ON-LINE ALGORITHMSFOR COMBINING LANGUAGE MODELS

Adam Kalai, Stanley Chen, Avrim Blum, Ronald Rosenfeld

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

{akal ai , sfc,avrimroni }@s. cnu. edu

ABSTRACT

hindsight from some class of models. Our first algorithngr S

Mumple |anguage models are combined for many tasksin lan- LECTOR, adapts on-line with the guarantee that its performance is

guage modeling, such as domain and topic adaptation.
work, we comparen-line algorithmsfrom machine learning to
existing algorithms for combining language models. Owe-lat-
gorithms developed for this problem have parameters tleatijg+
dated dynamically to adaptto a data set during evalua@online
analysisprovides guarantees that these algorithms will perform
nearly as well as the best model chosen in hindsight fromge lar
class of model%.g, the set of all static mixtures. We describe sev-
eral on-line algorithms and present results comparingetiesh-
nigues with existing language modeling combination meshaal
the task of domain adaptation. We demonstrate that in satone si
ations, on-line techniques can significantly outperforatistmix-
tures (by over 10% in terms of perplexity), and are espgceth
fective when the nature of the test data is unknown or chamges
time.

1. INTRODUCTION

Multiple language models are combined for many aspectsnf la
guage modeling, including domain adaptation, topic adepta
and the application of class-gram models [12, 10, 3]. In this
work, we comparen-line algorithmsfrom machine learning to
existing algorithms for combining language models.

Consider the situation where we are combininganguage
modelsp; (word w|historyh) (which we refer to asubmodels
into a composite modglsupefw|h) (which we refer to as a su-
permodel) for an evaluation test $8t= w; - - - w;. Supermodels
often have the form

psupefwilhi) =Y Nps(wilhi = wi - win) (1)
=1

where)! > 0 is the weight of the/' model on the' word and

WhereZ;":1 Ay = 1 for all . The most common method for
combining language models isstatic mixture where the weights
Aj of each submodel; are taken to be fixed over all words in

the test set. In on-line algorithms, the weigh{sare chosen to
dynamically adapt to the characteristics of the test data.

In the algorithms we present here, the weight updates are cho

sen so thabn-line analysigprovides guarantees that these algo-
rithms will perform nearly as well as the best model chosen in

We would like to thank Doug Beeferman and John Lafferty fongna
helpful discussions. This work was supported in part by a s&duate
Fellowship.

In thisVirtually identical to that of the best of the component sobleis.

The MiXER algorithm adapts on-line with the guarantee that its
performance will be nearly as good as the optimal static uméxt
chosen in hindsight. Finally, theW8TCHER algorithm is com-
pared to the class of language models that may switch between
submodels from time to time. These three algorithms areetjos
related to certain types of Hidden Markov Models, but ineodx-
tensions that are not easily expressible within the Hiddemkigy
Model framework.

We performed experiments to compare these adaptive tech-
nigues to more traditional static methods on the taskarhain
adaptation using data from four different domains: Wall Street
Journaltext, Associated Press text, Broadcast News tigtisos,
and Switchboard transcriptions. We show that on-line atigms
generally perform at least as well as static mixtures in seah
perplexity, and in some cases considerably better. Fumtte,
we show these algorithms are extremely robust, due of théitya
to dynamically adapt to test data.

2. ON-LINE ALGORITHMS

We begin by stating the on-line problempmriedicting from expert
advice as we see it applied to the field of language modeling. A
learning algorithm, in this case a supermodel, is repeatgdén
the task of predicting the next word given the previous wotds
addition, the algorithm is given as input the advicerofexperts,”
in this case language models. After each word, each expert pr
dicts the next word with a probability distribution, and thine
supermodel must combine these predictions in order to ntake i
own prediction. Suppose we make no assumptions about thte qua
ity or independence of the expert language models, so weotann
hope to guarantee any absolute level of quality in our ptidfis.
In that case, a natural first goal is to perform nearly as wsetha
best language model so far: that is, to guarantee that airany t
our algorithm has not performed much worse than whichever ex
pert has been the most accurate to date.

The performance of a language mog@élv|h) on some test
datal = ws ... w; is measured as the probability it assigns to the
text, p(7") = [p(wilhi). The cross-entropyf,(7") of a model

p(w|h) on datal" is defined as

t
1 1
Hp(T) = =7 log, p(T) = = E log, p(w;|h;)
=1

and can be interpreted as the average number of bits needad to
code each of the words in the test data using the compression
algorithm associated with modg{w|h). The perplexity of a text
T, PP,(T), which we use to report our results, is defined as fol-

lows,
1

p(T)

This first goal is addressed by what we call theLScToR
algorithm, which has been analyzed in several fields [6]. Wevv
it as a special case of the problem of predicting from expbJicz,
described further in [1].

