
ON-LINE ALGORITHMS FOR COMBINING LANGUAGE MODELS

Adam Kalai, Stanley Chen, Avrim Blum, Ronald Rosenfeld

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213fakalai,sfc,avrim,ronig@cs.cmu.edu
ABSTRACT

Multiple language models are combined for many tasks in lan-
guage modeling, such as domain and topic adaptation. In this
work, we compareon-line algorithmsfrom machine learning to
existing algorithms for combining language models. On-line al-
gorithms developed for this problem have parameters that are up-
dated dynamically to adapt to a data set during evaluation.On-line
analysisprovides guarantees that these algorithms will perform
nearly as well as the best model chosen in hindsight from a large
class of models,e.g., the set of all static mixtures. We describe sev-
eral on-line algorithms and present results comparing these tech-
niques with existing language modeling combination methods on
the task of domain adaptation. We demonstrate that in some situ-
ations, on-line techniques can significantly outperform static mix-
tures (by over 10% in terms of perplexity), and are especially ef-
fective when the nature of the test data is unknown or changesover
time.

1. INTRODUCTION

Multiple language models are combined for many aspects of lan-
guage modeling, including domain adaptation, topic adaptation,
and the application of classn-gram models [12, 10, 3]. In this
work, we compareon-line algorithmsfrom machine learning to
existing algorithms for combining language models.

Consider the situation where we are combiningm language
modelspj(wordwjhistoryh) (which we refer to assubmodels)
into a composite modelpsuper(wjh) (which we refer to as a su-
permodel) for an evaluation test setT = w1 � � �wt. Supermodels
often have the formpsuper(wijhi) = mXj=1 �ijpj(wijhi = w1 � � �wi�1) (1)

where�ij � 0 is the weight of thejth model on theith word and
where

Pmj=1 �ij = 1 for all i. The most common method for
combining language models is astatic mixture, where the weights�ij of each submodelpj are taken to be fixed over all words in
the test set. In on-line algorithms, the weights�ji are chosen to
dynamically adapt to the characteristics of the test data.

In the algorithms we present here, the weight updates are cho-
sen so thaton-line analysisprovides guarantees that these algo-
rithms will perform nearly as well as the best model chosen in

We would like to thank Doug Beeferman and John Lafferty for many
helpful discussions. This work was supported in part by a NSFGraduate
Fellowship.

hindsight from some class of models. Our first algorithm, SE-
LECTOR, adapts on-line with the guarantee that its performance is
virtually identical to that of the best of the component submodels.
The MIXER algorithm adapts on-line with the guarantee that its
performance will be nearly as good as the optimal static mixture,
chosen in hindsight. Finally, the SWITCHER algorithm is com-
pared to the class of language models that may switch between
submodels from time to time. These three algorithms are closely
related to certain types of Hidden Markov Models, but involve ex-
tensions that are not easily expressible within the Hidden Markov
Model framework.

We performed experiments to compare these adaptive tech-
niques to more traditional static methods on the task ofdomain
adaptation, using data from four different domains: Wall Street
Journal text, Associated Press text, Broadcast News transcriptions,
and Switchboard transcriptions. We show that on-line algorithms
generally perform at least as well as static mixtures in terms of
perplexity, and in some cases considerably better. Furthermore,
we show these algorithms are extremely robust, due of their ability
to dynamically adapt to test data.

2. ON-LINE ALGORITHMS

We begin by stating the on-line problem ofpredicting from expert
advice, as we see it applied to the field of language modeling. A
learning algorithm, in this case a supermodel, is repeatedly given
the task of predicting the next word given the previous words. In
addition, the algorithm is given as input the advice ofm “experts,”
in this case language models. After each word, each expert pre-
dicts the next word with a probability distribution, and then the
supermodel must combine these predictions in order to make its
own prediction. Suppose we make no assumptions about the qual-
ity or independence of the expert language models, so we cannot
hope to guarantee any absolute level of quality in our predictions.
In that case, a natural first goal is to perform nearly as well as the
best language model so far: that is, to guarantee that at any time,
our algorithm has not performed much worse than whichever ex-
pert has been the most accurate to date.

The performance of a language modelp(wjh) on some test
dataT = w1 : : : wt is measured as the probability it assigns to the
text, p(T ) = Q p(wijhi). The cross-entropyHp(T ) of a modelp(wjh) on dataT is defined asHp(T ) = �1t log2 p(T ) = �1t tXi=1 log2 p(wijhi)



and can be interpreted as the average number of bits needed toen-
code each of thet words in the test data using the compression
algorithm associated with modelp(wjh). The perplexity of a textT , PPp(T ), which we use to report our results, is defined as fol-
lows, PPp(T ) = 2Hp(T ) = 1p(T )
.

