A Calculus for Cryptographic Protocols
The Spi Calculus

Martin Abadi

Digital Equipment Corporation

Systems Research Center

ma@pa.dec.com

Abstract

We introduce the spi calculus, an extension of the pi cal-
culus designed for the description and analysis of crypto-
graphic protocols. We show how to use the spi calculus,
particularly for studying authentication protocols. The pi
calculus (without extension) suffices for some abstract pro-
tocols; the spi calculus enables us to consider cryptographic
issues in more detail. We represent protocols as processes in
the spi calculus and state their security properties in terms
of coarse-grained notions of protocol equivalence.

1 Security and the Pi Calculus

The spi calculus is an extension of the pi calculus [MPW92]
with cryptographic primitives. It is designed for the descrip-
tion and analysis of security protocols, such as those for au-
thentication and for electronic commerce. These protocols
rely on cryptography and on communication channels with
properties like authenticity and privacy. Accordingly, cryp-
tographic operations and communication through channels
are the main ingredients of the spi calculus.

We use the pi calculus (without extension) for describ-
ing protocols at an abstract level. The pi calculus primitives
for channels are simple but powerful. Channels can be cre-
ated and passed, for example from authentication servers to
clients. The scoping rules of the pi calculus guarantee that
the environment of a protocol (the attacker) cannot access
a channel that it is not explicitly given; scoping is thus the
basis of security. In sum, the pi calculus appears as a fairly
convenient calculus of protocols for secure communication.

However, the pi calculus does not express the crypto-
graphic operations that are commonly used for implement-
ing channels in distributed systems: it does not include any
constructs for encryption and decryption, and these do not
seem easy to represent. Since the use of cryptography is
notoriously error-prone, we prefer not to abstract it away.
We define the spi calculus in order to permit an explicit
representation of the use of cryptography in protocols.

There are by now many other notations for describing
security protocols. Some, which have long been used in
the authentication literature, have a fairly clear connection

Andrew D. Gordon
University of Cambridge
Computer Laboratory

adg@cl.cam.ac.uk

to the intended implementations of those protocols (see,
e.g., [NS78, Lie93]). Their main shortcoming is that they
do not provide a precise and solid basis for reasoning about
protocols. Other notations (e.g., [BAN89]) are more formal,
but their relation to implementations may be more tenuous
or subtle. The spi calculus is a middle ground: it is directly
executable and it has a precise semantics.

Because the semantics of the spi calculus is not only pre-
cise but intelligible, the spi calculus provides a setting for
analysing protocols. Specifically, we can express security
guarantees as equivalences between spi calculus processes.
For example, we can say that a protocol keeps secret a piece
of data X by stating that the protocol with X is equiva-
lent to the protocol with X', for any X'. Here, equivalence
means equivalence in the eyes of an arbitrary environment.
The environment can interact with the protocol, perhaps
attempting to create confusion between different messages
or sessions. This definition of equivalence yields the desired
properties for our security applications. Moreover, in our
experience, equivalence is not too hard to prove.

Although the definition of equivalence makes reference
to the environment, we do not need to give a model of the
environment explicitly. This is one of the main advantages
of our approach. Writing such a model can be tedious and
can lead to new arbitrariness and error. In particular, it
is always difficult to express that the environment can in-
vent random numbers but is not lucky enough to guess the
random secrets on which a protocol depends. We resolve
this conflict by letting the environment be an arbitrary spi
calculus process.

Our approach has some similarities with other recent ap-
proaches for reasoning about protocols. Like work based on
temporal logics or process algebras (e.g., [GM95, Low96,
Sch96]), our method builds on a standard concurrency for-
malism; this has obvious advantages but it also implies that
our method is less intuitive than some based on ad hoc for-
malisms (e.g., [BANS89]). As in some modal logics (e.g.,
[ABLP93, LABW92]), we emphasise reasoning about chan-
nels and their utterances. As in state-transition models
(e.g., [DY81, MCF87, Mil95, Kem89, Mea92]), we are in-
terested in characterising the knowledge of an environment.
The unique features of our approach are its reliance on the
powerful scoping constructs of the pi calculus; the radical
definition of the environment as an arbitrary spi calculus
process; and the representation of security properties, both
integrity and secrecy, as equivalences.

Our model of protocols is simpler, but poorer, than some
models developed for informal mathematical arguments be-

cause the spi calculus does not include any notion of prob-
ability or complexity (cf. [BR95]). It would be interesting
to bridge the gap between the spi calculus and those mod-
els, perhaps by giving a probabilistic interpretation for our
results.