PP,(T) = 2»(T) =

2.1. Selector

The SELECTORIS a supermodel which does almost as well as the
single best of its constituent language models, regardiesise

text. One way to describe a language model is to give the prob-

ability assigned to any text’, p(T).
SELECTOR({p1,p2,---,pm}) DY,

In this way we define the

1
PseI(T) - ij (T) (2
As an average of: probability distributionspgg is clearly a valid
distribution, and it also satisfies, for gll

Py (T)

log, m

PseI(T) > t

= Hpge(T) < Hy, (T) +

sel
In particular, the cross-entropy 0oEBECTORIs at mostog(m)/t

bits more than the cross-entropy of the best model, regegdié

the domain. We use the teranoss-entropy overheddr the dif-
ference between the cross entropy of the supermodel anddse ¢
entropy of the best of the competing models. In this casevthe o
head is very small, even for millions of models on any reabgna
sized text.

While technically we have described the language model, we
have not given an efficient algorithm for calculatipgu|i). One
implementation is a simple:-state Hidden Markov Model with
zero probability of changing state. Each state refdcsa different
model and predicts the next word basedpg(w|h). The initial
distribution is uniform over the states. Thus, we can viéwin

equation (1) as the probability of being in statafter the;th

The update rule becomes

word.

Ay (wilhi)
Z;’,lzl)\;,p]/(w,'|hi)7

and the algorithm runs in linear time in the length of the text

i+1
)\J =

2.2. Mixer

Often, combining language models yields better results tray
of the individual language models themselves. The most comm
combination method, described in the introduction, is

ps(wlh) =" Ap;(wlh),

with A € Ajie.> " A; = 1and); > 0. Thus, a second
goal is to perform almost as well as the best static mixtularmof
guage models, where the best is chosen in hindsight. We gfet ju
such a guarantee by using an on-line algorithm for investirsy

stock market due to Cover [4, 5]. Cover’s algorithm can bétemi
simply,
MIXER = SELECTOR({pz|X € A}).

This combination of infinitely many language models is a dpsc
tion of a probability distribution rather than a descriptiof an
algorithm for computingomix(w|k). An O(t™~!) implementa-
tion is described in [4], but there are faster approximatisuch as
tiling [6] or sampling [2].

Cover’s algorithm, translated to the language modeling do-
main, comes with the following guarantee for All

log, ¢
1)%.

H

Pmix(T) < HPj (T) +(m —
Guarantees of the performance of Cover's algorithm andvtioe t
approximations can be found in [4, 5], [2], and [6], respe}i.
The above cross-entropy overhead(of — 1)°82 is small for
large test sets. For example, over 10,000 words and 10 laegua
models, the maximum overhead is about 0.01 bits per word.-How
ever, this grows linearly in the number of models insteacbgf |
arithmically as with €LECTOR, so we cannot guarantee perfor-
mance with large numbers of models, at which point the comput
tional costs become prohibitive as well.

2.3. Switcher

In this section, we describe a novel on-line algorithmISCHER.
SwITCHER has the property that it does almost as well as the best
submodel on any segment of the text. Put another wayrSHER
is designed to compete with supermodels that predict eacth wo
according to a single submodel but which are allowed to $witc
between submodels from time to time. Since it may be posgible
get absurdly high performance by switching very frequeritig
guaranteed bounds, which are asymptotically optimal, de s
the switching frequency.

First, we define a fixed switching algorithpa(w |k) based on

the fixed sequence of choices it makgss (j1,--.,Jt), forwhich
model to use to predict the next word. In other words,

py(wilhi) = p;, (wilhi).

Next, as in [11, 8], we defineVBTCHER, specifically to be com-
petitive against algorithms which switch between submoudéth
frequencyy. Like the SELECTOR, this can be described by an-
state Hidden Markov Model with a uniform starting distrilout
Just as before, stajgepresents a language model and predicts the
word according ta;(w|h). However, now there is now a fixed
probability, 1 — v, of staying in a state ang/(m — 1) of going
from a state to a different state. We can use the same désorést

we did for SELECTORIN equation (1), whera is the probability

of being in statg after the; (N
)))\;PJ (wilhy)

AFL = (1 -7 (:
J m Z],)\;,p]/(w,'|h,')

Itis not hard to bound the performance off§ CHER, relative
to p;(w|k). We sayp; has a switching frequencfywhen,

word. We have the new update,

m
-1

v
m—1

H{i:ji # jz‘+1}|.

f= t—1

t—1

1
m

Singer shows in equation (2) of [11],
Pswi., (7)

2 () -

The general &1TCHER, which has no parameter combines
SWITCHER,’S S0 as to adapt to the parametetOn a sequence of
lengtht, for any}, the number of timepj»(w|h) switches models
is an integer betweehand¢ — 1. Thus, we define ®ITCHERtO
simply select among these values:

v
m—1

®)

