
Proceedings, 13th Symposium on Computer Arithmetic, T. Lang, J.-M. Muller, and N. Takagi, editors,
pages 225-231, Asilomar, California, July 6-9, 1997, Los Alamitos, CA: IEEE Computer Society Press.

Fast Software Exponentiation in GF(2k) �

C� . K. Ko�c and T. Acar

Electrical & Computer Engineering

Oregon State University

Corvallis, Oregon, 97331, USA

E-mail: fkoc,acarg@ece.orst.edu

Abstract

We present a new algorithm for computing ae where
a 2 GF(2k) and e is a positive integer. The proposed
algorithm is more suitable for implementation in soft-
ware, and relies on the Montgomery multiplication in
GF(2k). The speed of the exponentiation algorithm
largely depends on the availability of a fast method for
multiplying two polynomials of length w de�ned over
GF(2). The theoretical analysis and our experiments
indicate that the proposed exponentiation method is at
least 6 times faster than the exponentiation method
using the standard multiplication when w = 8. Fur-
thermore, the availability of a 32-bit GF(2) polynomial
multiplication instruction on the underlying processor
would make the new exponentiation algorithm up to 37
times faster.

1. Introduction

The arithmetic operations in the Galois �eld GF(2k)
have several applications in coding theory, computer al-
gebra, and cryptography. We are especially interested
in cryptographic applications where k is very large. Ex-
amples of the cryptographic applications are the Di�e-
Hellman key exchange algorithm [2] based on the dis-
crete exponentiation and the elliptic curve cryptosys-
tems [7, 13] over the �eld GF(2k). The Di�e-Hellman
algorithm requires computation of ge, where g is a �xed
primitive element of the �eld and e is an integer. In
elliptic curves, the exponentiation operation is used to
compute inverse of an element in GF(2k), based on

Fermat's identity a�1 = a2
k
�2 [5, 1]. In general, an

arbitrary integer power of an element a 2 GF(2k) can
be computed using the binary method [6] which breaks
the exponentiation operation into a series of squaring

�This research is supported in part by Intel Corporation.

and multiplication operations in GF(2k).
We present a new method for fast software imple-

mentation of the exponentiation operation in GF(2k).
The method is based on the Montgomery multipli-
cation algorithm introduced in [8], and is applicable
to any exponentiation method, whether it is the bi-
nary method or the m-ary method or any of the more
advanced methods. The proposed method simply re-
places the standard squaring and multiplication oper-
ations in GF(2k) with the Montgomery squaring and
multiplication operations. A small amount of pre- and
postprocessing is also performed.

2. Montgomery Exponentiation

Let r be a special �xed element of GF(2k). The
selection of r will be made clear in the sequel. Also let
a be an arbitrary element of GF(2k). The Montgomery
image of a under r is denoted as �a, and is de�ned as

�a = a � r . (1)

Given two Montgomery images �a and �b, their Mont-
gomery product `�' is de�ned as

�a� �b = �a � �b � r�1 . (2)

The Montgomery product of �a and �b is equal to the
Montgomery image of the product a � b. This is easily
proved as

�c = �a��b = �a��b�r�1 = (a�r)�(b�r)�r�1 = a�b�r = c�r .

The proposed exponentiation algorithm is based on this
property. Let e be an m-bit integer, where ei 2 f0; 1g
is the ith bit of e for i = 0; 1; : : : ;m � 1. In order to
compute c = ae for a given a 2 GF(2k), we �rst com-
pute the Montgomery images of 1 and a using standard
multiplications. The exponentiation algorithm based
on the binary method then proceeds to compute c us-
ing only the Montgomery squaring and multiplication
operations.

Proceedings, 13th Symposium on Computer Arithmetic, T. Lang, J.-M. Muller, and N. Takagi, editors,
pages 225-231, Asilomar, California, July 6-9, 1997, Los Alamitos, CA: IEEE Computer Society Press.

