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RÉSUMÉ

Ce papier présente une nouvelle méthode d’apprentis-
sage pour les systèmes de vérification du locuteur. Cette
méthode améliore les travaux précédents dans le domaine
de vérification du locuteur en (1) développant un nouvel
algorithme d’apprentissage discriminanta posteriori, et
en (2) étendant l’algorithme pour optimiser directement
les performances de la vérification du locuteur. L’élément
clé de ce nouvel algorithme d’apprentissage améliorant
l’état de l’art de la technologie initialise le système avec
un modèle mélangé de Gauss modifié par des Bayesiens.
L’algorithme d’apprentissage discriminant ajuste alors les
paramètres de ces modèles pour directement minimiser
une fonction du coût de la vérification (VCF) représentant
le coût attendu des fausses acceptations des imposteurs et
des faux rejets des locuteurs acceptables. Les résultats
présentés proviennent du corpus de l’évaluation de la re-
connaissance du locuteur du NIST en 1997 indiquant que
la performance de la VCF peut être améliorée mais au de-
pend d’une ré2duction de performance d’autres parties du
système (différents coûts des fausses alarmes et des faux
rejets).

ABSTRACT

This paper presents a new training procedure for speaker
verification systems. The procedure extends previous
speaker verification work by (1) developing a new dis-
criminativea posteriori-based training algorithm, and (2)
extending the algorithm to directly optimize speaker veri-
fication performance. The key features of the new training
algorithm include leveraging current state of the art tech-
nology by initializing the system with Bayesian-adapted
Gaussian mixture models. The discriminative training al-
gorithm then adjusts parameters of these models to di-
rectly minimize a verification cost function (VCF) repre-
senting the expected costs of falsely accepting impostors
and falsely rejecting true claimants. Results are presented
from the 1997 NIST Speaker Recognition Evaluation cor-
pus indicating that the VCF performance can be improved

with this procedure, but at the expense of reduced sys-
tem performance at other operating points (different false
alarm and false rejection costs).

1. INTRODUCTION

In many applications, the goal of a speaker verification
system isnot to minimize classification error, but rather
to minimize the expected cost of making an error. This
expected cost can be expressed as a function of the two
error types: the cost of false alarms (falsely accepting an
impostor speaker) and the cost of false rejections (falsely
rejecting a true speaker). If the costs associated with each
error type differ, then minimizing classification error will
not minimize the expected cost of making an error.

For example, minimizing the expected cost of making
an error (rather than classification error) is important in
detecting credit card fraud. In this application, the prob-
lem is to determine whether the voice of a person who is
attempting to purchase an item with a credit card is in fact
the voice of the person authorized to use that credit card.
There is a real cost (in dollars) to the credit card com-
pany for missing a fraudulent user (the system accepted a
transaction from a person not authorized to use the card).
On the other hand, falsely accusing a valid customer of
fraud (the system rejected a transaction from a person au-
thorized to use the card) could result in lost business. For
this application, it would be desirable to design a speaker
verification system that considers both the cost of false
acceptances and false rejections.

The expected cost of verification errors can be ex-
pressed as a verification cost function (VCF)

VCF = C(miss) P (C) P (miss) +C(fa) P (I) P (fa) (1)

where C(miss) and C(fa) are the costs of missing
a claimant speaker and falsely accepting an impostor, re-
spectively,P (C) andP (I) are thea priori probabilities of
a claimant speaker and an impostor speaker, andP (miss)



andP (fa) are the probabilities of missing a claimant and
falsely accepting an impostor.

Given claimant and impostor models, much of the cur-
rent work attempts to minimize the VCF by setting appro-
priate thresholds on the output scores, i.e., speakers who
score above the threshold are accepted, and those who
score below the threshold are rejected. However, this ap-
proach only attempts to affect the VCF during testing. A
better approach wouldbe to change the speaker and impos-
tor models to minimize the VCF during training as well.
Developing a discriminative framework to accomplish this
is the focus of this paper.

Several approaches to discriminative training of speaker
verification systems have been investigated, including the
study by Liu, et. al [1] and a study by Korkmazskiy,
et. al [2] on the use minimum classification error (MCE)
techniques. Liu’s paper extended the previous work of
Juang et. al [3] by applying MCE to the speaker verifica-
tion problem (Juang’s original application was to speech
recognition). Korkmazskiy’s work focused on applica-
tions where adaptation data was available to the system
for model refinement, while our focus is on the initial
training step of the system. Our paper extends Liu’s and
Korkmazskiy’s work in two ways. First, we formulate the
discriminative training in ana posteriori framework to pre-
serving the connection of the verification scores to prob-
abilities. Probabilities, as opposed to a distance measure,
are meaningful in an absolute sense, providing a measure
of confidence about an accept/reject decision. A second
extension of previous work is in our development of a
training procedure that optimizes verification performance
directly rather than minimizing classification error. More
specifically, we minimize both false acceptances and false
rejections during training according to their costs (speci-
fied by the application). The approach leverages current
state of the art Bayesian-adapted Gaussian mixture model
(GMM)-based speaker verification systems [6] by utiliz-
ing GMMs to represent the underlying probability density
functions.

