
The Microsoft Repository

 Philip A. Bernstein 1 Brian Harry Paul Sanders
 Microsoft Corporation Microsoft Corporation Texas Instruments, Inc.

 David Shutt Jason Zander
 Microsoft Corporation Microsoft Corporation

Abstract

The Microsoft Repository is an object-oriented repository
that ships as a component of Visual Basic (Version 5.0).
It includes a set of ActiveX interfaces that a developer
can use to define information models, and a repository
engine that is the underlying storage mechanism for these
information models. The repository engine sits on top of a
SQL database system.

The repository is designed to meet the persistent storage
needs of software tools. Its two main technical goals are:
• compatibility with Microsoft’s existing ActiveX

object architecture consisting of the Component
Object Model (COM) and Automation and

• extensibility by customers and independent software
vendors who need to tailor the repository by adding
functionality to objects stored by the repository
engine and extending information models provided
by Microsoft and others.

This paper explains how the Repository attains these
goals by providing an object-oriented database (OODB)
architecture based on Microsoft’s binary object model
(COM) and type system of Visual Basic (Automation).

1. Introduction
Microsoft Repository is composed of two major
components: a set of object-oriented ActiveX interfaces

1 Authors’ address: Microsoft Corp., One Microsoft Way,
Redmond, WA 98052-6399. Email: {philbe, bharry,
v-paulsa, dshutt, jasonz}@microsoft.com
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

that a developer can use to define information models,
and a repository engine that is the underlying storage
mechanism for these information models. (Information
model is repository terminology for database schema [3].)
The repository engine sits on top of either Microsoft SQL
Server1 or Microsoft Jet (the database system in Microsoft
Access) and supports both navigational access via the
object-oriented interfaces and direct SQL access to the
underlying store. In addition, the Repository includes a
set of information models that cover the data sharing
needs of software tools.

The two main technical goals of Microsoft Repository are

1. COM/ActiveX Compatibility - It should fit naturally
into Microsoft’s existing object architecture,
consisting of COM and Automation (now subsumed
under ActiveX). Thus, the repository should use
existing ActiveX interfaces and implementation
technology wherever possible and minimize the
number of new concepts that the large community of
ActiveX users needs to learn.

2. Extensibility - Given the size and diversity of Micro-
soft’s market, it’s important that customers and third-
party vendors be able to tailor the repository to their
needs, both by providing methods on objects stored
by the repository engine and by extending persistent
state. The latter is done declaratively, with no code.

This paper explains how Microsoft Repository attains
these goals by providing an OODB architecture that fits
into Microsoft’s existing object infrastructure. In contrast
to C++ or Smalltalk based OODBs, its object model is a
binary standard, not a language API, and is very strongly
interface-based, rather than class-based. Fitting an OODB
or repository into an existing object model is a delicate
activity, which we explain in detail. The reward is a
repository that offers the powerful extensibility of
COM/ActiveX, without requiring many new extensibility
features of its own.

1 ActiveX, Microsoft, Microsoft SQL Server, Visual
Basic, and Windows are trademarks of Microsoft
Corporation.

The Microsoft Repository is also interesting because of its
pervasiveness. It ships in Visual Basic 5.0 Professional
and Enterprise editions and will therefore have several
hundred thousand copies deployed within a year 
perhaps more, as it is added to other Microsoft products.

There is very little in the research literature about
complete repository systems. A general introduction can
be found in [3]. The PCTE standard is described in [10].
Many OODBs are used as repositories, though they are
not the same thing, as explained in [2]. Still, the large
literature on OODB system descriptions is relevant to the
present work, such as [4, 11]. A comparison of our design
with other systems is beyond the scope of this paper.

2. COM and Automation

2.1 The Component Object Model
Microsoft’s Component Object Model (COM) is the
foundation of Microsoft’s object architecture. It is a
binary standard that describes component-to-component
early-bound calling conventions in a language-neutral
fashion, so that components written in one language can
seamlessly call components written in another language.

In COM, a class is an executable program image. It can
have multiple interfaces, where each interface is a
collection of methods, called members. All of the
Repository’s interfaces are COM interfaces.

Each class has a class id, which is a 128-bit globally
unique identifier (GUID). Given a class id, the function
CoCreateInstance creates an object, which is an
instance of the class. CoCreateInstance finds the
class’s executable by looking up the class id in the regis-
try, which is a small hierarchical persistent store managed
by Windows operating systems. Entering the class id in
the registry is part of the class’s installation procedure.

An interface’s specification includes an ordered list of its
method names, each method’s parameters, and an inter-
face identifier (IID), which is a GUID. An interface’s spe-
cification is immutable. Therefore, to enhance an inter-
face, one must implement a new interface with a new IID.

By convention, interface names begin with I. Figure 1
gives a graphical representation of a class with multiple
interfaces; interfaces are depicted as lollipops attached to
the class or instance of the class. Methods are ordinarily
not shown in this representation; for example, the IForm
interface could support the Resize and AddControl
methods, which are not shown in the figure.

