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Abstract

A constant rebalanced portfolio is an investment strat-
egy which keeps the same distribution of wealth among a
set of stocks from day to day. There has been much work on
Cover’s Universal algorithm, which is competitive with the
best constant rebalanced portfolio determined in hindsight
[3, 9, 2, 8, 14, 4, 5, 6]. While this algorithm has good per-
formance guarantees, all known implementations are expo-
nential in the number of stocks, restricting the number of
stocks used in experiments [9, 4, 2, 5, 6]. We present an
efficient implementation of the Universal algorithm that is
based on non-uniform random walks that are rapidly mix-
ing [1, 12, 7]. This same implementation also works for
non-financial applications of the Universal algorithm, such
as data compression [6] and language modeling [10].

1. Introduction

A constant rebalanced portfolio (CRP) is an investment
strategy which keeps the same distribution of wealth among
a set of stocks from day to day. That is, the proportion of
total wealth in a given stock is the same at the beginning of
each day. Recently there has been work on on-line invest-
ment strategies which are competitive with the best CRP
determined in hindsight [3, 9, 2, 8, 14, 4, 5, 6]. Specifically,
the daily performance of these algorithms on a market ap-
proaches that of the best CRP for that market, chosen in
hindsight, as the lengths of these markets increase without
bound.

As an example of a useful CRP, consider the following
market with just two stocks [9, 5]. The price of one stock
remains constant, and the price of the other stock alternately
halves and doubles. Investing in a single stock will not in-
crease the wealth by more than a factor of two. However,�Supported by an IBM Distinguished Graduate Fellowship.ySupported by NSF CAREER award CCR-9875024.

a (12 ; 12) CRP will increase its wealth exponentially. At the
end of each day it trades stock so that it has an equal worth
in each stock. On alternate days the total value will change
by a factor of12(1) + 12 (12 ) = 34 and 12(1) + 12 (2) = 32 , thus
increasing total worth by a factor of9=8 every two days.

The main contribution of this paper is an efficient imple-
mentation of Cover’s UNIVERSAL algorithmfor portfolios
[3], which Cover and Ordentlich [4] show that, in a market
with n stocks, overt days,

performance of UNIVERSAL
performance of best CRP

� 1(t + 1)n�1 :
By performance, we mean the return per dollar on an invest-
ment. The above ratio is a decreasing function oft. How-
ever, the average per-day ratio,(1=(t+1)n�1)1=t, increases
to 1 ast increases without bound. For example, if the best
CRP makes one and a half times as much as we do over a
day of 22 years, it is only making a factor of1:51=22 � 1:02
as much as we do per year. In this paper, we do not con-
sider the Dirichelet(1=2; : : : ; 1=2) UNIVERSAL [4] which
has the better guaranteed ratio of2p1=(t+ 1)n�1.

All previous implementations of Cover’s algorithm are
exponential in the number of stocks with run times ofO(tn�1). Blum and Kalai have suggested a randomized ap-
proximation based on sampling portfolios from the uniform
distribution [2]. However, in the worst case, to have a high
probability of performing almost as well as UNIVERSAL,
they requireO(tn�1) samples. We show that by sampling
portfolios from a non-uniform distribution, only polynomi-
ally many samples are required to have a high probability
of performing nearly as well as UNIVERSAL. This non-
uniform sampling can be achieved by random walks on the
simplex of portfolios.

2. Notation and Definitions

A price relative for a given stock is the nonnegative ratio
of closing price to opening price during a given day. If the



market hasn stocks and trading takes place duringT days,
then the market’s performance can be expressed byT price
relative vectors,(~x1; ~x2; : : : ; ~xT ); ~xi 2 <m+ , wherexji is the
nonnegative price relative of thejth stock for theith day.