SWITCHER =

SELECTOR ({SWITCHER

ti1|s€{0,...,t—1}})

By combining equations (2) and (3), for aﬁyvith switching fre-
quencyf, we get a maximum cross-entropy overhead of

log, mt

+ flogy(m — 1) — flog, f — (1 — f)log,(1 - f)
which, because (1 — f)log,(1— f) < flog, e, isno more than,

log, mt + flog (m ; 1)e

2

3. EXPERIMENTS

To compare on-line algorithms with existing techniquesdom-
bining language models, we performed experiments on ttkeofas
domain adaptation. In domain adaptation, one attemptspooive
a language model for one domamg, Switchboard) using train-
ing data from additional domains.g, North American Business
news). Typically, the target domain is known ahead of timay-h
ever, to highlight the potential advantages of on-line atgms,
we also consider the situation where the domain of the test da
is hidden and where the test data contains text from multiple
mains. Previous work in domain adaptation [12, 9] has shinan t
static mixtures achieve competitive performance in terfrisoth
perplexity and speech recognition word-error rate witreotxist-
ing combination methods.

We constructed four trigram language models (with a vanmati
of Kneser-Ney smoothing) using training data from the folo
ing four sources: Wall Street Journal text (5M words), Asata
Press text (5M words), Broadcast News transcriptions (5vtia)o
and Switchboard transcriptions (3M words). For each donvan
extracted a held-out set and test set of about 25,000 words.

In our first set of experiments, we evaluated several methods
on each domain test set separately. We calculated the pigyple
of each test set using only the language model from the match-
ing domain; using a trigram model constructed from the ingin
data from each domain merged together; using a static reixtur
of the four domain language models with weights optimizing t
perplexity of the matching held-out set; and using a statidure
with weights optimizing the perplexity of the given test,ded.,,
the optimal static mixture chosen in hindsight. These @ipés
are displayed in order at the top of Table 1.

We ran the 8LECTOR, MIXER, and SWITCHER algorithms
on these data sets. As can be seen in Table&eLESTORdid ex-
actly as theoretically guaranteed, matching the perfooaanthe
best single submodel for each test set, for an average pitypié
174.7. The MxXEeR performed significantly better, with an average

domain
algorithm AP | WSJ[SWB]| BN | avg.
corr. domain only| 266.2 | 201.9 | 83.2 | 209.8 | 174.7
merge train. data| 238.9 | 195.1 | 103.1| 193.6 | 174.2
mixt., h.-o. wgts. | 234.0| 1845 79.4 | 182.9| 157.9
best mixtures 231.8| 184.2| 79.4 | 180.0| 156.7
SELECTOR 266.2 | 201.9| 83.2 | 209.8| 174.7
SWITCHER 2345] 187.0| 82.1 | 182.2| 159.6
MIXER 233.0| 1845 80.2 | 180.4| 157.4

Table 1: Perplexities of various models on test set from ehttre
four domains; th@veragecolumn represents average performance
over each domain test set weighted by test set length

WS.

[

SWB [l

BN A

oA
10 20 30 40 50 60 70 80 9

0 100
Word Number

A

o

Figure 1: The Weightsk; of MIXER over the first 100 words of the
AP test set

perplexity of 157.4, close to the performance of the optistatic

mixture. In Figure 1, we display the weights that MIXER places
on the different models as we predict the first 100 words ofthe
data. As expected, these weights quickly devote the mgjofit
their mass to the AP model.

Surprisingly, the 8/1TCHER almost matched the performance
of the best static mixture, even though it employs only alsing
submodel at a time. On closer examination, we see that these
models are switching more often than one might expect. Recal
that a SVITCHER is simply an average of 8ITCHER,’s for dif-
ferent values ofy € [0, 1], where~ corresponds to the natural
switching frequency. On the four test sets, the highest e
SWITCHER,'s switched with probabilities 0.13, 0.05, 0.02, and
0.27. In Figure 2, we show the weight$ of the SvITCHERalgo-

700

800 900 1000
Word Number

Figure 2: The Weights};' of SwiITCHER over the first 1000 words
of the AP test set

| algorithm | perplexity |
mixture, held-out wgts| 185.1
best mixture 184.7
MIXER 184.7
SWITCHER 160.8

Table 2: Perplexities of various models on test set compifanr
domain test sets

rithm over the first 1,000 words of the AP test set.

In our second set of experiments, we concatenated the four

domain test sets into a single long test set. We calculategen
plexity of this test set using a static mixture with weighfstio
mizing the perplexity of the four held-out sets concatethates-
ing the optimal static mixture in hindsight; and using thexRrR
and SvITCHER supermodels. These perplexities are displayed in
Table 2. Not surprisingly, the performance of theX¥)R matches
that of the best static mixture (184.7 PP). However, theT®@ HER
performed almost as well on the concatenation (160.8 PRYas i
on the individual test sets (159.6 PP). As expected, thisstets
highlights the strength of thev@TCHER, resulting in a 13% de-
crease in perplexity over the other models.

