm’. We show only
the case for parall el composition and the case for universal quantifi-
cation.
Casefor |: We prove each helf of the following separately, where
m' ¢ fn(P)Ofn(4 | B).

PEA|B = Plmem} E (@ |B{m-m}.
(O) Asaume P = &7 | B. We ae to show that there ae Q', Q" such
that Plmm} =Q |Q",Q EZ{m-m},and Q" E B{m—m'}.
By asauumption, there ae P’, P” suchthat P=P |P", P’ £ 4, and
PPEB. LetQ =P {m-m}andQ” =P"{m<m'}. By Lemma4-
3, P=P | P and m'¢fn(P) imply that m' ¢fn(P")Ofn(P”) and
P{m-m'} = Q | Q". By induction hypdhesis, m' ¢fn(P’)0fn(4)
andP' EZimply that Q' E 4{m—m'}, and also m' ¢ fn(P” )Ofn(B)
andP” EBimply that Q" E B{mm'}.
(O) Asame P{m—m'} £ (4 | B){m-m'}. We are to show that
there ae P', P” suchthaa P=P |P", P EX, andP” £ 3. By as-
sumption, there are Q', Q" such that P{m-m'} =Q |Q",Q E
Amem},andQ’ EB{m-m}.ByLemmas4-3, P{m-—m}=Q’ |
Q" andm' ¢fn(P) imply thereisRwithP=R m' ¢fn(R) and Q' | Q"
=R{m~m'}, and hence that there ae P’, P" suchthat R=P’ | P",
m ¢fm(P’), m¢fn(P"), Q' =P'{m-m},andQ” =P"{m-m'}. By
induction hypothesis, m' ¢ fn(P")0fn(4) and Q' E S{m—m'} imply
that P' £ 44, andalso m' ¢ fn(P” )Ofn(B) and Q" E B{m—m'} imply
that P” E B.
Casefor V: We prove each drection d the following separately,
where m' ¢ fn(P)Ofn(Vx.59).
PEVXA « Plmem} E (VxA){mm}.

(O) Assume P £ Vx.44. Pick any name n. We ae to show that
P{m—m'} ES{m-m} xn}. Wesplit the proof into three ses.
First, suppcse that m=n. Pick afresh namem” such that m” ¢ fn(P)C
fn(@O{mm’}. By asumption, P £ ${x—m"}. Since m ¢fn(P)0
fn(@{x — m’}), the induction hypathesis implies that P{mm'} E
Axem{ mem}. Recal that m#m'. Then, since m¢fn(P{m
«m}) and m¢fn(AH{ x—m’{ mem'}), we get that P{mm'}
{m" cm} E A xem{ mem{ m" - m} by asecond application
of theinduction hypdhesis. But because of the freshness of m”, we
have Pim—mH{ m” «m} = P{m<m} and {x—m"{ mem'}
{m" cm} = mem} x—m}. Since m=n, we have shown
P{mem} E{mem}{xn}.

Second, suppase that m#n and m' =n. By assumption, P E ${x « m}.
In general we know that m' ¢ fn(P)0fn(%4) and m#m'. Therefore, we
can apply theinduction hypothesisto dbtain P{m—m'} & %{x— m}
{mcm}. Wehave A x—m{ mem?} = mem}{x—m}.Since
m'=n, we have shown P{mm'} ES{m-m} x—n}.

Third, suppcse that m#n and m'#n. By assumption, P = ${x—n}.
We have that m' ¢ fn(P)Jfn(%9) and in this case we know that m'#n.
Therefore, we can apply the induwtion hypothesis to oktain
P{mem} E %x—n{ mem}. Since n¥n we have %{xn}
{mem} = A{mem} x-n}. So we have shown P{m-m'} E
Amem}P{x-n}.

(Od) Asume P{m<m'} E (VxA){m-m'}. Pick any name n. We
areto show that P E $4{x« n}. We split the proof into three cses.
First, suppcse n=m'. Pick a fresh name m” such that m” ¢fn(P)O
fn(&@)0{mm’}. By assumption, we have P{m—m'} £ %{m-m'}
{Xx<m'}. We a@n caculate I{mmH xm'} = FHxm'}
{m<m} since m#m’. Then, since m' ¢fn(P)Ofn($H x—m"}), the
induction hypothesisimplies P = ${x—m"}. Again, sincem’ ¢fn(P)
and m' ¢fn(# x—m’}), the induction hypdhesis implies P{m’
«m} EXm}H{m" —m'}. But because of the freshness of m”,
thisis P E ${x—m'}. Therefore, since n=m’, we have shown P k£
A X —n}.