A portfolio is simply a distribution of wealth among the
stocks. The set of portfolios is the(n � 1)-dimensional
simplex, � = f~b 2 <nj NXj=1 bj = 1 ^ bj � 0g:
The CRP investment strategy for a particular portfolio~b;
CRP~b; redistributes its wealth at the end of each day so that
the proportion of money in thejth stock isbj . An invest-
ment using a portfolio~b during a day with price relatives~x increases one’s wealth by a factor of~b � ~x = P bjxj :
Therefore, overt days, the wealth achieved by CRP~b is,Pt(~b) = tYi=1~b � ~xi:
Finally, we let� be the uniform distribution on�.

3. Universal portfolios

Before we define the universal portfolio, suppose you
just want a strategy that is competitive with respect to the
best single stock. In other words, you want to maximize the
worst-case ratio of your wealth to that of the best stock. In
this case, a good strategy is simply to divide your money
among then stocks and let it sit. You will always have at
least 1n times as much money as the best stock. Note that
this deterministic strategy achieves the expected wealth of
the randomized strategy that just places all its money in a
random stock.

Now consider the problem of competing with the best
CRP. Cover’s universal portfolio algorithm is similar to the
above. It splits its money evenly among all CRPs and lets
it sit in these CRP strategies. (It does not transfer money
between the strategies.) Likewise, it always achieves the
expected wealth of the randomized strategy which invests
all its money in a random CRP. In particular, the bookkeep-
ing works as follows:

Definition 1 (UNIVERSAL) The universal portfolio algo-
rithm at timet has portfolio~ut, which for stockj is, on the
first dayuj0 = 1=n, and on the end of thetth day,ujt = R� vjPt(~v)d�(~v)R� Pt(~v)d�(~v) ; i = 1; 2; : : :
(Recall that� is the uniform distribution over the(n � 1)-
dimensional simplex of portfolios,�.)

This is the form in which Cover defines the algorithm.
He also notes [4] that UNIVERSAL achieves the average
performance of all CRPs, i.e.,

Perf. of UNIVERSAL= TYt=1~ut�1 � ~xt = Z� PT (~v)d�(~v)
4. An efficient algorithm

Unfortunately, the straightforward method of evaluating
the integral in the definition of UNIVERSAL takes time ex-
ponential in the number of stocks. Since UNIVERSAL is
really just an average of CRP’s, it is natural to approximate
the portfolio by sampling [2]. However, with uniform sam-
pling, one needsO(tn�1) samples in order to have a high
probability of performing as well as UNIVERSAL, which
is still exponential in the number of stocks. Here we show
that, with non-uniform sampling, we can approximate the
portfolio efficiently. With high probability (1 � �), we can
achieve performance of at least(1 � �) times the perfor-
mance of UNIVERSAL. The algorithm is polynomial in1=�, log(1=�), n (the number of stocks), andT (the number
of days).

The key to our algorithm is sampling according to a
biased distribution. Instead of sampling according to�,
the uniform distribution on�, we sample according to�t,
which weights portfolios in proportion to their performance,
i.e., d�t(~b) = Pt(~b)R� Pt(~v)d�(~v)
In the next section, we show how to efficiently sample from
this biased distribution.

UNIVERSAL can be thought of as computing each com-
ponent of the portfolio by taking the expectation of draws
from �t, i.e.,ujt = Z� vjd�t(~v) = E~v2�t �vj� (1)

Thus our sampling implementation of UNIVERSAL aver-
ages draws from�t:
Definition 2 (Universal biased sampler) The Universal
biased sampler, withm samples, on the end of dayt chooses
a portfolio~at as the average ofm portfoliosdrawn indepen-
dently from�t.

Now, we apply Chernoff bounds to show that with high
probability, for eachj, ajt closely approximatesujt . In order
to ensure that this biased sampling will get usajt=ujt close
to 1, we need to ensure thatujt isn’t too small:

Lemma 1 For all j � n andt � T , ujt � 1=(n+ t).