Algorithm for Montgomery Exponentiation

Step 1. �c := 1 � r
Step 2. �a := a � r
Step 3. for i = m� 1 downto 0 do
Step 4. �c := �c� �c
Step 5. if ei = 1 then �c := �c� �a
Step 6. c := �c� 1

The di�erence of the above algorithm from the binary
method using the standard squaring and multiplica-
tion operations is that in Steps 4 and 5, respectively,
we perform the Montgomery squaring and multiplica-
tion operations. Initially, we have �c = 1 � r. When a
Montgomery squaring (or multiplication) is performed,
the multiplicative factor r remains in place since

�c� �c = (c � r) � (c � r) � r�1 = (c � c) � r , (3)

�c� �a = (c � r) � (a � r) � r�1 = (c � a) � r . (4)

We remove this multiplicative factor on �c in Step 6 by
performing a Montgomery multiplication as

�c� 1 = (c � r) � 1 � r�1 = c . (5)

In order to perform the Montgomery squaring and mul-
tiplication operations, we use the algorithm introduced
in [8]. This method is based on the polynomial repre-
sentation of the elements of GF(2k), and is particularly
suitable for software implementation due to the fact
that it proceeds in a word-level fashion.

3. Montgomery Multiplication

The elements of the �eld GF(2k) can be represented
in several di�erent ways [11, 12, 10]. The Montgomery
multiplication is based on the polynomial represen-
tation. According to this representation an element
a of GF(2k) is a polynomial of length k, written as

a(x) =
P

k�1
i=0 aix

i. The coe�cients ai 2 GF(2) are of-
ten referred to as the bits of a, and the element a is
also written as a = (ak�1ak�2 � � � a1a0).

In the word-level description of the algorithms, we
partition these bits into blocks of w bits, where w is
the wordsize of the computer. We assume that k = sw,
and write a as an sw-bit number consisting of s blocks,
where each block is of length w. If k is less than sw
(and more than (s� 1)w), then we pad the high-order
bits of the most signi�cant block with zero bits and take
k as sw. Thus, we write a as a = (As�1As�2 � � �A1A0),
where each Ai is of length w.

The addition of two elements a and b in GF(2k) are
performed by adding the polynomials a(x) and b(x),
where the coe�cients are added in the �eld GF(2).
This is equivalent to the bit-wise XOR operation on

the vectors a and b. On the other hand, we need an
irreducible polynomial of degree k in order to multiply
two elements a and b in GF(2k). Let n(x) be an ir-
reducible polynomial of degree k over the �eld GF(2).
The product c = a � b in GF(2k) is obtained by com-
puting

c(x) = a(x)b(x) mod n(x) , (6)

where c(x) is a polynomial of length k, representing the
element c 2 GF(2k). Thus, the multiplication opera-
tion in the �eld GF(2k) is accomplished by multiplying
the corresponding polynomials modulo the irreducible
polynomial n(x).

The Montgomery product is de�ned as a � b � r�1,
where r is a special �xed element of GF(2k). The se-
lection of r(x) = xk turns out to be very useful in
obtaining fast software implementations. Thus, r is
the element of the �eld, represented by the polyno-
mial r(x) mod n(x). The Montgomery multiplication
method requires that r(x) and n(x) be relatively prime.
For this assumption to hold, it su�ces that n(x) be
not divisible by x. Since n(x) is an irreducible poly-
nomial over the �eld GF(2), this will always be case.
Since r(x) and n(x) are relatively prime, there exist
two polynomials r�1(x) and n0(x) with the property
that

r(x)r�1(x) + n(x)n0(x) = 1 , (7)

where r�1(x) is the inverse of r(x) modulo n(x). The
polynomials r�1(x) and n0(x) can be computed using
the extended Euclidean algorithm [10, 11]. The Mont-
gomery product of a and b is de�ned as

c(x) = a(x)b(x)r�1(x) mod n(x) , (8)

which can be computed in 3 steps using:

Step 1. t(x) := a(x)b(x)
Step 2. u(x) := t(x)n0(x) mod r(x)
Step 3. c(x) := [t(x) + u(x)n(x)]=r(x)

The computation of c(x) involves standard multiplica-
tions, a modulo r(x) multiplication, and a division by
r(x). The modular multiplication and division opera-
tions in Steps 2 and 3 are intrinsically fast operations
since r(x) = xk. The remainder operation in modular
multiplication using the modulus xk is accomplished
by simply ignoring the terms which have powers of x
larger than and equal to k. Similarly, division of an
arbitrary polynomial by xk is accomplished by shifting
the polynomial to the right by k places. A drawback in
computing c(x) is the precomputation of n0(x) required
in Step 2. However, it turns out that the computation
of n0(x) can be completely avoided if the coe�cients of
a(x) are scanned one bit at a time. Furthermore, the
word-level algorithm requires the computation of only