Form Object
IUnknown

IForm

IProjectItem
Figure 1 Representation of a COM Component

A COM interface can directly inherit from at most one
other interface, in which case it supports the members of
the interface from which it inherits. Every COM object
inherits, directly or indirectly, from IUnknown. COM
supports a form of multiple inheritance, in that a class can
support many interfaces. It also supports polymorphism,
in that an interface can be supported by many classes.

Every COM class, and hence instances of that class,
support the interface IUnknown. QueryInterface is
a method on IUnknown that allows a client to ask a
COM object if it supports a particular interface, given the
interface’s unique IID. If the object supports the IID, it
returns a pointer to that interface on that object. In this
case, the client knows exactly what behavior the object
will provide, because interface definitions are immutable.
If it doesn’t support the IID, it returns null. Thus, in
Figure 1, an instance of Form would respond positively
to a call on QueryInterface given IForm’s IID and
therefore supports all the methods specified for IForm.

The QueryInterface mechanism helps cope with
type evolution, as follows:

• Since interface definitions are immutable, to change
the behavior of an interface, one must define a new
interface. Over time, one may have several different
interfaces that are effectively versions of each other.
We use “version” loosely here; each “version” is an
independent interface insofar as COM is concerned.

• A class can support several different interfaces,
which may be different versions of an interface that
has evolved over time.

• A client can cope with multiple versions of a class’s
interface as follows: The client queries for the IID of
the interface version it prefers. The class’s instance
replies yes or no. If it answers no, the client tries its
second favorite interface, and so on. The client and
object can interoperate if the client finds an interface
that it knows how to use and that the object supports.

This mechanism allows classes and their clients to be
independently upgraded.

Every class has a class factory, which can create instances
of the class. The class factory returns a pointer to an inter-
face on the object. After receiving this pointer, a client
can call methods on that object (locally, or remotely using
Distributed COM (DCOM)), or can use
QueryInterface to find other interfaces on the object
and call methods on them.

A COM class, C, can be extended by wrapping it. This
technique is called aggregation if the wrapper passes
through any of C’s interfaces, else it is called
containment. The technique involves writing a class, C′,
that supports the extended behavior, which may consist of
new interfaces and/or wrapped implementations of C’s
interfaces. C′ only needs access to C’s executable (not its

source code). To make this work, C′ replies to Query-
Interface only on interfaces C′ implements (i.e. those
it wrapped or its new interfaces). It delegates calls on
QueryInterface for other interfaces to C. Since C′
includes all of C’s behavior, C′ uses C’s class id, c, so
CoCreateInstance(c) produces instances of C′.
COM aggregation is explained thoroughly in COM
documentation and is well known to COM developers [9].

A class can aggregate many classes and be aggregated by
many classes; in this sense, COM supports multiple inher-
itance of implementations. As we will see, the Reposi-
tory’s support of user-defined methods and much of its
extensibility is a direct application of COM aggregation.

A COM interface on an object is implemented in memory
as a vtable (i.e. virtual table) plus some object-local data
structures. A vtable has an entry for each of its members,
which points to the in-memory executable for that mem-
ber. The pointer returned by QueryInterface points
to that interface’s vtable in that object. In this sense COM
is a binary calling standard. Since the caller is assumed to
know the order (and meaning) of member entries in the
vtable, COM is best suited for early-bound access.

2.2 Automation
Automation is a mechanism for late-bound calling of
objects, originally developed for Visual Basic and later
integrated with COM. Automation functionality is
captured by the COM interface IDispatch. IDispatch
supports a method, Invoke(M, parm1, parm2,
…)2, which implements a late-bound call to method M
with parameters parm1, parm2, …, on the object (i.e., the
one that implements IDispatch). For an interface on
an object to be invoked in this way, it must inherit from
IDispatch, in which case it is called a dispatch
interface.

A dispatch interface can have many members, each
identified by a dispatch id, which is the value used for
parameter M in Invoke. IDispatch also includes a
method GetIDsOfNames, which maps member names
to dispatch ids (for efficient late-bound access), using
information contained in a type library (described below).

A member of a dispatch interface can either be an
ordinary method or a property, which is a shorthand for
saying it has methods get_Foo and put_Foo for the
property Foo. A property can either be single-valued or
collection-valued. In the latter case, it returns a collection
object, which in turns supports the following methods:
• Add – inserts an element
• Count – returns the cardinality of the collection
• Item – retrieves an element by index or key

2 Invoke’s signature is more complex, but the details are
unimportant for this discussion.

• Remove – deletes an element identified by index or
key, and

• _enum – returns an enumerator (i.e. cursor) on the
collection, which can be traversed by calls to the
Next method.

An interface can be both a COM interface and a dispatch
interface, called a dual interface. This is an optimization
that allows some members of a dispatch interface to be
called through the early-bound COM mechanism. A caller
who knows the definition of the interface at compile time
can use this information to make an early-bound call and
therefore avoid the overhead of interpretation by
IDispatch. All interfaces to the Repository engine are
dual interfaces.