Contents of this Paper

Section 2 introduces the pi calculus and our method of spec-
ifying security properties as equations. Section 3 extends
the pi calculus with primitives for shared-key cryptography.
Sections 4 defines the formal semantics of the spi calculus.
Section 5 discusses how to add primitives for hashing and
public-key cryptography to the pi calculus, and Section 6
offers some conclusions. An extended version of this work
includes additional material, in particular proof techniques
and proofs for examples.

2 Protocols using Restricted Channels

In this section we review the definition of the pi calculus
informally. (We give a more formal presentation in Sec-
tion 4.) We then introduce a new application of the pi cal-
culus, namely its use for the study of security.

2.1 Basics

The pi calculus is a small but extremely expressive program-
ming language. It is an important result of the search for
a calculus that could serve as a foundation for concurrent
computation, in the same way in which the lambda calculus
is a foundation for sequential computation.

Pi calculus programs are systems of independent, parallel
processes that synchronise via message-passing handshakes
on named channels. The channels a process knows about
determine the communication possibilities of the process.
Channels may be restricted, so that only certain processes
may communicate on them. In this respect the pi calculus
is similar to earlier process calculi such as CSP [Hoa85] and
CCS [Milg9].

What sets the pi calculus apart from earlier calculi is
that the scope of a restriction—the program text in which
a channel may be used—may change during computation.
When a process sends a restricted channel as a message to
a process outside the scope of the restriction, the scope is
said to eztrude, that is, it enlarges to embrace the process
receiving the channel. Processes in the pi calculus are mo-
bile in the sense that their communication possibilities may
change over time; they may learn the names of new chan-
nels via scope extrusion. Thus, a channel is a transferable
capability for communication.

A central technical idea of this paper is to use the re-
striction operator and scope extrusion from the pi calculus
as a formal model of the possession and communication of
secrets, such as cryptographic keys. These features of the pi
calculus are essential in our descriptions of security proto-
cols.

2.2 Outline of the Pi Calculus

There are in fact several versions of the pi calculus. Here
we review the syntax and semantics of a particular version

of the pi calculus. The differences with other versions are
mostly orthogonal to our concerns.

We assume an infinite set of names, to be used for com-
munication channels, and an infinite set of variables. We let
m, n, p, ¢, and r range over names, and let x, y, and z range
over variables. The set of terms is defined by the grammar:

L,M,N := terms
n name
(M,N) pair
0 zero
suc(M) successor
x variable

In the standard pi calculus, names are the only terms. For
convenience we have added constructs for pairing and num-
bers, (M,N), 0, and suc(M), and have also distinguished
variables from names.

The set of processes is defined by the grammar:

PQ,R::= processes
M(N).P output
M(z).P input
P|@Q composition
(vn)P restriction
P replication
[M is N] P match
0 nil

let (z,y) =M in P
case M of 0: P suc(z):Q

pair splitting
integer case

In (vn)P, the name n is bound in P. In M (z).P, the variable
x is bound in P. In let (z,y) = M in P, the variables x
and y are bound in P. In case M of 0 : P suc(z) : Q,
the variable x is bound in the second branch, (). We write
P[M/x] for the outcome of replacing each free occurrence of
x in process P with the term M, and identify processes up
to renaming of bound variables and names. We adopt the
abbreviation M (N) for M(N).0.

Intuitively, the constructs of the pi calculus have the fol-
lowing meanings:

e The basic computation and synchronisation mecha-
nism in the pi calculus is interaction, in which a term
N is communicated from an output process to an input
process via a named channel, m.

— An output process m(N).P is ready to output on
channel m. If an interaction occurs, term N is
communicated on m and then process P runs.

— An input process m(z).P is ready to input from
channel m. If an interaction occurs in which NV is
communicated on m, then process P[N/z] runs.

(The general forms M(N).P and M(z).P of output
and input allow for the channel to be an arbitrary term
M. The only useful cases are for M to be a name, or
a variable that gets instantiated to a name.)

o A composition P | Q behaves as processes P and @
running in parallel. Each may interact with the other
on channels known to both, or with the outside world,
independently of the other.

o A restriction (vn)P is a process that makes a new, pri-
vate name n, which may occur in P, and then behaves
as P.

o A replication | P behaves as an infinite number of copies
of P running in parallel.

e A match [M is N] P behaves as P provided that terms
M and N are the same; otherwise it is stuck, that is,
it does nothing.

e The nil process 0 does nothing.