2

Proceedings, 13th Symposium on Computer Arithmetic, T. Lang, J.-M. Muller, and N. Takagi, editors,
pages 225-231, Asilomar, California, July 6-9, 1997, Los Alamitos, CA: IEEE Computer Society Press.

the least signi�cant word N 0

0(x) instead of the whole
n0(x). In order to explain this, we note that the Mont-
gomery product can be written as

c(x) = x�ka(x)b(x) = x�k
k�1X

i=0

aix
ib(x) (mod n(x)):

The product

t(x) = (ak�1x
k�1 + ak�2x

k�2 + � � �+ a1x+ a0)b(x)

can be computed by starting from the most signi�cant
digit, and then proceeding to the least signi�cant as

t(x) := 0
for i = k � 1 to 0

t(x) := t(x) + aib(x)
t(x) := xt(x)

The shift factor x�k in x�ka(x)b(x) reverses the direc-
tion of summation. Since

x�k(ak�1x
k�1 + ak�2x

k�2 + � � �+ a1x+ a0) =

ak�1x
�1 + ak�2x

�2 + � � �+ a1x
�k+1 + a0x

�k ,

we start processing the coe�cients of a(x) from the
least signi�cant, and obtain the following bit-level al-
gorithm in order to compute t(x) = a(x)b(x)x�k .

t(x) := 0
for i = 0 to k � 1

t(x) := t(x) + aib(x)
t(x) := t(x)=x

The above algorithm computes the product t(x) =
x�ka(x)b(x), however, we are interested in computing
c(x) = x�ka(x)b(x) mod n(x). Following the analogy
to the integer algorithm, we achieve this computation
by adding n(x) to c(x) if c0 is 1, making the new c(x)
divisible by x since n0 = 1. If c0 is already 0 after the
addition step, we do not add n(x) to it. Therefore, we
are computing c(x) := c(x) + c0n(x) after the addition
step. After this computation, c(x) will always be divis-
ible by x. We can compute c(x) := c(x)x�1 mod n(x)
by dividing c(x) by x since c(x) = xu(x) implies
c(x) = xu(x)x�1 = u(x) mod n(x). The bit-level al-
gorithm is given below:

Bit-Level Algorithm for Montgomery Multiplication

Step 1. c(x) := 0
Step 2. for i = 0 to k � 1 do
Step 3. c(x) := c(x) + aib(x)
Step 4. c(x) := c(x) + c0n(x)
Step 5. c(x) := c(x)=x

The bit-level algorithm for the Montgomery multipli-
cation given above is generalized to the word-level al-
gorithm by proceeding word by word, where the word-
size is w � 2 and k = sw. Recall that Ai(x) repre-
sents the ith word of the polynomial a(x). The addi-
tion step is performed by multiplying Ai(x) by b(x) for
i = 0; 1; : : : ; s�1. We then need to multiply the partial
product c(x) by x�w modulo n(x). In order to perform
this step using division, we add a multiple of n(x) to
c(x) so that the least signi�cant w coe�cients of c(x)
will be zero, i.e., c(x) will be divisible by xw. Thus, if
c(x) 6= 0 mod xw, then we �nd M(x) (which is a poly-
nomial of length w) such that c(x) + M(x)n(x) = 0
(mod xw). Let C0(x) and N0(x) be the least signi�-
cant words of c(x) and n(x), respectively. We calculate
M(x) as

M(x) = C0(x)N
�1
0 (x) mod xw .

We note that N�1
0 (x) mod xw is equal to N 0

0(x) since
the property (7) implies that

xswx�sw + n(x)n0(x) = 1 (mod xw)

N0(x)N
0

0(x) = 1 (mod xw)

The word-level algorithm for the Montgomery multi-
plication is obtained as

Word-Level Algorithm for Montgomery Multiplication

Step 1. c(x) := 0
Step 2. for i = 0 to s� 1 do
Step 3. c(x) := c(x) +Ai(x)b(x)
Step 4. M(x) := C0(x)N

0

0(x) (mod xw)
Step 5. c(x) := c(x) +M(x)n(x)
Step 6. c(x) := c(x)=xw

4. Montgomery Squaring

The computation of the Montgomery squaring can
be optimized due to the fact that cross terms disap-
pear because they come in pairs and the ground �eld
is GF(2). Therefore, we skip the multiplication steps,
and obtain

c(x) = a2(x)

= ak�1x
2(k�1) + ak�2x

2(k�2) + � � �+ a1x
2 + a0

= (ak�10ak�20 � � �0a10a0) .