The “standard” implementation of IDispatch (i.e. for
Visual Basic) uses a type library object to look up the
definition of external interfaces it is asked to invoke. To
produce a type library, a class developer writes an
interface definition in Microsoft’s interface definition
language (MIDL) and compiles it into a type library,
which can either be stored as part of the class’s
executable or in a separate file. Type libraries can be
directly accessed via their own interfaces, such as
ITypeLib and ITypeInfo. Often, they are accessed
indirectly via IDispatch::GetIDsOfNames.

Visual Basic syntax translates directly into calls on
IDispatch. For example, consider this program fragment:
DIM X as Object
X.Foo = 7

The Visual Basic implementation (called an Automation
Controller) uses GetIDsOfNames to look up Foo, and
then uses Invoke to call put_Foo(7). If X supports
multiple interfaces, then the above program accesses
property Foo on its default interface. Another interface,
IBar, could be accessed like this:
DIM Y as IBar
Set Y = X
Z = Y.MyFunction()

The statement “Set Y = X” calls QueryInterface on
X for IBar and assigns that value to Y.

3 The Repository Engine

3.1 The Repository’s Object Model
COM and Automation are used as the native object model
by the vast majority of programming tools for Microsoft
operating systems. It was therefore a requirement that the
repository engine’s functionality be exposed as a set of
COM and Automation objects. These objects are in-
memory representations of the information held in the
repository database. Every object supports a set of
repository-specific dual interfaces. That is, an object is a
repository object if it supports a certain set of repository-
specific interfaces.

The repository supports four main kinds of objects:

• Repository Session - represents the repository data-
base itself. It behaves much like a database session.

• Repository Object - represents the persistent state of
an object in a repository. That state consists of the
object’s properties and collections.

• Collection Object - represents a set of relationship
objects. A collection of relationships is accessed and
updated using the standard collection methods: Add,
Count, Remove, Item, and _Enum.

• Relationship Object - represents a connection
between two repository objects. A relationship can
have properties (unlike the ODMG standard [4]). The
relationship’s connection and properties are stored in
the repository database.

The repository engine is a type-driven interpreter. A user
defines classes, interfaces, properties, methods and rela-
tionships. The repository engine then provides methods
for creating objects that are instances of these classes, and
for storing and retrieving these objects’ properties and
relationships to and from the repository database. One
good way to understand the repository’s capabilities is to
understand what can be expressed in type definitions.

3.2 The Type Model
Repository type definitions are ordinary repository
objects that have certain properties and relationships that
are interpreted by the repository engine. For example, a
class definition is an object that has a property containing
its unique identifier and a relationship to the interfaces it
implements. This usage of its own storage mechanism for
type definitions is analogous to SQL engines, which store
type definitions as rows of tables.

Type definitions are grouped into repository type
libraries. These have the same logical structure and
namespace behavior as Automation type libraries. Having
the same namespace behavior is important for the
repository to match Automation semantics for name-
based access to properties and collections.* Specifically,
class and interface names must be distinct (i.e., in DIM X
as ABC, ABC could be a class or interface), and member
names must be unique relative to an interface (i.e., in
Object.MyMember, MyMember could be a method,
collection, or property). Classes and interfaces also have
unique class ids, as in COM. *

A type library contains definitions of the following kinds
of objects:

* To highlight the effect of COM and Automation on the
repository design, we tag each sentence that describes
such an effect by an asterisk.

i. Class – defines which interfaces it supports, one of
which is its default interface (for Automation).*

ii. Relationship class – defines which collections (on
which interfaces) are connected by instances of the
relationship class.

iii. Interface definition – defines which properties,
collections, and methods are members of this
interface, and which interface it inherits from.*

iv. Property definition – defines properties of the
property, such as its data type and its mapping to an
underlying SQL column.

v. Collection definition – defines properties of the
collection, such as min and max cardinality. These
are properties of endpoints of a relationship type,
called roles in some object models.

vi. Method definition – defines properties of the
method, such as its dispatch id.*

Contains

Properties

Relationships

Interfaces

ClassesProject
IProject
IProjectItem

Form
IProjectItem
IForm

IProject
get_ProjectItems()
get_Owner(), put_Owner()
get_Name(), put_Name()

IProjectItem
get_Projects()

Owner
Name

Date
Size

CollectionsProjectItems Projects

get_Date(), put_Date()
get_Size(), put_Size()

Figure 2 An Information Model

As shown in Figure 2, interfaces are defined on classes,
and properties and collections (i.e. relationships) are
defined on interfaces.* Interface IProject describes
project containers and IProjectItem describes objects
that can be put into project containers. The Project class
supports both IProject and IProjectItem (since a
project can have subprojects), while the Form class
supports IProjectItem but not IProject.
Properties and relationships that are specific to forms are
captured by IForm (shown in the Form class but not
defined in Fig. 2). The relationship Contains is accessible
via the ProjectItems collection on IProject and
the Projects collection on IProjectItem.