Second, take n#m' but n=m. By asumption, P{m-m'} E
HKmemPx—m}. From mzgm', we get A{mem} x—m} =
A x—m¥ mem}. Moreover, we dso get m¢fn(P{m—m'}) and
me fn(é{ x — m}{m—m'}. Hence, the induction hypothesis implies
PmemKimcem} E AxemHmem}m <m}. Since m'¢
fn(P)Ofn(%4), we @n caculae Pfmem{mm} = P and
Axem} {mem{m m} = {x—m}. Therefore, we have
shown P E S{xn}.

Third, suppse n#m' and n#m. By assumption, P{m-m'} E
Kmem}{x-n}. Since nzm we have mmH xn} =
A x—nH{ mem'}. Sincenzm’, m' ¢ fn(P)Ofn(S x — n}). Hence, the
induction hypdhesisimplies P E ${xn}.

|

4-7 Lemma (Fresh renaming preserves validity)
If Zisclosed and valid and m' ¢fn(%4) then SZ{m«—m'} is closed
and valid.

Proof

We can assuume that m'#m. Take any P andtwo dstinct namesn,n’ ¢
fn(P)Ofn(@)0{mm’}. Since ¥ is valid we have, in particular, that
P{m—n{m —m} E 4. By Lemma 4-6, since m' ¢fn(P{m«n}
{m —m})Ofn(%), we obtain P{m—ni{ m -« m{ m—m'} £ %{m—
m'}. Thisisthe same & P{m<n} E {m-m'}. Again by Lemma
4-6, since m¢fn(P{m—n})Ofn({ m—m'}), we obtain P{m«n}
{nem} EZ{mem} n—m}. ThisisthesameasP = {mm'}.
Hence %{m—m'} isvalid. Since Zisclosed, sois{m—m'}.

|

4-8 Lemma (I njective amplete renaming preserves validity)
If Aisclosed and valid and pefn(%4) - A isan injective renaming,
then %, is closed and valid.

Proof

Letp={m —ny, .., mkng, where{my, ..., m¢} =fn(%) anddl the
n; are distinct. Take fresh py, ..., px € {M, Ny, ..., My, N} . By induc-
tion a i ranging from 1 to k, since 4 is closed and valid and
pig (A my  pa}...{m.1 — pi.a}), by using Lemma 4-7 at each step,
weobtainthat 2" 2 S my « pq}..{ My py} isclosed and valid. Note
that fn(%2) = {py, ..., P} . Then again, by induction oni ranging from
1tok, sinceni¢ fn(A{py « ni}..{pi.1 = Ni-1}), by uising Lemma4-7 at
each step, we obtain that @" £ F{py — ni}..{pxny} isclosed and
vaelid. Since py, ..., pcarefresh, 2" = 4,

|

4-9 Proposition (Lifting propositional validity)
If Zisclosed and valid, then for any injective map Yefn(4) -9
from names to variables, the formula (dfn()0 4),, is valid,
where dfn(%) is the conjunction d all inequalities —=n=m such
that n,mare distinct names in fn(%4).



Proof
Asaimethat & isclosed and valid and that Yefn(%4d) - 9 isinjective.
By construction, we also have that dfn(%4)0 4 is closed and valid.
Take any ¢pefv((dfn($2)0 A)y) - A (with rng(p)=dom($)) and corn-
sider o). Therearetwo cases. If ¢ isnat injective then dfin(S2)¢.y IS
equivalent to F, and therefore (dfn(54)0 A)g.y is valid. Otherwise, if
¢ isinjective, then doy is also injective with dom(¢p.y) = fn(%) =
fn(dfn(%2)0 %9). By Lemma4-8, sincedfn(%9)0 “isclosed and valid,
we have that (dfn($2)0 Q)g.y is closed and valid. We have shown
that Yo efv((dfin(9)0 A)y) - A. YP:M. P E (dfin(A)0 A)¢.y; that is,
vid((dfn($9)0 A)y).
O

For example, the valid propasition: n[T] O -m[T] is trans-
formed into the valid predicate -x=y 0 (X[T] O -y[T]). However,
withou the assumption-x=y, thepredicatex[T] 0 -y[T] isnot val-
id: for predicate validity onemust consider also the substitutionsthat
map X and y to the same name.