The Montgomery squaring algorithm starts with the
degree 2(k � 1) polynomial c(x) = a2(x), and then
reduces c(x) by computing c(x) := c(x)x�k mod n(x).
The steps of the word-level algorithm are given below:

3

Proceedings, 13th Symposium on Computer Arithmetic, T. Lang, J.-M. Muller, and N. Takagi, editors,
pages 225-231, Asilomar, California, July 6-9, 1997, Los Alamitos, CA: IEEE Computer Society Press.

Word-Level Algorithm for Montgomery Squaring

Step 1. c(x) :=
Pk�1

i=0 aix
2i

Step 2. for i = 0 to s� 1 do
Step 3. M(x) := C0(x)N

0

0(x) (mod xw)
Step 4. c(x) := c(x) +M(x)n(x)
Step 5. c(x) := c(x)=xw

5. Computation of the Inverse

The word-level algorithm requires the computation
of the w-length polynomial N 0

0(x) instead of the entire
polynomial n0(x) which is of length k = sw. It turns
out that the algorithm introduced in [3] for comput-
ing n00 in the integer case can also be generalized to
the polynomial case. The inversion algorithm is based
on the observation that the polynomial N0(x) and its
inverse satisfy

N0(x)N
�1
0 (x) = 1 (mod xi) (9)

for i = 1; 2; : : : ; w. In order to compute N 0

0(x), we start
with N 0

0(x) = 1, and proceed as

Algorithm for Inversion

Step 1. N 0

0(x) := 1
Step 2. for i = 2 to w
Step 3. t(x) := N0(x)N

0

0(x) mod x
i

Step 4. if t(x) 6= 1 then N 0

0(x) := N 0

0(x) + xi�1

6. Analysis

In this section, we give a rigorous analysis of the
Montgomery exponentiation algorithm in GF(2k) by
calculating the number of word-level operations. The
word-level GF(2) polynomial addition is simply the
bitwise XOR operation which is a readily available
instruction on most general purpose microprocessors
and signal processors. The word-level GF(2) polyno-
mial multiplication operation receives two 1-word (w-
bit) polynomials a(x) and b(x) de�ned over the �eld
GF(2), and computes the 2-word (2w-bit) polynomial
c(x) = a(x)b(x). For example, given a = (1101) and
b = (1010), this operation computes c as

a(x)b(x) = (x3 + x2 + 1)(x3 + x)

= x6 + x5 + x4 + x

= (0111 0010) :

The implementation of this operation, which we call
MULGF2, can be performed in 3 distinctly di�erent ways:

� An instruction on the processor.

� Table lookup approach.

� Emulation using SHIFT and XOR operations.

In the �rst approach, the processor has a special
MULGF2 instruction as de�ned above. The availabil-
ity of an instruction to perform this operation would
de�nitely be the fastest method. However, none of the
general purpose processors contains an instruction to
perform this operation.

A simple method for implementing the table lookup
approach is to use two tables, one for computing the
higher (H) and the other for computing the lower (L)
bits of the product. The tables are addressed using
the bits of the operands, and thus, each table is of size
2w � 2w �w bits. We obtain the values H and L in two
table read operations. However, we note that these
tables are di�erent from the tables in [4, 14], which
are used to implement GF(2w) multiplications. Here
we are using the tables to multiply two (w � 1)-degree
polynomials over GF(2) to obtain the polynomial of
degree 2(w � 1).

In the emulation approach, two w-bit polynomials
A and B are multiplied using shift, rotate, and xor op-
erations. The 2-word product is accumulated in two
words H and L as follows:

H := 0

L := 0

for j=w-1 downto 0 do

L := SHL(L,1)

H := RCL(H,1)

if BIT(B,j)=1 then L := L XOR A

Here SHL and RCL correspond to the left shift and left
rotate with carry instructions. This algorithm com-
putes the 2-word result using a total of 2w SHIFT

(or ROTATE) and w XOR operations. The emulation
approach is usually slower than the table lookup ap-
proach, particularly for w � 8.