Like all repository objects, type definitions are instances
of classes, which in turn support interfaces that have
properties and relationships stored in the repository. For
example, the definitions of IProject and
IProjectItem are instances of the class InterfaceDef,
which supports the interfaces IInterfaceDef (which

provides the behavior unique to interface definitions) and
IReposTypeInfo (which allows interfaces to be the
target of DIM statements in Visual Basic*). Thus, the
information summarized in (i) – (vi) above is captured by
the interfaces and relationships summarized in Figure 3.

IReposTypeLib IReposTypeInfo

IClassDef
Implements

IInterfaceMember

Has

IInterfaceDef

InheritsFrom

IsScopeFor

ICollectionDef

ItemsConformTo

IReposTypeInfo

IPropertyDef
Legend

0:m-0:n

0:m-0:1

Figure 3 Repository Type Model

The classes that use these interfaces are as follows:

i. ClassDef – supports IReposTypeInfo and
IClassDef

ii. RelationshipDef – supports IReposTypeInfo
and IClassDef (relationship-specific information
is in ICollectionDef,so no
“IRelationshipDef” interface needed)

iii. InterfaceDef – supports IReposTypeInfo and
IInterfaceDef

iv. PropertyDef – supports IInterfaceMember and
IPropertyDef

v. CollectionDef – supports IInterfaceMember
and ICollectionDef

vi. MethodDef – supports IInterfaceMember

The COM objects that represent type definitions are
instances of the above classes.

The classes are described as instances of themselves. That
is, there is an instance of ClassDef for each of the above
classes: ClassDef, RelationshipDef, etc. And there is an
instance of RelationshipDef for each of the relationships
in Fig. 3: IsScopeFor, Implements, Has, etc. In this sense,
the repository is self-describing. This characteristic is
useful for model-driven tools, such as generic browsers
and scripting languages, which need to discover the
information model at run-time and which should be
applicable to the repository’s type model as well as
models customized for applications. It also positions the
repository to exploit its own new features that appear in
future releases. For example, when the repository
supports version and configuration management of
repository objects, type definitions will automatically be
able to be versioned and grouped into configurations too.

Several aspects of interface definitions are worth noting:

• The repository engine supports interface inheritance
with the same semantics as COM.* That is, if an
interface I2 InheritsFrom an interface I1, then all of
the properties and collections that are defined on I1
are also available on I2.

• Not all of the properties of an interface need to be
persisted in the repository.

• An interface can include custom methods, whose
existence can be documented in the interface
definition stored in the repository. The information
model developer is responsible for implementing
such methods (see Section 4).

3.3 Object Manipulation
Repository Objects
Each repository object has a unique 20-byte opaque
“external” id. It can be created by the repository or
supplied by the caller when creating the repository object.
The latter is useful to give an object and its replica the
same identity (e.g. a type definition that’s stored in many
repositories). Objects also have an internal identifier that
is an 8-byte compressed representation of the global
identifier, an important storage optimization. The local
identifier is always assigned by the repository and can be
different in every repository. Object identity can be deter-
mined by comparing object IDs (internal or external).

To use the repository, one starts by creating a repository
session, which is an instance of the class Repository. One
then uses the repository session’s Create method to
create a new repository database or its Open method to
open an existing repository database. Now, one can
access repository objects by following relationships from
well-known repository objects or by executing queries.

One well-known repository object is the repository’s
unique root object, which is accessible from the
repository session and connected directly or indirectly to
all other repository objects in the database. Usually, class
and interface definitions are well known, since their
object id’s are the same in every repository. From a class
definition, there is a computed relationship to all reposi-
tory objects that are instances of that class. Similarly,
there is a computed relationship from each interface defi-
nition to all repository objects that support that interface.

To link up the result of a SQL query with the object-
oriented API, the repository session supports a method
get_Object, which loads an object given its object id.
It also supports the CreateObject method, which
creates a repository object of a given class.

Repository Objects can have single-valued scalar-valued
properties, which are accessible using IDispatch (for
Automation) and generic get_value and put_value
methods (for COM). The former allows properties to be
accessed using ordinary Visual Basic syntax*, such as

 DIM X as RepositoryObject
 X.Foo = 7
where Foo is a property of X’s default interface.

Relationship Objects
A relationship is bi-directional. That is, it can be followed
from either of the repository objects it connects. Like a
repository object, it can have properties. Unlike a reposi-
tory object, it can’t have relationships or methods, though
this restriction is likely to disappear in a future release.
Customers drove us to support attributed relationships,
which we accepted since it added no storage or run-time
expense to information models that don’t use the feature.

Each relationship is an instance of a relationship class. A
relationship class definition connects two collection defi-
nitions (on the same or different interfaces), called the
origin and destination. Although a relationship instance
can be traversed in either direction, some semantics of the
relationship is sensitive to the relationship’s polarity
indicated by origin and destination. More on this later.