4. DISCUSSION

On-line algorithms provide a simple and effective set olsdor

combining language models. These methods are extremely gen 5]

eral as no assumptions are made about the structure of cempon
language models. We demonstrate that on-line algorithmismpe
comparably with static mixtures, which have achieved dzoel
performance on many language modeling tasks. In the casewhe
our test set was composed of text from disparate domainglthe
gorithm SwviTCHER resulted in a perplexity decrease of over 10%
as compared to the optimal static mixture.

In general, on-line algorithms automatically and dynaithica
adapt to changing text characteristics. Consequentlyinenal-
gorithms do not require held-out sets for parameter opttion
and still perform comparably to or better than static miggwith
weights trained on held-out sets. This is especially acagadus
when no appropriate held-out is available. For example,nvhe
static mixture weights are optimized on just the Broadcastd
held-out set for the experiments in Table 1, the averagepterst
plexity rises from 157.9 to 186.6. Conversely, even thouultire
algorithms were blind to the domain of the test set in our expe
iments, they still performed just as well as other algorghimat
took advantage of knowledge of the domain of the test set.

While the guaranteed performance bounds of on-line algo-
rithms are often excellent, in some cases they may not be ade
quate. For large numbers of component models or very skgirt te
sets, guarantees are generally poor. For example, corgtii000
language models could lead to a sixfold perplexity incréasthe
MIXER algorithm over that of the optimal static mixture on a data
set of 25,000 words. Furthermore, the computational effigjief
the MIXER algorithm is poor for large numbers of submodels; it
can require time exponential in the number of submodels. How
ever, there exist other on-line algorithms that do not hheerteti-
cal performance guarantees but which still perform wellractice
and which are very efficieng.g, [7].

The on-line algorithms we describe are closely related tb Hi

den Markov Models. While the more complex algorithms ineolv
theory that falls outside of the conventional HMM framewdhie
simpler algorithms have direct HMM analogs, and our implame
tation of each algorithm can be considered to be an HMM. How-
ever, on-line analysis provides a different perspectivafalyzing
and designing these types of models.

In some applications, the characteristics of the test deta a
known and appropriate held-out data is available and caressly
there is little advantage in using on-line algorithms ovatis mix-
tures. However, when the nature of the test data is unknown or
changing over time, on-line algorithms offer the advansagiger-
formance, convenience, generality, and robustness.

5. REFERENCES

[1] A. Blum. On-line algorithms in machine learning. Rro-
ceedings of the Workshop on On-Line Algorithidagstuhl,
1996.

[2] A.Blumand A. Kalai. Universal portfolios with and witlub
transaction costs. IRroceedings of the 10th Annual Confer-
ence on Computational Learning Theptp97.

P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lad an
R. L. Mercer. Class-based n-gram models of natural lan-
guage.Computational Linguistics18(4):467—479, Decem-
ber 1992.

[4] T. Cover. Universal portfolios.Math. Finance 1(1):1-29,
January 1991.

(3]

T. Cover. Universal data compression and portfolio ctibe.
In Proceedings of the 37th IEEE Symposium on Foundations
of Computer Scien¢pages 534-538, October 1996.

D. Foster and R. Vohra. Regret in the on-line decisiorbpro
lem. In Something for Nothing Workshggay 1995.

D. Helmbold, R. Schapire, Y. Singer, and M. Warmuth. On-
line portfolio selection using multiplicative updates. Nfa-
chine Learning: Proceedings of the 13th International Con-
ference 1996.

M. Herbster and M. Warmuth. Tracking the best expert. In
Proceedings of the Twelfth International Conference on Ma-
chine Learningpages 286—294, 1995.

R. lyer, M. Ostendorf, and H. Gish. Using out-of-domain
data to improve in-domain language modelEEE Signal
Processing Letter<(8):221-223, August 1997.

K. Seymore and R. Rosenfeld. Using story topics for lan-
guage model adaptation. Rroceedings of Eurospeech '97
1997.

Y. Singer. Switching portfolios. IfProceedings of the 14th
Conference on Uncertainty in Artificial Intelligence (UAI-
98), 1998.

M. Weintraub, Y. Aksu, S. Dharanipragada, S. Khudanpur
H. Ney, J. Prange, A. Stolcke, F. Jelinek, and L. Shriberg.
Fast training and portability. 11995 Language Modeling
Summer Research Workshop: Technical RepQester for
Language and Speech Processing, Johns Hopkins University,
Baltimore, 1995.

(6]

[7]

(8]

9]

[10]

[11]

[12]