In order to compare the exponentiation algorithms
using the standard and the Montgomery multiplica-
tions, we count the number of word-level operations
required by these algorithms. We perform this analy-
sis by �xing the exponentiation method as the binary
method, and taking m as the number of bits in the ex-
ponent e. In our analysis, we do not consider certain
processor features, e.g., special bit-level instructions
(test jth bit), conditional executions (delay slots in
conditional branches), and conditional data movement
instructions. Also, loop count loop overhead, pointer
arithmetic, etc., are ignored.

The standard and Montgomery exponentiation algo-
rithms are given in Figure 1 below. The Montgomery
exponentiation algorithm relies on the subroutines for
computing the inverse, the Montgomery squaring and

4

Proceedings, 13th Symposium on Computer Arithmetic, T. Lang, J.-M. Muller, and N. Takagi, editors,
pages 225-231, Asilomar, California, July 6-9, 1997, Los Alamitos, CA: IEEE Computer Society Press.

multiplications (in Steps 4 and 5), and a single stan-
dard multiplication (in Step 2). We do not need to
perform a multiplication in Step 1. The standard expo-
nentiation algorithm, on the other hand, requires only
the standard squaring and multiplication subroutines.

Figure 1. Exponentiation Algorithms.

Montgomery Exponentiation

Step 1. �c := 1 � r
Step 2. �a := a � r
Step 3. for i = m� 1 downto 0 do
Step 4. �c := �c � �c � r�1

Step 5. if ei = 1 then �c := �c � �a � r�1

Step 6. c = �c � 1 � r�1

Standard Exponentiation

Step 1. c := 1
Step 2. for i = m� 1 downto 0 do
Step 3. c := c � c
Step 4. if ei = 1 then c := c � a

The detailed analyses of the word-level Montgomery
and standard multiplication algorithms are given in
[8]. Similar analyses can also be given for the word-
level Montgomery and standard squaring algorithms.
The number of word-level operations required by these
algorithms are summarized in Table 1.

Table 1. Operation counts for the multiplica-
tion and squaring algorithms.
Operation Montgomery MUL Montgomery SQU

MULGF2 2s2 + s s
2 + s

XOR/AND 4s2 2s2 + (2w + 1)s

SHIFT - (2w + 1)s

Operation Standard MUL Standard SQU

MULGF2 s
2 -

XOR/AND (3w
2
+ 3)s2 + w

2
s

9w
4
s
2 + (2w + 3

2
)s

SHIFT 2(w + 1)s2 + (w + 1)s 3ws2 + (3w + 1)s

On the other hand, the inversion algorithm given in
Section 5 requires (w � 1) MULGF2, (w � 1) AND, and
(w�1) SHIFT operations in Step 3. Assuming the least
signi�cant coe�cient of t(x) is equal 0 with probability
1=2, we obtain the number of XOR and SHIFT operations
in Step 4 as (w�1)=2 and (w�1)=2, respectively. Using
these values and Table 1, we summarize the operation
counts of the exponentiation algorithms in Table 2.

Table 2. Operation counts for the Montgomery
and the standard exponentiation.

Montgomery EXP Standard EXP

Step MULGF2 Step MULGF2

Inv w � 1 3 -

2 s
2 4 m

2
s
2

4 ms
2 +ms

5 ms
2 + m

2
s

6 2s2 + s

Montgomery Exponentiation

Step XOR/AND/OR SHIFT

Inv 3(w�1)

2

3(w�1)

2

2 3(w
2
+ 1)s2 + w

2
s 2(w + 1)s2 + (w + 1)s

4 2ms2 + (2w + 1)ms (2w + 1)ms

5 2ms2 -

6 4s2 -

Standard Exponentiation

3 9w
4
ms

2 + (2w + 3
2
)ms 3wms2 + (3w + 1)ms

4 (3w
4
+ 3

2
)ms2 + w

4
ms (w + 1)ms2 + w+1

2
ms

In Table 3, we summarize the total number of opera-
tions required by the Montgomery and standard ex-
ponentiation algorithms for w = 8; 16; 32. Table 4
gives the maximum speedup of the proposed expo-
nentiation method assuming the word-level operations
XOR/AND/OR and SHIFT take nearly the same amount
of time. The emulation cost of MULGF2 is 2w SHIFT and
w XOR operations in the emulation case. The cost of
MULGF2 instruction is assumed equal to those of SHIFT
and XOR operations in the instruction case.