Starting from a repository object, you can get to a
relationship by accessing a relationship collection, and
then accessing the relationship within the relationship
collection. The repository object you start from is called
the source and the one you traverse to is called the target.
That is, the concepts of source and target are relative to
the traversal direction. So, the source could be on the
origin or destination side of the relationship’s relationship
class. Notice that a relationship is actually a member of
two collections, one on its source and one on its target. In
the common case where you don’t need access to a
relationship’s properties, you can skip over the
relationship object and go directly from source to target,
by using methods on ITargetObjectCol(lection)
instead of IRelationshipCol. This ability to skip
over relationship objects avoids one disadvantage of
attributed relation-ships  that it makes programs that
don’t need such attributes more verbose.

For example, consider the Contains relationship between
IProject and IProjectItem in Fig. 2. Contains
relationships would be accessed via the relationship
collection ProjectItems (on interface IProject) on
Project objects and the relationship collection Projects (on
interface IProjectItem) on Form objects. The
GetProjectItems method on IProject returns a
collection of relationship objects, each of which points to
a repository object supporting IProjectItem. (Or it
may skip over the relationship objects and return a
collection of Form objects.) Figure 4 is an instance-level
view of this model, showing COM objects. The
ProjectItems collection for the instance of the Project
labeled MyProject has three relationships, one of which,
labeled x, points to the instance of Form labeled MyForm.
MyForm, in turn, supports IProjectItem and
therefore has the collection Projects, which contains two
relationships pointing to instances of Project, one of
which is x pointing to MyProject.

ProjectItems

Relationship
Objects

Repository
Object

MyProject
Relationship
Collections

IProject
IRepositoryObject

MyFormIProjectItem
IRepositoryObject

Projects Destination

Origin

Repository Object

x
IRelationshipCol

ITargetObjectCol

Figure 4 Relationships and Relationship Collections

Much of the interesting semantics of a repository is
captured in the behavior of relationships. In ours, a
relationship class can have three kinds of semantics:
naming, sequencing, and delete propagation.

A relationship can have a name, which identifies the
destination object relative to its origin. The origin
collection definition of the relationship class specifies
whether it’s a naming relationship and, if so, whether
names are case sensitive and/or unique (i.e. whether two
instances of the relationship from the same origin must
have different names). Since there can be more than one
naming relationship to a repository object, a repository
object can have different names in different contexts. For
example, if the contains relationship type in fig. 2 is a
naming relationship, and IProject is the origin, then
there could be two relationships from different projects to
the same form. That is, a form could have a different
name in different projects, as shown in fig. 5.

Form

Project1

ProjectItems

Name =
MyForm

ProjectItems

Project2

Name =
AcctForm

Figure 5 Named relationships

As a convenience, an object can have a name that’s the
same in all contexts by using a special interface
INamedObject, which has one property called Name.
If a repository object supports INamedObject, then the
put_Name method on IRepositoryObject assigns
the same name to that Name property and to all naming
relationships to that object. A direct update to the Name
property of INamedObject updates that property only.
This avoids the extra API complexity of assigning names
to every relationship to an object for programs that don’t
need context-dependent naming.

Within a relationship collection, the destination objects
can be sequenced within the context of a particular origin
object and relationship type. This is indicated by setting a

flag on the origin collection definition. One can use the
Insert and Move methods on relationship collections
to control the sequencing. (If it’s a naming relationship
and is not sequenced, the collection is ordered by name.)
Sequencing is useful in many design scenarios, such as
ordering column definitions in a table definition and
ordering member definitions in an interface definition.

Delete methods can propagate to objects beyond the
one being deleted. Deleting a relationship usually affects
only the relationship being deleted. However, if the delete
propagation flag is set on the collection definition of the
relationship’s origin, and the relationship is the last
relationship of its type that points to the destination
object, then the destination object is deleted too. This is
useful for containment hierarchies, where an object that
has no container should be deleted. Deleting a repository
object causes the deletion of all incident relationships,
some of which may propagate as just described.

Support for IUnknown
Some of a repository object’s interfaces are generic
interfaces supported by the repository engine on every
repository object (e.g., IRepositoryObject,
IDispatch). Others are custom interfaces defined in
the information model. The properties and relationships
on these interfaces are implemented by the generic
repository engine by interpreting these interfaces’ type
definitions. Making these properties and relationships
available through Automation involves making them
accessible via interfaces that inherit from IDispatch.*

Making these interfaces available through COM involves
supporting COM methods to access them. This follows
immediately from the Automation implementation, since
IDispatch is a COM interface,* with one exception.
The engine’s generic implementation of repository object
would not respond positively to a QueryInterface
call on IUnknown for custom interfaces. That is, the
generic implementation of repository object would only
know about interfaces that existed when its
implementation was compiled. It would not know about
interfaces that are defined later  custom interfaces, such
as IProject. To ensure these custom interfaces are
bona fide COM interfaces, the repository engine
synthesizes such interfaces.* For each custom interface,
such as IProject, it dynamically constructs a vtable for
IDispatch that knows about the properties and collec-
tions of the custom interface. An object that supports this
custom interface has a pointer to that vtable, and that
pointer can be returned by a call to QueryInterface
with the custom interface’s interface id as parameter.