4.2.9 Case Analysis Principle

When reasoning about equality, it is often convenient to reason by
cases on whether the equdity istrue or fase. To this end, weintro-
duce a @se anaysisprinciple.

4-10 Definition (Clasdcal Predicates)
Aisclassica iff Voefv(@) - A {P|PEZ} € {N,g}.
|
ThepredicatesT, F, andn=p areclassical. Soisthedigunction
and negation of clasdcal predicates.

4-11 Proposition (Case Analysis Principle)
Let S{-} be asequent with a set of formula hdes, and 4 be a
classical predicate. Then S{T} OS{F} O S{%4}.
Proof
TakingS{-} = B{-} FB{-} andB{-} £ B{-} O B'{-},itis
sufficient to show that Id(B{T}) OVId(B{F}) O vId(B{}). As-
sume vId(B{T}) OVId(B{F}). Take ay pefv(B{A4}) - A and P:I1.
By assumptionwe have P E By{ T} and P F By{ F}. SinceZisclas-
sical, we have aso that {Q [ Q F 4y} € {1, g}. Consider the case
where{ Q[ QF %} =M sothat forany P, PE 4 iff PET. By Lem-
mad-1, P E By{Ay} iff PE By{T}, hence we obtain P £ By{ Ay} .
Consider the case where { Q[ Q F %y} = ¢ so that for any P, P £ %4,
iff PEF. By Lemmad4-1, PE By{ Ay} iff PE By{ F}, hencewe have
P E By{ Ay} . In bah cases, we have shown that Vo efv(B{S}) - A.
VP:M. P E By{ Ap}, that is, vid(B{ A}).
O

4.3 Logical Properties of Type Systems

Inthis ectionwe briefly discuss applications of our logic to express
properties guaranteed by type systems, beyond the standard state-
ments of subject reduction. This sction assumes knowledge of type
systems for the Ambient Calculus[5].

Consider the system of locking and mobhility types for the Am-
bient Calculus[5], recast for the cal culus of this paper. The assump-
tion p:Amb’[§ ensures that ambients named p are locked, that is,
they cannot be disolved by an open. We can prove that if E,
p:Amb[Y, E' +P: T, then PE o(<-(p[T]?) O o< (p[T]?)). Thisex-
pressesthat in awell-typed process once alocked ambient named p
somewhere mmesinto being, ever after there will somewhere be an
ambient named p.

Moreover, the assumption g:Amb’[YS] ensures that ambients

named g are locked and immobhile, that is, they canna be moved by
in or ou, nor dissolved by open. We @n prove that if E,
qAMD’[YS],E +P: T, thenPEo(q[T]? O oq[T]?). Thisexpresses
that in a well-typed process, once a locked, immobile ambient ap-
pears at the top-level of the process it will stay there ever after.
Moreover, we @n prove that if E, p:Amb’[S], gAMb’ [YS],E + P
T, then P E o(<(p[q[T]71?) O o<-(p[a[T17]?)). This expresses that
in awell-typed process, once alocked, immobile ambient named q
is somewhere a tild of alocked ambient named p, ever after there
will somewhere be aq child of p.

4.4 An Example

In this example we use the laws of <, |, and >, to analyze the con
sequences of compaosing two logical specifications.

The specifications describe two subsystems: a Shopper and a
Thief, andfocus onwhat happens to the shopper’ swallet. Thewallet
is described simply by the formula Wallet[T], leaving the contents
of the wallet unspecified. The absence of awallet in agiven location
is described by the formula NoWallet, defined as - (Wallet[T] | T),
meaningthat it isnot possibleto decompose the current locationinto
apart containing awallet and some other part.

A thief is smebodywho, in the direct presence of awallet, can
make the wallet disappear. Its 9pecification is Wallet[T] >
<ONoWallet, and its implementation in the Ambient Calculus could
simply be given by open Wallet.