2. DISCRIMINATIVE TRAINING PROCEDURE
FOR MINIMIZING COST

We can express the probability of miss and the probability
of false alarms in Equation (1) asP (miss) = RC P (miss; ~x)d~x= RC P (missj ~x)p(~x)d~x (2)

and P (fa) = RI P (fa; ~x)d~x= RI P (fa j ~x)p(~x)d~x (3)

whereC andI are the sets of observations over~x where
the classifier decides that the observation is a claimant and

impostor, respectively. Given a particular~x in the claimant
decision setC, we can express the probability of miss asP (missj ~x) = 1� P (C j ~x)= P (I j ~x): (4)

whereP (C j ~x) is the probability of the claimant speaker
given the observation~x, andP (I j ~x) is the probability
of an impostor speaker given the observation. Likewise,
for a particular~x in the impostor decision setI, we can
express the probability of false alarm asP (fa j ~x) = 1� P (I j ~x)= P (C j ~x) (5)

Substituting Equations (4-5) into Equation (1), we obtain

VCF = C(miss)P (C) ZC P (I j ~x)p(~x)d~x +C(fa)P (I) ZI P (C j ~x)p(~x)d~x: (6)

We can approximate Equation (6) with a large training
sample by

VCF� = C(miss)P (C) 1NT NTXk=1

P (I j ~xTk) +C(fa)P (I) 1NI NIXl=1

P (C j ~xIl) (7)

whereNT andNI are the number of observations in the
training sample where the classifier decides claimant and
impostor, respectively,~xTk is thekth observation from the
claimant decision set, and~xIl is thelth observation from
the impostor decision set.

To minimize the detection cost function directly, we
can use a stochastic steepest descent algorithm, where
model parameters at the k+1 iteration can be written as�k+1 = �k � 
 @V CF �@� (8)

where�k+1 is the set of model parameters at the k+1st
iteration and
 is (an experimentally determined) learning
rate. The gradient term is computedat a sentence level
and is given as@V CF �@� = C(miss)P (C) 1NT NTXk=1

@P (I j ~xTk)@� +C(fa)P (I) 1NI NIXl=1

@P (C j ~xIl)@� (9)



We can also implement the steepest descent algorithm at
the frame level, that is,@V CF �@� = C(miss)P (C) 1NT @P (I j ~xTk)@� +C(fa)P (I) 1NI @P (C j ~xIl)@� (10)

The task that remains is to derive an expression for
the partials of the posteriori probabilities with respect to
model parameters�. First, we need to specify a suitable
(parametric) model to represent the posteriori probabil-
ity density functions. Using Bayes’ rule, the posteriori
probabilities in Equation (10) can be expressed asP (Cj~xTk) = p(~xTk jc)P (C)P (~xTkjc)P (C) + P (~xTkjI)P (I) (11)

In this work, we model the likelihood density functionsp(~xTk jc) andp(~xTk jI) with a GMM. We use a GMM be-
cause GMMs give state of the art performance in speaker
recognition applications [6], and GMMs can be efficiently
initialized with the EM maximum likelihood training al-
gorithm.

The likelihood of an observation given the model for a
claimant speaker can be expressed by a GMM asp(� j c) = MXm=1

�mbm(� j �m; �m) (12)

wherebm(� j ~�m; ~�m) is themth Gaussian of the mixture
parameterized by a mean vector~�m and standard devia-
tion ~�m. Substituting Equation (12) into Equation (11)
and taking the partial with respect to each model param-
eter gives the expressions for the partials of the posterior
probabilities.

3. EXPERIMENTAL DATABASE

The results in this paper are from text-independent ex-
periments on the database used for the June 1997 NIST
Speaker Recognition Evaluation [5]. The database is from
Switchboard-II, a conversational-stylecorpus of telephone
calls. The database consists of 401 claimant speakers (167
male and 234 female). During the testing of one of the
claimant speakers, the impostors are simulated by using
speech from the other 166 claimants. Only training data
from the claimant and an impostor development database
(excluding all claimant speakers) is used during the train-
ing of the claimant and impostor models, and the setting
of decision thresholds. For all the tests in the evaluation,
there are approximately 25,000 target speaker trials and
250,000 impostor trials. For the claimant model, 2 min-
utes of training data is available.

4. PRELIMINARY RESULTS

The parameters of the claimant and impostor models are
initialized with a nondiscriminative training procedure.
The initialization procedure is as follows: multiplespeaker-
independent GMMs are used to represent the impostor
speakers. These speaker-independent GMMs are trained
with an EM algorithm to maximize the likelihood of the
data observations given the model. Separate impostor
models are trained to represent speakers talking in various
acoustic environments and gender. For example, in tele-
phone speech, separate impostor models are trained for
each handset transducer type (carbon button, electret) and
each gender. Using multiple models to represent impostor
speakers in various acoustic environments (in combina-
tion with a detector to automatically determine the correct
acoustic environment) greatly enhances the robustness of
speaker verification systems [4]. Each model used 1024
Gaussians, and was trained with approximately 5 hours of
speech from the 1997 NIST Speaker Recognition devel-
opment set.