Support for Model-Driven Tools
Model-driven tools need to discover information models
at run-time. This can be done by traversing type informa-
tion stored in the repository. As a convenience, the reposi-
tory offers a more direct way to get this information. It
supports an interface IRepositoryDispatch, which

inherits from IDispatch and supports one method,
Properties. This method returns a collection of the
properties and relationship collections defined on this
interface, including those that are inherited from ancestor
interfaces. To use this feature, interfaces defined in the
information model should inherit from
IRepositoryDispatch, rather than IDispatch.

The repository also supports the COM equivalent of
QueryInterface for Visual Basic programmers.*
Recall from Section 2.2 that one can force an execution of
QueryInterface in Automation, by declaring an
object variable to be of a particular interface, as in “DIM
Y as IBar.” But this only works for interfaces known
to an application at compile time. To give the same
capability to model-driven tools, which discover the
information model at runtime, repository objects support
a method called Interface, which takes an interface as
a parameter and casts the object to the requested interface.
Thus, if IBar were discovered at run-time, one could
access property Foo on IBar as follows:
DIM X as RepositoryObject
Set Y=X.Interface(“IBar”).Properties(“Foo”)

3.4 Storage Model
The repository engine stores its data in a SQL database.
This database contains the properties and relationships of
objects stored in the repository. Some of the tables in this
database are generic  they are present in every reposi-
tory. The main generic tables are the object table and
relationship table, which contain the basic information the
engine needs to know about every repository object and
relationship. Figure 6 shows how rows of these tables are
related. Other tables are specific to the information
model, such as the ProjectItem table in Figure 6. They

Internal Obj ID

11 ProjectItem

12 ProjectItem

10 Project

Class

Object Table

Origin
Object ID

Relationship
Class

Destination
Object ID

Name

10 Contains 11 MyForm
10 Contains 12 MyModule

Relationship Table

Internal Obj ID Size Date
11 60K 12/1/95

12 20K 1/1/96

ProjectItem Table

Figure 6 Repository Table Layout

contain the properties that appear in custom interface
definitions (cf. IProjectItem definition in Fig. 2).

For most purposes, the user of the repository (a tool
programmer) calls methods on ActiveX objects.
However, users will sometimes want to issue SQL queries
to the repository database for faster or more complex
retrievals. They can do this using the ExecuteQuery
method on IRepositoryODBC, which is supported by
the Repository class. ExecuteQuery takes a SQL
query that includes object id and class id in the SELECT
clause, so that it can cast the returned rows as repository
objects, which it returns in a collection. Updating the
tables directly is not recommended, since the repository
engine’s update methods maintain the integrity of the
database in subtle ways that a repository user might miss

When repository type definitions are created or modified,
the repository automatically generates and modifies the
layout of SQL tables that persist interface-specific proper-
ties. Each table having interface-specific properties is
keyed on internal object id (the 8-byte compressed form)
and has all of the properties of each interface that is stored
in that table. Thus, the unit of mapping from information
model properties to a database schema is the interface.

By default, the engine maps each interface on an object to
a separate table. However, users can control this mapping
by storing several interfaces in the same table. E.g., a user
can have the properties of IProjectItem stored in the
same table as those of IForm. Also, users can add and
remove indexes on these tables, in addition to the index
on internal object id, which the engine defines by default.

For fast traversal of relationships, the relationship table
has a clustered index on [origin object id, relationship
type, name] and a secondary index on the primary key
[destination object id, relationship type, origin object id]
(in SQL Server, a table’s clustered index needn’t be on its
primary key). The most common queries on this table are
to retrieve a relationship collection for a given object
(given the origin id and relationship type, find the
destination objects, or vice versa). For named collections,
the third column in the index allows us to find a named
relationship within a collection or retrieve the
relationships in the collection in name sequence.

The type definition classes ClassDef, RelationshipDef,
InterfaceDef, etc. are mapped to tables in the same way as
other classes, by mapping the interfaces they support (see
Fig.3) into tables. For example, IPropertyDef has the
properties: APIType, SQLType, SQLSize, SQLScale,
ColumnName, and Flags. This interface is mapped to a
table whose columns include these properties and an
internal object id (its key). Given a property definition (a
row in this table) and its associated interface definition
(which identifies the interface’s table), the repository
engine can find and interpret instances of this property.

Since type information is frequently accessed, it is cached
in an optimized main memory structure that’s persisted, to
avoid recomputing it every time the repository is opened.
The cost is updating this structure whenever a type
definition is updated, a non-trivial but infrequently-
incurred expense.

3.5 Transactions
Advanced transaction capability was not a goal of our
version one product. Rather, we wanted to minimize the
implementation effort by passing through the transaction
behavior of the underlying SQL DBMS. Still, even this
modest goal required that we include some transaction
functions in the repository engine itself.

Like most database access models (e.g. ODBC [6]), we
attach transaction behavior to the user’s connection to the
database, which in our case is a repository session. Thus,
each repository session offers the Begin, Commit and
Abort methods. Every repository object is loaded in the
context of a repository session and retains that context as
long as it’s loaded. So its transaction context is implicit
and need not be passed as a parameter to any calls.