A shopper is, initialy, aperson with awall et (a Looker) whois
later likely to become a Buyer. A buyer is a person who has pulled
out the wallet, presumably to buy something. When a wallet has
been puled ou, it becomes vulnerable to a nearby thief.

In the following derivation, we show that the interaction d a
shopper with athief (posshbly in some larger context) may result in
a CrimeScene, which isasituationin which the shopper hasnowal-
let, and also thereisnowall et to be found rearby.

NoWallet & —(Wallet[T]|T)

Looker 2 Person[Wallet[T] | T]

Buyer 2 Person[NowWallet] | Wallet[T]
Shomer £ Looker [ OBuyer

Thief 2 Wallet[T] > ONoWallet
CrimeScene & Person[NoWallet] | NoWallet

We begin with the system Buyer | Thief; usingtherules (> |) and ( |
) we obtain:

Buyer | Thief

= Person[NoWallet] | Wallet[T] | (Wallet[T] > &NoWall t)

I Person[NoWallet] | &Nowall et
From therules (©T) 09+ ¢4, (1d), and (| -) we obtain, in general,
A (OB) - (OA) | (©B). Then, by (¢ ) O (OA) | (OB) - (A | B)
and transitivity (derivable from (Cut)) we obtain &2 | (OB) F (¥ |
B). Using thisfact in our example we obtain, by transitivity:

Buyer | Thief - &(Person[NoWall et] | Nowallet)

= OCrimeScene
Usingtherules (¢ F) A+ B OCA F OB, and (& 4) OOOA - OA,
we derive:

<(Buyer | Thief) - GOCrimeScene

OOCrimeScene - OCrimeScene
Asbefore, we @n derive (OHA) | B+ O(A | B); therefore:

(©Buyer) | Thief - O(Buyer | Thief)
and, by transitivity from above:



(©Buyer) | Thief - GCrimeScene
then, by weakening (W-L):
(Looker | Thief) O ((<Buyer) | Thief) = GCrimeScene
Now let’s consider the system Shopper | Thief. By the distribution o
| over O ((| O), from section 4.2.2) we have:
Shopper | Thief = (Looker [0 <GBuyer) | Thief
+ (Looker | Thief) O ((<Buyer) | Thief)
andfinaly, by transitivity from above, we obtain:

Shopper | Thief - GCrimeScene

5 A Decidable Sublogic

A model checker is an agorithm that determines the truth of an as-
sertion P £ 92, given process P and formula% asinput. We describe
amode checker for the ase where P isreplication-free and Zis>-
free. The model checker depends on puting any replication-free
process into a normal form, given by a finite product of prime pro-
CESES:

Products, Primes, and Normal Forms

MicikPi & Po]..|Pg|O product

m:=M[P][nPinM.PJout M.P|open M.P  prime process
[ (n).P{M)

Mie1 kTG normal form

Next, we define our model checking algorithm, and state its
correctness property, Propasition 54, together with the main lem-
mas used in its proof.

Checking Whether Process P Satisfies Closed Formula %7

Check(P, T)& T
Check(P, =%4) & = Check(P, %)
Check(P, %7 0B) £ Check(P, $4) O Check(P, B)
Check(P, 0) £ if Norm(P) =[] then T else F
Check(P, n[7]) &

if Norm(P) = [n[Q]] for some Q, then Check(Q, %), else F
Check(P, 4| B) &

let Norm(P) = [, ..., Ti]

in31,J.10J=1.k0InJ=¢g O

Check(TTic; 15, £4) 0 Check(Mie, T8, B)

Check(P, Vx.4) &

let {my, ..., m¢=fn(P)Ofn(%) and mpg¢{my, ..., m¢

in VieO0. k. Check(P, #{x—m})
Check(P, ©%9) &

let [Py, ..., P = Reachale(P) in Jiel..k. Check(P;, %)
Check(P, <-49) &

let [Py, ..., P = SuliLocations(P) in Jie1..k. Check(P;, 4)
Check(P, 4@n) 2 Check(n[P], )

L

The following recursive dgorithm maps any replication-free
processto alist of prime processes representing anormal form struc-
turally congruent to the original process. We write li sts of processes
inthe notation [Py, ..., Py.