Claimant speaker models are then initialized by adapt-
ing the impostor GMM that has the same handset type and
gender type as the claimant. The adaptation is accom-
plished with an unsupervised Bayesian adaptation with
the training data of the claimant [6]. The result is a 1024-
Gaussian claimant model.

After initialization, the parameters of the GMMs rep-
resenting the claimant and the impostor speakers are up-
dated with the discriminative training procedure described
in Section 2. Table 1 shows the costs for false alarms
and false rejections, as well as the prior probabilities for
claimant and impostor that we used in training (these val-
ues were specified in the 1997 NIST evaluation). To pro-
vide a balanced training sample, we used a 2:5 ratio of
data for claimants vs. impostors (the prescribed 2 minutes
for the claimants, and 5 minutes of impostor data from
the 1996 NIST Speaker Recognition Evaluation, 3-second
1-session test).

Cost of False Reject 10
Cost of False Alarm 1

Prior Prob. of Claimant 0.01
Prior Prob. of Impostor 0.99

Table 1: Cost of false alarms and false rejections, and prior
probabilities for claimants and impostors in the 1997 NIST
Speaker Recognition Evaluation.

To complete the discriminative training, we divided
the training data into two sets: 90% used to optimize
the parameters, and 10% used as a cross validation set.
As described earlier, the training procedure was iterative,
with astopping criterion based on the relative improvement
(reduction) of the VCF on the cross validation set. The



initial learning rate,
 in Equation (8), was experimentally
determined, and updated automatically depending on the
relative improvement of the VCF in cross validation.

To illustrate the properties of the discriminative mini-
mum cost training procedure developed in this paper,Table
2 shows the performance on training and cross validation
for one of the claimant speakers for each epoch of training
(complete passes through the frames of data in the training
set). The training procedure resulted in an 8.6% improve-
ment (decrease) in the VCF score for the training set, and
a 2.3% improvement in the VCF score for the cross val-
idation set. It is interesting to note that the VCF scores
and the probability of the correct class are not necessarily
monotonic with the training epochs. For example in the
cross validation results, the probability of the correct class
worsens (gets smaller) from the first to the second epoch
while the VCF improves. This suggests that training the
classifier to maximize the probability of correct (minimize
probability of error) does not necessarily result in the best
verification performance (VCF).

Training Set
Epoch Avg. Posterior Prob. VCF (x103)

# of Correct Class
0 0.743 107.7
1 0.734 107.5
2 0.773 98.4

Cross Validation Set
0 0.726 102.6
1 0.762 103.0
2 0.750 100.2

Table 2: Performance of discriminative training procedure
on 1997 NIST Evaluation (male, 10 second test, 1 session
training) for one speaker on training and cross validation
sets.

Table 3 shows results for the 1-session (2 minutes
of training from one phone call), 10-second male test in
the 1997 NIST Speaker Recognition evaluation where the
same telephone was used in by the claimant in training
and testing. Table 4 shows results for the same training
case, but with tests from a different telephone than used in
training. The first column of each table shows the equal
error rate (EER), the second column shows the probabil-
ity of false alarm at a 10% miss (false reject) rate, and
the third column shows the VCF score. (The VCF scores
are in a different range from the training set because the
training VCF was computed at the frame level). The dis-
criminative procedure reduces the VCF by 5.3% for the
matched case and 2.8% for the mismatched case as com-
pared to our baseline system (EM-trained impostor model,
with Bayesian adaptation to the claimant model). This
gain is at the cost of increased errors for other operating

conditions (different costs), as illustrated at the probability
of false alarm at a 10% miss rate.

System EER Pfa(@10% miss) VCF (x103)
Baseline 7.0 4.1 34.0

Min. Cost 7.1 4.6 32.2
(Discrim.)

Table 3: 1 session, 10 second male test, 1997 NIST
Speaker Recognition Evaluation corpus (matched tele-
phone numbers)

System EER Pfa(@10% miss) VCF (x103)
Baseline 16.6 29.4 60.9

Min. Cost 16.5 31.4 59.1
(Discrim.)

Table 4: 1 session, 10 second male test, 1997 NIST
Speaker Recognition Evaluation corpus (mismatched tele-
phone numbers)

5. DISCUSSION AND FUTURE WORK

We presented a newa posteriori-based training procedure
for speaker verification systems that optimizes verification
performance directly. The framework is flexible and fa-
cilitates a principled design of the classifier to improve
performance at a desired operating point (specified by the
costs of false alarms and rejections) by giving up perfor-
mance at other operating points. In addition to training the
classifier to directly optimize verification performance, fu-
ture work will extend the training procedure to include the
design of the feature extractor.
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