Transactions are flat, i.e. not nested. All methods on a
repository object execute within the transaction of its
corresponding repository session. Methods within a
transaction read committed data, so its updates are
isolated from other transactions until it commits, when the
updates are permanently installed in the database. That is,
degree 2 (read committed) consistency is the default [1,7].

Like other DBMS designers before us, we found that
degree 3 consistency was fairly low on our customers’
priority list, so we swallowed our pride and deferred
serializability for a later release. However, we do offer a
lock primitive that allows users to explicitly synchronize
access to shared data and thereby get the effect of two-
phase locking, albeit with some application programming.

Each repository session only allows one transaction to
execute at a time. To have two concurrent transactions on
the same repository database, one can create two reposi-
tory sessions connected to that database. If the repository
sessions execute in the same process, then they share the
database cache. Therefore, updates by a transaction T in
one repository session are visible to transactions in the
other repository session as soon as T commits. Reposi-
tory sessions in other processes will not see T’s updates
until that process’s repository engine refreshes its cache,
which it does periodically. Methods are offered to tell the
repository engine to refresh its cache immediately, so an
up-to-date view of the repository database can be obtain-
ed if needed. This explicit refresh seemed rather crude to
us, but actually reflects the behavior of most of the tools
that would use the repository. Most Windows-based tools,
beginning with the Explorer, offer an explicit refresh.

If an application has two repository sessions connected to
the same database in the same process and loads the same

repository object through both repository instances, it will
get two COM objects representing the same persisted
repository object. This is required because each repository
(COM) object retains the context of the repository session
that loaded it, where it gets its transaction context. To
avoid a cache coherency problem, we ensure that both
COM objects share the same cached copy of the
repository object’s persistent state. We ensure this in all
situations where two COM objects representing the same
persisted repository object are concurrently active.

4. Extensibility
Defining a class that has only properties and relationships
involves only providing type definitions for the class and
all of its interfaces. This is akin to writing data definitions
in SQL. Moreover, one can extend classes in this way
dynamically. For example, one can add an interface to an
existing class, and the repository engine will create and
alter table definitions as necessary.

One can extend the behavior of the repository engine by
providing custom code. Useful extensions could include
validating special kinds of integrity constraints (which are
not supported by the repository), adding custom methods
to interfaces (such as supporting a Build method on
IProject), or storing some properties of an object out-
side the repository (e.g. in a file). This is done by writing
a wrapper for the repository object, re-implementing
interfaces that you want to extend, and calling the
repository engine’s base implementation of those
interfaces to read and write properties and relationships.
(See Fig.7.) Interfaces that you do not want to extend are
simply passed through. The mechanics of this wrapping
is defin-ed by COM aggregation, which was mentioned in
Section 2.1.* When the repository creates or loads an
object, it calls CoCreateInstance, thereby invoking the
user’s customized class.

IProjectItem
IRepositoryObject

IProject

Project

Repository
Object

Custom code
implements

Project class

Wrapped
interface

Passed-through
interfaces

Figure 7 Using COM Aggregation to Extend a
Repository Object Class

This is another example of the repository using a standard
COM mechanism, in this case one for extending objects.

Another form of extensibility is the ability to create new
versions of interfaces  that is, new versions of
information models. This is a major problem in many
repository systems. We support it using the standard
COM approach explained in Section 2.1:* Every COM
interface is immutable. Its interface id identifies a contract

that, once published, cannot be changed. So, to change an
interface, you define a new interface. Newly written
clients are built to prefer the new interface but cope with
the old one; newly written classes are built to support
both interfaces, so that old clients can use them.

One should then write an aggregation of the class that
supports the new interface, and supports the old interface
too by mapping old interface members to new interface
members. The amounts to a view. One could automate
this by a model-driven tool that creates the aggregated
class from the interface definitions.

5. Interface-Oriented Information Models
COM is highly interface-centric. One can write programs
that access objects by navigating interfaces and never
know the class of which those objects are instances. The
only reason to know an object’s class is to create the
object in the first place.

COM’s interface-centric view has a profound effect on
tools that share objects in the repository. To share data,
tools only need to agree on interface definitions, not on
class definitions.* For example, suppose we define an
interface IComponentDescription that includes
properties Owner, TechnologyType (e.g. ActiveX
Control, Stored Procedure, Java applet), and Status
(e.g., draft, unit-tested, system-tested) and a collection
Keywords. A component reuse tool that understands
IComponentDescription could display useful
information about the component and offer keyword-
based search of components. Many different tools could
create reusable components that support IComponent-
Description. For example, development tools for
ActiveX controls, stored procedures, and Java applets
could create objects of different classes, but all those
classes could support IComponentDescription and
therefore be visible to the component reuse tool.

Thus, to support sharing between tools, the important part
of an information model is the interface definitions, not
the class definitions. The interface definitions define the
properties and relationships that tools of a certain
category need to depend on. Such categories are called
subject areas in information modeling terminology.
Example subject areas are component-based design,
databases, data warehouses, and project configurations.