Normal Form for a Replication-Free Process

Norm(0) 2 ]
Norm(P |P") & [m, .., TG Ty, .., TCk]
if Norm(P) = [y, ..., i andNorm(P’) = [1T 4, ...
Norm(M[P]) £ [M[P]]
Norm(M.P) £ [M.P]if M e {n,inN, out N, open N}
Norm(e.P) 2 Norm(P)
Norm((M.N).P) & Norm(M.(N.P))
Norm((n).P) £ [(n).P]
Norm((M)) £ [(M)]

k]

5-1Lemma
If Norm(P) = [, ..., Ti] then P = Micq « TT.

Od

To check the sometime and somewhere modalities, we depend
ontwo routines Reachable and Suli_ocations that given a process P
compute arepresentation d the sets of processes Q such that P —*
QandP |" Q, respectively. We omit the straightforward definitions
of theseroutines. Instead, we state their desired properties, which are
proved using techniques developed previously [12].

5-2 Lemma
If Reachale(P) =[Py, ..., Py thenfor al ie1..k, P —* P;, andfor
dl Q,if P—* Qthen Q= P, for someiel. k.
If Subocations(P) = [Py, ..., PJ thenfor al iel.k, P {" P;, and
foral Q,if P{" Qthen Q= P, for someiel. k.
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5-3Lemmas

(2) For all replicationfree processes P and Q, and all replication-
freeprimesTy, ..., Tk, P |Q = Mie1 x T5 if and only if there are sets
landJsuchthat I0J=1..k InJ=g, P=Tj 15, andQ =M, 5.

(2) For all replicationfree processes P, and all replication-free
primes 1y, ..., T, N[P] = Mic1.x TG if and only if k=1 andthereis
Qwith =n[Q] andP = Q.

(3) For al replication-free processes P and I>-free closed formulas
VxS, if {my, ..., m¢ =fn(P)Ofn(%4) and meg¢{my, ..., mg, then: P
F VxS if and orly if Vie0..k. PE %{x—m}.

O

5-4 Proposition
For al replication-free processes P and >-free closed formulas &4,
P E &7if and ory if Check(P, %) =T.
a
Since dl the recursive @lls are on subformulas of the original
formula, the agorithm always terminates. When computing
Check(P, Z | B) with Norm(P) = [Ty, ..., Ti] there ae 2 different
subsets of 1.k, and so Zdifferent choices of the sets | and J. There-
fore, in general the time complexity of Check(P, 9) is at least expo-
nential in the size of P. (The practical performance of thisagorithm
can be greatly improved by special-casing and heuristics.)
Examples: define an n4 n[T]?, and p parents g 2 p[o[T]?]?,
andlet P = a[p[out a. in b. (m)]] | blopen p. (X). X[, asin Section
2.2. The dgorithm returns the foll owing results on various example
formulas:

Check(P,ana)=T
Check(P,anb)=T
Check(P,anp)=F
Check(P, <%-anp =T

Check(P, 0<-anm) =T
Check(P, a paentsp) =T
Check(P, b paentsp) =F
Check(P, Obparentsp) =T

In summary, Propasition 54 shows that the model checking
problem for the sublogic without I> and the subcalculus without ! is



decidable. It isnot clear in general how to extend this algorithm to
include ather ! or >, because in principle aa unbounédd number of
processes needsto be ansidered. For example, checking thetruth of
PE T>Sin principle requires showing for all processes P’ that P |
P’ E 4. Similarly, checking the truth of P = = (% | T) in principle
requires owing that neither |P £ % nor P<E Zfor al k= 0.

6 Connedionswith Other Logics

Inthisfinal section we compare our logic with well known substruc-
tural logics.

6.1 Relevant Logic

The shape of our definition o the satisfactionrelationturnsout to be
very similar to Urquhart’s semantics of relevant logic [19]. (Thanks
to Peter O’ Hearn and David Pym for pointingthisout.) In perticular
A|B is similar to intensiond conjunction, and >3 is smilar to
relevant implication in that semantics. The main dfference with
standard formulations of relevant logic is that we do not have mn-
traction: thisrule is not soundfor process calculi, because P|P # P
under any reasonable equivalence.