Proof. WLOG let j = 1 andx11 = x12 = : : : x1t = 0, be-
cause this makesu1t smallest. Now,u1t is a random variable
between 0 and 1 (see (1)), and the expectation of a random
variable0 � X � 1 isE[X] = R 10 Prob(X � z)dz. Thus,u1t = E~v2�t �v1� = Z 10 �t �f~vjv1 � zg� dz:
Furthermore,f~vjv1 � zg = (z; 0; : : : ; 0) + (1 � z)�, is a
shrunken simplex of volume(1 � z)n�1 times the volume
of �, since� has dimensionn � 1. The average perfor-
mance of portfolios in this set is(1 � z)t times the average
over�, because for each oft days, a portfolio in this set(z; 0; : : : ; 0)+ (1� z)~b performs(1� z) as well as the cor-
responding portfolio~b 2 �. So the probability of this set
under�t is (1� z)n�1(1� z)t and,u1t = Z 10 (1� z)n�1(1� z)tdz = 1=(n+ t): 2
Combining this lemma with Chernoff bounds, we get:

Theorem 1 Withm = 2T 2(n+T ) log(nT=�)=�2 samples,
the Universal biased sampler performs at least(1 � �) as
well as Universal, with probability at least1� �.
Proof. Say eachujt is approximated byajt . Furthermore,
suppose eachajt � ujt(1 � �=T ). Then, on any individual
day, the performance of the~at is at least(1 � �=T ) times
as good as the performance of~ut. Thus, overT days, our
approximation’s performance must be at least(1��=T )T �1� � times the performance of UNIVERSAL.

The multiplicative Chernoff bound for approximating a
random variable0 � X � 1, with mean �X, by the sumS
of m independent draws is,

Pr
�S < (1� �) �Xm� � e�m �X�2=2:

In our case, we are approximating eachujt by m samples,
our lemma shows that the expectation ofujt = X is �X �1=(j+ t) � 1=(n+T ), and we want to be within� = �=T .
Since this must hold fornT differentujt ’s, it suffices for,e�m�2=(2T2(n+T )) � �nT ;
which holds for the number of samplesm chosen in the
theorem. 2

The biased sampler will actually sample from a distribu-
tion that is close to�t, call it pt, with the property thatZ� j�t(b)� pt(b)jdb � �0

for any desired�0 > 0 in time proportional tolog 1�0 . It is
not hard to verify that the estimates frompt and�t differ by
at most a factor of(1 + �0). By applying Chernoff bounds
as described above the Universal biased sampler performs
at least(1 � �)(1 � �0) as well as Universal (note that�0 is
exponentially small).

5. The biased sampler

In this section we describe a random walk for sampling
from the simplex with probability density proportional tof(~b) = Pt(~b) = tYi=1~b � ~xi:

Before we do this, note that sampling from the uni-
form distribution over the simplex is easy: pickn � 1
realsx1; : : : ; xn�1 uniformly at random between 0 and 1
and sort them intoy1 � : : : � yn�1; then the vector(y1; y2� y1; : : : ; yn�1� yn�2; 1� yn�1) is uniformly dis-
tributed on the simplex.

There is another (less efficient) way. Start at some pointx in the simplex. Pick a random pointy within a small dis-
tance� of x. If y is also in the simplex, then move toy;
if it is not, then try again. Thestationarydistribution of a
random walk is the distribution on the points attained as the
number of steps tends to infinity. Since this random walk
is symmetric, i.e. the probability of going fromx to y is
equal to the probability of going fromy to x, the distribu-
tion of the point reached aftert steps tends to the uniform
distribution. In fact, in a polynomial number of steps, one
will reach a point whose distribution is nearly uniform on
the simplex.

In our case, we have the additional difficulty that the de-
sired distribution is not the uniform distribution. Although
the distribution induced byf can be quite different from the
uniform density, it has the following nice property.

Lemma 2 The functionf(~b) is log-concave for nonnega-
tive vectors.