To share information, class definitions from different
vendors support the same interfaces. However, similar
classes from different vendors (such as the table defini-
tion class supported by database design tool vendors)
don’t need to support the same combination of interfaces
and typically have different implementations of those
interfaces.* This flexibility has high payoff to a large
vendor like Microsoft, which expects many other vendors
to use its repository.

Still, vendors often need to make some assumptions about
which sets of interfaces are used in combination.
Therefore, an information model should specify which
sets of interfaces should be implemented together. For
example, it might say that if a class support IForm, then
it must also support IProjectItem. In ActiveX, such a
combination of interfaces is called a cotype.*

At the level of mechanism, an information model consists
of a set of interface definitions, each uniquely identified
by its repository object id and COM interface id, along
with the property, collection, relationship, and method
definitions that it references. Generally, an information
model is packaged in its own repository type library, so
it’s easy to tell if a repository has that information model
loaded and so that independently developed information
models need not worry about name conflicts and the like.

Microsoft is collaborating with other vendors to publish
open information models in areas that are relevant to its
tool groups. This will enable independent tool vendors to
share objects with Microsoft tools and each other. Given
how easy it is to extend the repository, vendors will be
able to specialize those information models to their needs
without sacrificing interoperability with other vendors
that conform to those information models.

6. Conclusion
The repository is used in Visual Basic 5.0 as the storage
for a component reuse tool. It also supports an informa-
tion model for Rational Software’s Unified Modeling
Language (UML), which is under consideration as an
OMG standard [8]. It is used in to support the exchange
of object models with Visual Basic’s Visual Modeler tool.

Since the Microsoft Repository is a new product, it’s too
soon to draw strong conclusions about whether tool
vendors find it a useful place to store and share persistent
objects. Likewise, it’s too soon to tell whether the trade-
offs that were made to meet the product release schedule
were the optimal ones.

However, we do feel quite confident that the primary goal
of fitting hand-in-glove with COM and Automation has
been well met, yielding several major benefits:
• Extensibility and evolvability of types and classes

without breaking applications
• Class-independent sharing of type information using

interfaces
• Easy prototyping of information models without

writing any code
• Use of Visual Basic as a persistent programming

language with no impedance mismatch
The first two benefits we attained by supporting COM,
with its interface-oriented type system, globally unique
interface ids, and self-describing objects via the method
QueryInterface. The third benefit is attained by the type-
driven interpreter. And the last benefit was attained by

supporting IDispatch, with a type system that is
compatible with type libraries.

Acknowledgments
The design of the Microsoft Repository interfaces was a
joint effort between Microsoft Corp. and Texas Instru-
ments, Inc., originally conceived by David Vaskevitch of
Microsoft and Keith Short of Texas Instruments. We’re
grateful for their sponsorship of the effort. In addition to
the authors, early contributors to the design effort inclu-
ded John Cheesman and Bill Dawson (TI), and Melissa
Waldie and Laura Yedwab (Microsoft). We learned much
from their initial investigations. We also thank Thomas
Bergstraesser, Murat Ersan, and David Maier for their
help with many aspects of the design and implementation.

References
1. Berenson, H., P. A. Bernstein, J. Gray, J. Melton, E.

O’Neil, P. O’Neil, “A Critique of ANSI SQL Isola-
tion Level,” Proc. ACM SIGMOD 1995, ACM, N.Y

2. Bernstein, P.A., “Repositories and Object-Oriented
Databases,” Proceedings of BTW ’97, Springer,
March 1997, pp. 34-46.

3. Bernstein, P.A., U. Dayal, “An Overview of
Repository Technology,” International Conference
on Very Large Data Bases, Morgan Kaufmann
Publishers, San Francisco, 1994, pp. 705-713.

4. Cattell, R.G.G., T. Atwood, D. Barry, J, Duhl, J.
Eastman, G. Ferran, D. Jordan, M. Loomis, D. Wade,
The Object Database Standard: ODMG-93, Morgan
Kaufmann Publishers, San Francisco, CA, 1995.

5. Constantopoulos, P., M. Jarke, J. Mylopoulos, Y.
Vassiliou, “The Software Information Base: A Server
for Reuse,” VLDB Journal, 4 (1995), Boxwood
Press, Pacific Grove, CA, pp. 1- 43.

6. Geiger, K., Inside ODBC, Microsoft Press, Redmond,
WA, 1995.

7. Gray, J., R. Lorie, G. Putzolu and, I. Traiger,
“Granularity of Locks and Degrees of Consistency in
a Shared Data Base,” in Readings in Database Sys,
2nd Edition, Chapter 3, Michael Stonebraker, Ed.,
Morgan Kaufmann 1994 (originally published 1977).

8. Rational Corp., “Unified Modeling Language
Resource Center,” http://www.rational.com/uml.

9. Rogerson, D., Inside COM, Microsoft Press,
Redmond, WA, 1997

10. Wakeman, L. and J. Jowett, PCTE - The Standard for
Open Repositories, Prentice-Hall, ‘93.

11. Zdonik, S.B., and D. Maier, Readings in Object-
Oriented Database Systems, Morgan Kaufmann
Publishers, San Francisco, 1990.