This first goal is addressed by what we call the SELECTOR

algorithm, which has been analyzed in several fields [6]. We view
it as a special case of the problem of predicting from expert advice,
described further in [1].

2.1. Selector

The SELECTOR is a supermodel which does almost as well as the
single best of its constituent language models, regardlessof the
text. One way to describe a language model is to give the prob-
ability assigned to any textT , p(T ). In this way we define the
SELECTOR(fp1; p2; : : : ; pmg) by,psel(T ) = 1mX pj(T ): (2)

As an average ofm probability distributions,psel is clearly a valid
distribution, and it also satisfies, for allj,psel(T ) � pj(T )m =) Hpsel(T ) � Hpj (T ) + log2mt :
In particular, the cross-entropy of SELECTOR is at mostlog(m)=t
bits more than the cross-entropy of the best model, regardless of
the domain. We use the termcross-entropy overheadfor the dif-
ference between the cross entropy of the supermodel and the cross
entropy of the best of the competing models. In this case the over-
head is very small, even for millions of models on any reasonably
sized text.

While technically we have described the language model, we
have not given an efficient algorithm for calculatingp(wjh). One
implementation is a simplem-state Hidden Markov Model with
zero probability of changing state. Each state refersj to a different
model and predicts the next word based onpj(wjh). The initial
distribution is uniform over the states. Thus, we can view�ij in

equation (1) as the probability of being in statej after theith word.
The update rule becomes�i+1j = �ijpj(wijhi)Pmj0=1 �ij0pj0 (wijhi) ;
and the algorithm runs in linear time in the length of the text.

2.2. Mixer

Often, combining language models yields better results than any
of the individual language models themselves. The most common
combination method, described in the introduction, isp~�(wjh) =X�jpj(wjh);
with � 2 �; i:e:Pmj=1 �j = 1 and�j � 0. Thus, a second
goal is to perform almost as well as the best static mixture oflan-
guage models, where the best is chosen in hindsight. We get just
such a guarantee by using an on-line algorithm for investingin a

stock market due to Cover [4, 5]. Cover’s algorithm can be written
simply,

M IXER = SELECTOR
�fp~�j~� 2 �g� :

This combination of infinitely many language models is a descrip-
tion of a probability distribution rather than a description of an
algorithm for computingpmix(wjh). An O(tm�1) implementa-
tion is described in [4], but there are faster approximations such as
tiling [6] or sampling [2].

Cover’s algorithm, translated to the language modeling do-
main, comes with the following guarantee for allj,Hpmix(T ) � Hpj (T ) + (m� 1) log2 tt :
Guarantees of the performance of Cover’s algorithm and the two
approximations can be found in [4, 5], [2], and [6], respectively.
The above cross-entropy overhead of(m � 1) log2 tt is small for
large test sets. For example, over 10,000 words and 10 language
models, the maximum overhead is about 0.01 bits per word. How-
ever, this grows linearly in the number of models instead of log-
arithmically as with SELECTOR, so we cannot guarantee perfor-
mance with large numbers of models, at which point the computa-
tional costs become prohibitive as well.

2.3. Switcher

In this section, we describe a novel on-line algorithm, SWITCHER.
SWITCHER has the property that it does almost as well as the best
submodel on any segment of the text. Put another way, SWITCHER

is designed to compete with supermodels that predict each word
according to a single submodel but which are allowed to switch
between submodels from time to time. Since it may be possibleto
get absurdly high performance by switching very frequently, the
guaranteed bounds, which are asymptotically optimal, depend on
the switching frequency.

First, we define a fixed switching algorithmp~j(wjh) based on

the fixed sequence of choices it makes,~j = (j1; : : : ; jt), for which
model to use to predict the next word. In other words,p~j(wijhi) = pji(wijhi):
Next, as in [11, 8], we define SWITCHER
 specifically to be com-
petitive against algorithms which switch between submodels with
frequency
. Like the SELECTOR, this can be described by anm-
state Hidden Markov Model with a uniform starting distribution.
Just as before, statej represents a language model and predicts the
word according topj(wjh). However, now there is now a fixed
probability,1 � 
, of staying in a state and
=(m � 1) of going
from a state to a different state. We can use the same description as
we did for SELECTOR in equation (1), where�ij is the probability

of being in statej after theith word. We have the new update,�i+1j = �1� 
 � mm� 1�� �ijpj(wijhj)Pj0 �ij0pj0 (wijhi) + 
m� 1 :
It is not hard to bound the performance of SWITCHER
 relative

to p~j(wjh). We sayp~j has a switching frequencyf when,f = jfi : ji 6= ji+1gjt� 1 :



Singer shows in equation (2) of [11],pswi
 (T )p~j(T ) � 1m �� 
m� 1�f (1� 
)1�f�t�1 (3)