7. Implementation Results

We have implemented the Montgomery and stan-
dard exponentiation algorithms in C, and obtained tim-
ings on a 100-MHz Intel 486DX4 processor running the
NextStep 3.3 operating system. We executed the ex-
ponentiation programs several hundred times and ob-
tained the average timings for each k. The modulus
polynomial n(x) is generated randomly for k = 64,
128, 256, 512, 1024, 1536, 2048. The exponent is an
m-bit integer with equal number of 0 and 1 bits.

The multiplication operation MULGF2 was imple-
mented using three approaches. In the �rst approach,

5

Proceedings, 13th Symposium on Computer Arithmetic, T. Lang, J.-M. Muller, and N. Takagi, editors,
pages 225-231, Asilomar, California, July 6-9, 1997, Los Alamitos, CA: IEEE Computer Society Press.

Table 3. Comparing the Montgomery and
standard exponentiation algorithms.
MULGF2 w Standard

Emulation 8 70:5ms2 + 49ms
" 16 138:5ms2 + 95ms
" 32 274:5ms2 + 187ms

Instruction 8 59ms2 + 49ms
" 16 115ms2 + 95ms
" 32 227ms2 + 187ms

MULGF2 w Montgomery
Emulation 8 (52m + 109)s2 + (70m + 37)s + 189

" 16 (100m + 209)s2 + (138m + 73)s+ 765
" 32 (196m + 409)s2 + (274m + 145)s + 3069

Instruction 8 (6m + 40)s2 + (35:5m + 14)s+ 28
" 16 (6m + 68)s2 + (67:5m + 26)s+ 60
" 32 (6m + 124)s2 + (131:5m + 50)s+ 124

Table 4. Estimated speedup values of Mont-
gomery exponentiation.
MULGF2! Emulation Instruction

w 8 16 32 8 16 32

Speedup 1.36 1.39 1.40 9.83 19.17 37.83

we used the emulation algorithm given in the previous
section.

In the second approach, a lookup table is used for
w = 8, as described before. For w = 8, each of the ta-
bles is of size 64 Kilobytes, which is reasonable. How-
ever, for w = 16, the table size increases to 216�216�16
bits, which gives 8 Gigabytes. Therefore, we have im-
plemented the table lookup MULGF2 operation only for
w = 8.

For w = 16 and w = 32, we implement the MULGF2

operation using a hybrid approach: 8-bit tables coupled
with emulation to obtain the 16-bit or 32-bit result. For
example, 16-bit multiplication using two 8-bit tables is
computed as shown below.

a1 := SHR(a,8)

a0 := a AND 0xff

b1 := SHR(b,8)

b0 := b AND 0xff

L := TableL[a0][b0] XOR SHR(TableH[a0][b0]

XOR TableL[a1][b0]

XOR TableL[a0][b1],8)

H := TableH[a1][b0] XOR TableH[a0][b1]

XOR TableL[a1][b1]

XOR SHR(TableH[a1][b1],8)

where TableL and TableH are the 8-bit tables giving
the low and high order 8-bits of an 8-by-8 bit GF(2)
polynomial multiplication. The 32-bit hybrid multipli-
cation algorithm also uses these 8-bit tables.

The experimental speedup values obtained are given

in Table 5. These speedup values are obtained by divid-
ing the time elapsed for standard exponentiation by the
time elapsed for Montgomery exponentiation. Mont-
gomery exponentiation time includes computation of
N 0

0(x), precomputation of �a and �c, and �nal computa-
tion by 1 to obtain c.

Table 5. Experimental speedup values of
Montgomery exponentiation for m = 128.
w ! 8 16 32

k Tab8 Emu Hyb8 Emu Hyb8 Emu

64 6.32 4.10 6.75 5.00 5.33 3.61
128 4.85 3.79 4.51 4.20 4.00 3.25
256 4.95 3.49 4.40 3.60 3.03 2.79
512 5.66 3.83 3.96 3.35 2.88 2.66
1024 5.97 4.04 4.22 3.70 2.83 2.44
1536 6.00 3.95 4.58 3.51 2.69 2.44
2048 6.05 3.76 4.62 3.89 2.56 2.30

8. Conclusions

As the theoretical results summarized in Tables 3
and 4 the experimental data in Table 5 indicate, the
Montgomery exponentiation algorithm is about 6 times
faster than the standard exponentiation for w = 8. The
table lookup approach for w � 16 seems unrealistic due
to the size of the tables. An e�cient way to implement
the MULGF2 operation is to add an instruction to the
processor to perform this multiplication. The avail-
ability of such an instruction would yield more speedup
than the table lookup approach, because memory ac-
cesses would be eliminated which are required in the
table lookup approach. For example, the availability
of a 32-bit MULGF2 instruction would make the Mont-
gomery exponentiation about 37 times faster than the
standard exponentiation, as seen in Table 4.