Proof. The function� log f is convex. The derivative
of logf at~b is is the vectorf 0(~b) = ( b1f(~b) ; b2f(~b) ; : : : ; bnf(~b) ).
The matrixF 00 of second derivatives hasi; jth entry� bibjf(~b)2 .

ThusF 00 = �f 0T f 0 is a negative semidefinite matrix, im-
plying that logf is a concave function in the positive or-
thant. 2

The symmetric random walk described above can be
modified to have any desired target distribution. This is
called the Metropolis filter [13], and can be viewed as a
combination of the walk with rejection sampling: If the
walk is atx and chooses the pointy as its next step, then



move toy with probabilitymin(1; f(y)f(x) ) and do nothing
with the remaining probability (i.e. try again). Lovasz
and Simonovits [12] have shown that this random walk is
rapidly mixing, i.e. it attains a distribution close to the sta-
tionary one in polynomial time.

For our purpose, however, the following discretized ran-
dom walk has the best provable bounds on the mixing time.
First rotate� so that it is on the planex = 0 and scale it
by a factor of1=p2 so that it has unit diameter. We will
only walk on the set of points in� whose coordinates are
multiples of a fixed parameter� > 0 (to be chosen below),
i.e. points on an axis parallel grid whose “unit” length is�.
Any point on this grid has2n neighbors, 2 along each axis.

1. Start at a (uniformly) random grid point in the simplex.

2. SupposeX(� ) is the location of the walk at time� .

3. Lety be a random neighbor ofX(� ).
4. If y is in �, then move to it, i.e. setX(� + 1) = y

with probabilityp = min(1; f(y)f(x) ), and stay put with
probability1� p (i.e. X(� + 1) = X(� )).

Let the set of grid points be denoted byD. We will ac-
tually only sample from the set of grid points in� that are
not too close to the boundary, namely, each coordinatexi is
at least �n+t for a small enough�. For convenience we will
assume that each coordinate is at least12(n+t) . Let this set
of grid points be denoted byD. Each grid pointx can be
associated with a unique axis-parallel cube of length� cen-
tered atx. Call this cubeC(x). The step length� is chosen
so that for any grid pointx, f(x) is close tof(y) for anyy 2 C(x).
Lemma 3 If we choose� < log 1+�2(n+t)t then for any grid pointz in D, and any pointy 2 C(z), we have(1 + �)�1f(z) � f(y) � (1 + �)f(z):
Proof. Sincey 2 C(z), maxj jyj � zj j � �. For any price
relativex�, the ratioy�x�z�x� is at mostmaxj yjzj . This can be
written asmaxj zj + (yj � zj)zj = maxj (1 + �zj )
Since each coordinate is at least12(n+t) we have that the

ratio is at most(1 + 2�(n + t)). Thus the ratiof(y)f(z) is at

most(1 + 2�(n+ t))t and the lemma follows. 2
The stationary distribution� of the random walk will

be proportional tof(z) for each grid pointz. Thus when
viewed as a distribution on the simplex, for any pointy in
the simplex,�(y)(1 + �)�1 � d�t(y) � �(y)(1 + �)

The main issue is how fast the random walk approaches�. We return to the discrete distribution on the grid points.
Let the distribution attained by the random walk after�
steps bep� , i.e. p� (x) is the probability that the walk is
at the grid pointx after� steps. The progress of the random
walk can be measured as the distance between its current
distributionp� and the stationary distribution as follows:jjp� � �jj = Xx2D jp� (x)� �(x)j

In [7], Frieze and Kannan derive a bound on the conver-
gence of this random walk which can be used to derive the
following bound for our situation.

Theorem 2 After � steps of the random walk,jjp� � �jj2 � e� 
�nt2(n+t)2 (n+ t)2
where
 > 0 is an absolute constant.