The general SWITCHER, which has no parameter
; combines
SWITCHER
 ’s so as to adapt to the parameter
. On a sequence of
lengtht, for any~j, the number of timesp~j(wjh) switches models
is an integer between0 andt� 1. Thus, we define SWITCHER to
simply select among these values:

SWITCHER=
SELECTOR

�n
SWITCHER st�1 js 2 f0; : : : ; t� 1go�

By combining equations (2) and (3), for any~j with switching fre-
quencyf , we get a maximum cross-entropy overhead oflog2 mtt + f log2(m� 1)� f log2 f � (1� f) log2(1� f)
which, because�(1�f) log2(1�f) � f log2 e, is no more than,log2mtt + f log2 (m� 1)ef

3. EXPERIMENTS

To compare on-line algorithms with existing techniques forcom-
bining language models, we performed experiments on the task of
domain adaptation. In domain adaptation, one attempts to improve
a language model for one domain (e.g., Switchboard) using train-
ing data from additional domains (e.g., North American Business
news). Typically, the target domain is known ahead of time; how-
ever, to highlight the potential advantages of on-line algorithms,
we also consider the situation where the domain of the test data
is hidden and where the test data contains text from multipledo-
mains. Previous work in domain adaptation [12, 9] has shown that
static mixtures achieve competitive performance in terms of both
perplexity and speech recognition word-error rate with other exist-
ing combination methods.

We constructed four trigram language models (with a variation
of Kneser-Ney smoothing) using training data from the follow-
ing four sources: Wall Street Journal text (5M words), Associated
Press text (5M words), Broadcast News transcriptions (5M words),
and Switchboard transcriptions (3M words). For each domain, we
extracted a held-out set and test set of about 25,000 words.

In our first set of experiments, we evaluated several methods
on each domain test set separately. We calculated the perplexity
of each test set using only the language model from the match-
ing domain; using a trigram model constructed from the training
data from each domain merged together; using a static mixture
of the four domain language models with weights optimizing the
perplexity of the matching held-out set; and using a static mixture
with weights optimizing the perplexity of the given test set, i.e.,
the optimal static mixture chosen in hindsight. These perplexities
are displayed in order at the top of Table 1.

We ran the SELECTOR, M IXER, and SWITCHER algorithms
on these data sets. As can be seen in Table 1, SELECTOR did ex-
actly as theoretically guaranteed, matching the performance of the
best single submodel for each test set, for an average perplexity of
174.7. The MIXER performed significantly better, with an average

domain
algorithm AP WSJ SWB BN avg.

corr. domain only 266.2 201.9 83.2 209.8 174.7
merge train. data 238.9 195.1 103.1 193.6 174.2
mixt., h.-o. wgts. 234.0 184.5 79.4 182.9 157.9
best mixtures 231.8 184.2 79.4 180.0 156.7

SELECTOR 266.2 201.9 83.2 209.8 174.7
SWITCHER 234.5 187.0 82.1 182.2 159.6
M IXER 233.0 184.5 80.2 180.4 157.4

Table 1: Perplexities of various models on test set from eachof the
four domains; theaveragecolumn represents average performance
over each domain test set weighted by test set length

0 10 20 30 40 50 60 70 80 90 100
Word Number

AP -

BN -

SWB -

WSJ -

Figure 1: The weights�ij of M IXER over the first 100 words of the
AP test set

perplexity of 157.4, close to the performance of the optimalstatic
mixture. In Figure 1, we display the weights�ij that MIXER places
on the different models as we predict the first 100 words of theAP
data. As expected, these weights quickly devote the majority of
their mass to the AP model.

Surprisingly, the SWITCHER almost matched the performance
of the best static mixture, even though it employs only a single
submodel at a time. On closer examination, we see that these
models are switching more often than one might expect. Recall
that a SWITCHER is simply an average of SWITCHER
 ’s for dif-
ferent values of
 2 [0; 1], where
 corresponds to the natural
switching frequency. On the four test sets, the highest weighted
SWITCHER
’s switched with probabilities 0.13, 0.05, 0.02, and
0.27. In Figure 2, we show the weights�ij of the SWITCHERalgo-

0 100 200 300 400 500 600 700 800 900 1000
Word Number

AP -

BN -

SWB -

WSJ -

Figure 2: The weights�ij of SWITCHER over the first 1000 words
of the AP test set



algorithm perplexity

mixture, held-out wgts. 185.1
best mixture 184.7

M IXER 184.7
SWITCHER 160.8

Table 2: Perplexities of various models on test set combining four
domain test sets

rithm over the first 1,000 words of the AP test set.
In our second set of experiments, we concatenated the four

domain test sets into a single long test set. We calculated the per-
plexity of this test set using a static mixture with weights opti-
mizing the perplexity of the four held-out sets concatenated; us-
ing the optimal static mixture in hindsight; and using the MIXER

and SWITCHER supermodels. These perplexities are displayed in
Table 2. Not surprisingly, the performance of the MIXER matches
that of the best static mixture (184.7 PP). However, the SWITCHER

performed almost as well on the concatenation (160.8 PP) as it did
on the individual test sets (159.6 PP). As expected, this test set
highlights the strength of the SWITCHER, resulting in a 13% de-
crease in perplexity over the other models.