The crucial part of the proposed exponentiation al-
gorithm is the Montgomery multiplication in GF(2k)
introduced in [8]. The computation of the Montgomery
multiplication in GF(2k) is similar to the one for mod-
ular arithmetic. A review of the Montgomery multi-
plication algorithms for modular arithmetic is given
in [9]. We are currently analyzing these algorithms,
and comparing their time and space requirements for
performing the Montgomery multiplication operation
in GF(2k). Another possible avenue of research is to
compare the proposed exponentiation method to the
one which uses trinomials and the normal basis. The
squaring operation in the normal basis is trivial, how-
ever, the software implementation of the multiplication
is more complicated.

6

Proceedings, 13th Symposium on Computer Arithmetic, T. Lang, J.-M. Muller, and N. Takagi, editors,
pages 225-231, Asilomar, California, July 6-9, 1997, Los Alamitos, CA: IEEE Computer Society Press.

References

[1] G. B. Agnew, T. Beth, R. C. Mullin, and S. A.
Vanstone. Arithmetic operations in GF (2m).
Journal of Cryptology, 6(1):3{13, 1993.

[2] W. Di�e and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, 22:644{654, November 1976.

[3] S. R. Duss�e and B. S. Kaliski, Jr. A crypto-
graphic library for the Motorola DSP56000. In
I. B. Damg�ard, editor, Advances in Cryptology
| EUROCRYPT 90, Lecture Notes in Computer
Science, No. 473, pages 230{244. New York, NY:
Springer-Verlag, 1990.

[4] G. Harper, A. Menezes, and S. Vanstone. Public-
key cryptosystems with very small key lengths.
In R. A. Rueppel, editor, Advances in Cryptology
| EUROCRYPT 92, Lecture Notes in Computer
Science, No. 658, pages 163{173. New York, NY:
Springer-Verlag, 1992.

[5] T. Itoh, O. Teachai, and S. Tsujii. A fast al-
gorithm for computing multiplicative inverses in
GF2t using normal bases. J. Soc. Electron. Comm.
(Japan), 44:31{36, 1986.

[6] D. E. Knuth. The Art of Computer Programming:
Seminumerical Algorithms, volume 2. Reading,
MA: Addison-Wesley, Second edition, 1981.

[7] N. Koblitz. A Course in Number Theory and
Cryptography. New York, NY: Springer-Verlag,
Second edition, 1994.

[8] C� . K. Ko�c and T. Acar. Montgomery multipli-
cation in GF(2k). In Proceedings of Third An-
nual Workshop on Selected Areas in Cryptography,
pages 95{106, Queen's University, Kingston, On-
tario, Canada, August 15{16, 1996.

[9] C� . K. Ko�c, T. Acar, and B. S. Kaliski Jr. Ana-
lyzing and comparing Montgomery multiplication
algorithms. IEEE Micro, 16(3):26{33, June 1996.

[10] R. Lidl and H. Niederreiter. Introduction to Finite
Fields and Their Applications. New York, NY:
Cambridge University Press, 1994.

[11] R. J. McEliece. Finite Fields for Computer Sci-
entists and Engineers. Boston, MA: Kluwer Aca-
demic Publishers, 1987.

[12] A. J. Menezes, editor. Applications of Finite
Fields. Boston, MA: Kluwer Academic Publish-
ers, 1993.

[13] A. J. Menezes. Elliptic Curve Public Key Cryp-
tosystems. Boston, MA: Kluwer Academic Pub-
lishers, 1993.

[14] E. De Win, A. Bosselaers, S. Vandenberghe, P. De
Gersem, and J. Vandewalle. A fast software im-
plementation for arithmetic operations in GF(2n).
In K. Kim and T. Matsumoto, editors, Advances
in Cryptology | ASIACRYPT 96, Lecture Notes
in Computer Science, No. 1163, pages 65{76. New
York, NY: Springer-Verlag, 1996.

7