Moreover, we use an equivalence, =, instead of aKripke-style
partial order asin Urquhart’ sgeneral case. If wewereto adopt apar-
tial order (perhaps sme asymmetric form of structural congruence),
then the dassical fragment of our logic would haveto bereplaced by
anintuitionistic fragment, in order to maintain the analogue of Prop-
osition3-1. This eemsto bethe deep reasonwhy we can get by with
classical implication.

6.2 Bunched Logic

Peter O'Hearn and David Pym study bunched logics [18], where se-
quents have two structural combinators, instead of the standard sin-
gle “,” combinator (usualy meaning O or O on the left) found in
most presentations of logic. Thus, sequents are bunches of formulas,
instead o lists of formulas. Correspondngly, there are two implica-
tionsthat arise athe aljuncts of the two structural combinators.

The situationis very similar to ou combinators | and O, which
can combine to irreducible burnches of formulas in sequents, and to
our two implications 0 and >. However, we have a dasdcal anda
linear impli cation, whil e bunched logics have so far had aniintuition-
istic end alinear impli cation.

6.3 Linear Logic

We now relate a fragment of our logic to intuitionistic linear logic.
Althoughthe nrectionswith some parts of linear logic areslightly
degenerate, we @n make them quite precise.

First notethat, when considering |asastructural conrective, we
must reject weakening, which entails &7 + 0, and contraction, which
entailsA+ S | 42: bath are unsoundin ou processmodel. Therefore,
weare & least somewhat close in spirit to linear logic. Our sequents
arelinear in the sense that we must have the same number of process
components on the left and right of . In other words, space cannot
be instantaneously created or destroyed. Consequently, the implica-
tion> arising as an adjunct of | is alinear implication: note that in
the definition d S>3 the atacker that satisfies & is used exactly
once in the system that satisfies 3.

Multiplicative intuitionistic linear logic (MILL) can be ap-
tured falthfully byldentlfylng —omiLL =>, O = |, and Iy =0:
therules of MILL andthe subset of our rulesthat invalve only those
conrectives (plus a derivable cut rule for | corresponding to the
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MILL cut rule) are interderivable. However, this precise match is
obtained by paring davn bah linear logic and ou logic. We @an go
further and draw a conrection with full intuitionistic linear logic,
baoth syntactically and semantically.

First, syntactically, intuitionistic linear logic (ILL) [13,16,8]
can be embedded in ou logic by the mapping:

AOB & K0P I,. 20
A&B & AOPB ERTHR 2 F
AOB & A|B T & T
A—oB & A>B Ow 2 F
g A oOOO 9AF

Thismappingis such that therulesof ILL can be derived within our
logic, SO0y, ..., “n L. B implies 44| ...| 4n - B. In particular, we
can derivethe “strong’ rulesfor 152 that correspondto an interpreta
tion o ! asamaximal fixpoint [13,16,8]:

(L) Ou '9rhi L

('L2) Ouw 'F9Hu 4

(1L3) Ou 'Fh '9019

(R Bruwlw; Br S B BO0DB Ou Brhw !9

We omit the proof of correctness of the embedding; thisis not hard,
but it requires gradual build-up and some experience with ou logic.

The semantic conrectionis made through quantales[8]. Were-
cal that a (commutative) quantale ¢ is a structure <SSet, <:
F_Bod, \/: 29 -S 0:F-S 1:S such that < and \/ form a om-
pletejoin semilattice, O and 1form a commutative mondd, andp O
VQ = \{pUOqglqe Q} foradl pe SandQ U S It isfolklore that
guantales are soundand complete models of intuitionistic linear log-
ic, according to the following interpretation [4]p (we omit the sub-
script when @ is unambiguous):

[A0B] & V{43l

[2&B] & \V{C[|C<[ATCL[BN}
[A0B] & [AO0[B]

[A—B] & V{C|CO[A<[B]}
9] 2 UX [l & D& (XOX)]
Ll 2 1

[L] & anyelementof S

[T 2 VS

Owl £ Vg

whereuX. A{X} & \/{C[C<A[C}}

The validity of ILL sequents and the soundnessand completeness
properties are stated as follows:

VIdiL (A, e ki B 2
[“lo Og ... Og [“nlo <o [Blo

gl, ey gn |_|L|_ %
for all quantales @, vid, (A1, ..., Fn FiLL B)g

=3

Now, sets of Ambient Calculus processes closed under struc-
tural congruence form a quantale. More precisely, the structure © £
<o, 0, |, 0, 1> isaquantae, where, for AB O M, andfor A= & {P
13Q € A.P=Q}, wetake ® 2 {AS[ADM}, AOB2{P|Q[PeA
0OQe B}, and12 {0}~. Our logicisinterpreted as follows: [4] &
{Pel | P E%}; note that, by Propasition 3-1, [4] = [4]".

6-1 Proposition (Soundness of the ILL interpretation)
The syntactically defined ILL constants and operators correspond
to their quantale definitionsin ©.



Proof
We detail the most interesting cases, for 0, —, and!.
Casefor O: [Z 0 B] = [<] O [DB].
Pe@UB]) = (Pe[A|DB]) = (PELA|DB) = @AP P :MN.P=
PP OPEZAOP EB) = Pe{P |P"|PEIAOP EB}5
= Pe{P|P" [P e[ 0OP" €[B[}7) = (Pe[A1 0[]
Casefor —o: [4 — B] =[4] — [DB].
Lee A=[A]andB=[B]. (Pe[A] = [B]) = Pe A—B) = (Pe
U{CICOADOB}) = (3C.Pe COCOAOB) = (3C.PeCUO
VQ.(3Q.Q.Q=Q |Q 0Q eCOQ €A QeB) = (VQ'.
Q' e A0 P| Q" € B). Thelast step isderived asfoll ows:
1) AsamedC.Pe COVQ. (AQ',Q".Q=Q |Q" IQ e COQ"
€ A) 0 Qe B. Takeany RandassumeR € A. Instantiate the assump-
tionwith P | Rfor Q andtake Q'=P and Q" =R; weoltan P| Re B.
2) Conversely, assume VR.Re A P| R e B. Take C={P}~, take
any Q,andassume (3IQ',Q".Q=Q | Q' OQ e {P}=1Q" € A).
Instantiating the assumption with Q" for R, we obtain P | Q" € B.
Now, Q' = P by assumption, henceP | Q" = Q' | Q" = Q. Since B
is=-closed, we obtain Q € B.
Hence, (P e [A] < [B]) = (VQ".Q" e AL P|Q" € B) = (VQ".
QEAOP|IQ EB) =« (PEADPB) = Pe[A>DB]) = (Pe
(4 — BI).
Casefor !: ['S9] = [4].
First we show that VP.0F 4 - PE((O 9 .
Take any P; by definition o >, wehavePE (00 9)°F = (VQ.Q
EO0O %).Then,(VQ.QF0O %) = (VQ.QFO0O QE%) = 0
F % The last step is by instantiation d Q with 0, in ore direction,
and by Propasition 31, in the other direction.
Thenwe compute: (P e [!9]) = (Pe[00(00 A)°F)) = (P=00
PEOO A7) - (P=000F%).
Now, inaquantale!A=uX. 1 & A& (XOX), whichin ® meansuX.
{0} n An (X]|X).1f0¢ Athen {0}~ n A=g, and!A=g. If instead
0e A then {0} n A={0}7, and!A=0X. {0}~ n (X| X). We have
that {0} = isafixpoint of AX. {0}~ n (X | X); moreover, if B={0}~
n (B|B) then B O {0} =, hence{ 0}~ isthe greatest fixpaint, and !A
={0}=. Inconclusion: if 0 ¢ Athen!A=g elseif 0 € Athen!A=
{0}~ and, by contrapositive, if |1A# gthen 0 € A.
HencePe I[4] O [Azg O 0[] O [A={0}~ 0O Pe
{0} thatisP e ![¥] O P=000kF 4. Conversely,if P=000E
A,then0e [ O L ={0} O P e l[4].
InconclusionP e [49] « P=000EY - Pe[4].
O
Moreover, in our model the linear nation o validity matches

our nation d validity:
6-2 Proposition

Let S, ..., Fn, B beformulasin ILL.