4. DISCUSSION

On-line algorithms provide a simple and effective set of tools for
combining language models. These methods are extremely gen-
eral as no assumptions are made about the structure of component
language models. We demonstrate that on-line algorithms perform
comparably with static mixtures, which have achieved excellent
performance on many language modeling tasks. In the case where
our test set was composed of text from disparate domains, theal-
gorithm SWITCHER resulted in a perplexity decrease of over 10%
as compared to the optimal static mixture.

In general, on-line algorithms automatically and dynamically
adapt to changing text characteristics. Consequently, on-line al-
gorithms do not require held-out sets for parameter optimization
and still perform comparably to or better than static mixtures with
weights trained on held-out sets. This is especially advantageous
when no appropriate held-out is available. For example, when
static mixture weights are optimized on just the Broadcast News
held-out set for the experiments in Table 1, the average testper-
plexity rises from 157.9 to 186.6. Conversely, even though on-line
algorithms were blind to the domain of the test set in our exper-
iments, they still performed just as well as other algorithms that
took advantage of knowledge of the domain of the test set.

While the guaranteed performance bounds of on-line algo-
rithms are often excellent, in some cases they may not be ade-
quate. For large numbers of component models or very short test
sets, guarantees are generally poor. For example, combining 5,000
language models could lead to a sixfold perplexity increasefor the
M IXER algorithm over that of the optimal static mixture on a data
set of 25,000 words. Furthermore, the computational efficiency of
the MIXER algorithm is poor for large numbers of submodels; it
can require time exponential in the number of submodels. How-
ever, there exist other on-line algorithms that do not have theoreti-
cal performance guarantees but which still perform well in practice
and which are very efficient,e.g., [7].

The on-line algorithms we describe are closely related to Hid-

den Markov Models. While the more complex algorithms involve
theory that falls outside of the conventional HMM framework, the
simpler algorithms have direct HMM analogs, and our implemen-
tation of each algorithm can be considered to be an HMM. How-
ever, on-line analysis provides a different perspective for analyzing
and designing these types of models.

In some applications, the characteristics of the test data are
known and appropriate held-out data is available and consequently
there is little advantage in using on-line algorithms over static mix-
tures. However, when the nature of the test data is unknown or
changing over time, on-line algorithms offer the advantages of per-
formance, convenience, generality, and robustness.

5. REFERENCES

[1] A. Blum. On-line algorithms in machine learning. InPro-
ceedings of the Workshop on On-Line Algorithms, Dagstuhl,
1996.

[2] A. Blum and A. Kalai. Universal portfolios with and without
transaction costs. InProceedings of the 10th Annual Confer-
ence on Computational Learning Theory, 1997.

[3] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and
R. L. Mercer. Class-based n-gram models of natural lan-
guage.Computational Linguistics, 18(4):467–479, Decem-
ber 1992.

[4] T. Cover. Universal portfolios.Math. Finance, 1(1):1–29,
January 1991.

[5] T. Cover. Universal data compression and portfolio selection.
In Proceedings of the 37th IEEE Symposium on Foundations
of Computer Science, pages 534–538, October 1996.

[6] D. Foster and R. Vohra. Regret in the on-line decision prob-
lem. InSomething for Nothing Workshop, May 1995.

[7] D. Helmbold, R. Schapire, Y. Singer, and M. Warmuth. On-
line portfolio selection using multiplicative updates. InMa-
chine Learning: Proceedings of the 13th International Con-
ference, 1996.

[8] M. Herbster and M. Warmuth. Tracking the best expert. In
Proceedings of the Twelfth International Conference on Ma-
chine Learning, pages 286–294, 1995.

[9] R. Iyer, M. Ostendorf, and H. Gish. Using out-of-domain
data to improve in-domain language models.IEEE Signal
Processing Letters, 4(8):221–223, August 1997.

[10] K. Seymore and R. Rosenfeld. Using story topics for lan-
guage model adaptation. InProceedings of Eurospeech ’97,
1997.

[11] Y. Singer. Switching portfolios. InProceedings of the 14th
Conference on Uncertainty in Artificial Intelligence (UAI-
98), 1998.

[12] M. Weintraub, Y. Aksu, S. Dharanipragada, S. Khudanpur,
H. Ney, J. Prange, A. Stolcke, F. Jelinek, and L. Shriberg.
Fast training and portability. In1995 Language Modeling
Summer Research Workshop: Technical Reports, Center for
Language and Speech Processing, Johns Hopkins University,
Baltimore, 1995.