Corollary 1 For any�0 > 0, afterO(nt2(n+ t)2 log n+t�0 )
steps, jjp� � �jj2 � �0:
Proof (of theorem). Frieze and Kannan prove that2jjp� � �jj2 � e� 
���2nd2 log 1�� + M��nd2
�2
where
 > 0 is a constant,d is the diameter of the con-
vex body in which we are running the random walk,�� isminx2D �(x), � is a parameter between 0 and 1, and�� = Xx2D: vol(C(x)\�)vol(C(x)) �� �(x):
In words, �� is the probability of the grid points
whose cubes intersect the simplex in less than� frac-
tion of their volume. The parameterM is defined1 asmaxx p0(x) log p0(x)�(x) , wherep0 is the initial distribution on
the states.

For us the diameterd is 1. We will set� = 14 and choose� small enough so that�� is a constant. This can be done
for example with any� � 12(n+t) . To see this, consider

the simplex blown up by a factor of1� i.e. the set1�� =fyjy � 0;Pi yi = 1�g: Now the set of points with integer
coordinates correspond to the original grid points. LetB be
the set of cubes on the border of this set, i.e. the volume
of each cube inB that is in 1�� is less than14 . Then by

1TheM we use here differs slightly from the definition in [7], whereM = maxx p0(x)�(x) log p0(x)�(x) . However, the theorem holds with either

choice ofM .



blowing up further by 1 unit, we get a set that contains all
these cubes. But the ratio of the volumes is(1� + 1)n(1� )n = (1 + �)n:
Also, the performance of these border grid points can only
be (1 + �)t better than the corresponding (non-blown up)
points in the corresponding points. Thus�� � (1+�)n+t <2 for � � 12(n+t) .

Thus the bound above on the distance to stationary be-
comes 2jjp� � �jj2 � e� 
��2n log 1�� + 2Mn
�2
Next we observe that by our choice of starting point (uni-
form over the simplex)M is exponentially small. Thus we
can ignore the second term in the right hand side. Finally
we note that�� is at least�n( �n+t )t, which simplifies the
inequality to jjp� � �jj2 � e� 
��2n (n+ t)2
Our choice of� (= O( 1(n+t)t) implies the theorem (with a
different
)). 2
5.1. Collecting samples

Although generating the first sample point takesO�(nt2(n + t)2) steps of the random walk, future samples
can be collected more efficiently using a trick from [11]. In
fact, the position of the random walk can be observed ev-
ery O(n2(n + t)2) steps to obtain sample points with the
property that they are pairwisenearly independent in the
following sense. For any two subsetsA;B of the simplex,
two sample pointsu andv satisfyjPr(u 2 A; v 2 B) � Pr(u 2 A)Pr(v 2 B)j � �

This can be used to reduce the number of samples. We
collect completely independent groups of samples, each
sample consisting of pairwise independent samples, and
then compute the average of the groups.

As an implementation detail, one can do the random
walk as follows. Choose an initial point at random on the
simplex, as described earlier, and then choosing an individ-
ual component at random. Increase (or decrease) that com-
ponent by�, and then decrease (or increase) the remaining
components by�=(n�1). Use the same rejection technique
to decide whether to actually take that step in the random
walk.

6. Conclusion

We have presented an efficient randomized approxima-
tion of the UNIVERSAL algorithm. Not only does the ap-
proximation have an expected performance equal to that of
UNIVERSAL, but with high probability(1� �) it is within(1� �) times the performance of universal, and runs in time
polynomial inlog 1� , 1=�, the number of days, and the num-
ber of stocks. With money, it is especially important to
achieve this expectation. For example, a50% chance at 10
million dollars may not be as valuable to most people as a
guaranteed 5 million dollars.

While our implementation can be used for applications
of UNIVERSAL, such as data compression [6] and lan-
guage modeling [10], we do not implement it in the case
of transaction costs [2] or for the Dirichelet(1=2; : : :; 1=2)
UNIVERSAL [4].
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