V|d||_|_(gl, oo D FiLL %)e < Vld(gzill | D+ CB)

(For n=0thismeans: vid; | (kL. B)e = VIA(OF B).)
Proof
(VP.PEA| .| 40 B) = (VP.PEA]|...|%40 PEDB)
= (VP.Pe[%]| .| 0 Pe[B]) = [“1]..|%lO[B]
= [“]0..0[%]0[3].
Thelast stepisasin the O case of Proposition 6-1.
O

The discrepancies with ILL are as follows. We identify 1|

and 0y | (asF); therefore, 4+ acquires special properties. The addi-
tivesJ and & distribute over each ather (both semantically andasa
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derived rule). The semantic interpretation o <7 israther degenerate;
in particular, %4 — B does not seem to have an interesting meaning.

Conclusions and Further Work

We haveintroduced an expressive logic that can describe properties
of spatial corfigurationsand o mobile cmputation, including secu-
rity properties. Although some atack scenarios can aready be de-
scribed, many interesting security properties require the use of name
restriction (which is already present in our full Ambient Calculus):
we intend to study extensions of our logic in that direction. We also
intend to study recursive modal formulas. Finaly, we should consid-
er issues of logical completeness these have not been looked at be-
cause our focus has been onstudying properties of the model. The
only sensein which we feel we have a “large enough’ set of rulesis
that we an logically derive the rules of intuitionistic linear logic.

We have previoudly developed type systems for mohility; now
we have amode -checking algorithm for adecidable sublogic, anda
more completelogic of mohility. These can be seen asthree progres-
sive stages in the screening o mobhile code, correspondng to byte-
code verification bytype checking, by model checking, and by proof
checking (asin proof-carrying code). In all these cases, it isposdble
to express and verify properties of mobile ade that allow the code
to move aroundafter verification, safely removing the constraints of
rigid sandboxng poli cies.
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Appendix: Rules of the Ambient Logic
This appendix collects information already presented in the paper.

Sequents: A+ B

Rules: D+ By ..., S - B OB (n=0)

Abbreviations: 4~ means I- in bah drections; [(I1means Oin both
directions.

Propositional Rules

(A-l) 2OCOD)FB (PO B
(A-R) D (COD)IB [0 D+ C(DIB)
(X-l) DCFB OCHAFB

(X-R) D+ CUB 0D+ BL

CL) 9I+-B OB

(CR) DrBIB OT+DB

W-L) 9+B 0ALCHB

(W-R) D+B 0D+ COB

) 0I+9

Cuw) DrCOB;, FOCFPB 0D + BOB'
T AT +-BO0D+DB

(F)  DrFOB ODF B

(--l)  DrCOB ODARCFB

(--R) OB 0D+ ~COB
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Quantifier Rules

(V-L) Axen}r+B OVXAFB (nisanameor avariable)
(V-R) A+B OAFVYXB where x ¢ fv(%9)
Composition Rules

(10 OA104-4

(|-0) OF|-0F=0

(Al OANBIO)AEAID)IC

X1 OA|BrB|A

() ArB;, A+ OA A B |B”

(1D O@&IB) |CRA|1COB|C

(1 OANA =@ [B)D(B|A) DB |-B)
(1>) A|ICHB MAFC>B

(>F-) OFrF

(~->F) O +gF

Location Rules
(n[] -0 On[4]+ -0
(0 =1) OnAF-(=0]-0)

(M +F) A3 M4 3]
(Ml O O n[A0n[B] + n[SA0B]
(Ml O O n[@03] F n[A0n[B]
(Nl @ n4+B A B@N
@ Od@nH--(-9Aen)
Time and Space Modality Rules
(<) 0 A+ ~o-A

(oK) Oo@0 Br+owd oB
@T) Oc949+9A

(o 4) 0 o%+ oos

@@T) OTraTl

@or)  F+B 0o4roB

(*) O <A - 2=4

(xK) Ox&0 Br=A0 =B
(XT) OxArSA

(x4 OrAF=ERSA

(xT) OTEXT

(XF) A-B 0RAERDB
(©n) On[CA Fon4A]

(©) OOA|0OBEO(A|DB)
(- n) On<A =>4

1) OLLA|BF=-EAIT)
(0) O 0AEOA