Since we added pairs and integers, we have two new process
forms:

o A pair splitting process let (z,y) = M in P behaves
as P[N/z][L/y] if term M is the pair (N, L), and oth-
erwise it is stuck.

e An integer case process case M of 0 : P suc(z) : Q
behaves as P if term M is 0, as Q[N/«] if M is suc(N),
and otherwise is stuck.

We write P ~ () to mean that the behaviours of the
processes P and @ are indistinguishable. In other words, a
third process R cannot distinguish running in parallel with
P from running in parallel with @; as far as R can tell, P
and @ have the same properties (more precisely, the same
safety properties). We define the relation ~ in Section 4.2
as a form of testing equivalence. For now, it suffices to
understand ~ informally.

2.3 Examples using Restricted Channels

Next we show how to express some abstract security proto-
cols in the pi calculus. In security protocols, it is common
to find channels on which only a given set of principals is
allowed to send data or listen. The set of principals may
expand in the course of a protocol run, for example as the
result of channel establishment. Remarkably, it is easy to
model this property of channels in the pi calculus, via the
restriction operation; the expansion of the set of principals
that can access a channel corresponds to scope extrusion.

2.3.1 A first example

Our first example is extremely basic. In this example, there
are two principals A and B that share a channel, cap; only A
and B can send data or listen on this channel. The protocol
is simply that A uses cap for sending a single message M
to B. In informal notation, we may write this protocol as
follows:

Message 1 A—B: M oncas

A first pi calculus description of this protocol is:

AM) = zap(M)
B = cap(z).0
Inst(M) = (veas)(A(M) | B)

The processes A(M) and B describe the two principals, and
Inst(M) describes (one instance of) the whole protocol. The
channel c4p is restricted; intuitively, this achieves the effect
that only A and B have access to cap.

In these definitions, A(M) and Inst(M) are processes pa-
rameterised by M. More formally, we view A and Inst as
functions that map terms to processes, called abstractions,

and treat the M’s on the left of = as bound parameters.
Abstractions can of course be instantiated (applied); for ex-
ample, the instantiation A(0) yields €az(0). The standard
rules of substitution govern application, forbidding param-
eter captures; for example, expanding Inst(cap) would re-
quire a renaming of the bound occurrence of cap in the
definition of Inst.

The first pi calculus description of the protocol may seem
a little futile because, according to it, B does nothing with
its input. A more useful and general description says that
B runs a process F' with its input. We revise our definitions
as follows:

AM) = eap(M)
B £ cap(x).F(x)
Inst(M) = (vcap)(A(M) | B)

Informally, F(z) is simply the result of applying F to z.
More formally, F' is an abstraction, and F'(x) is an instanti-
ation of the abstraction. We adopt the convention that the
bound parameters of the protocol (in this case, M, cap, and
x) cannot occur free in F'.

This protocol has two important properties:

o Authenticity (or integrity): B always applies F' to the
message M that A sends; an attacker cannot cause B
to apply F' to some other message.

e Secrecy: The message M cannot be read in transit
from A to B: if F' does not reveal M, then the whole
protocol does not reveal M.

The secrecy property can be stated in terms of equiva-
lences: if F(M) ~ F(M'"), for any M, M’', then Inst(M) ~
Inst(M'). This means that if F'(M) is indistinguishable from
F(M'), then the protocol with message M is indistinguish-
able from the protocol with message M'.

There are many sensible ways of formalising the authen-
ticity property. In particular, it may be possible to use no-
tions of refinement or a suitable program logic. However,
we choose to write authenticity as an equivalence, for econ-
omy. This equivalence compares the protocol with another
protocol. Our intent is that the latter protocol serves as a
specification. In this case, the specification is:

AM) = eap(M)
Bipee (M) cap(x).F(M)
Instspec (M) (vea)(A(M) | Bopec(M))

The principal A is as usual, but the principal B is replaced
with a variant Bi..(M); this variant receives an input from
A and then acts like B when B receives M. We may say
that Bspec(M) is a “magical” version of B that knows the
message M sent by A, and similarly Insts. is a “magical”
version of Inst.

Although the specification and the protocol are similar in
structure, the specification is more evidently “correct” than
the protocol. Therefore, we take the following equivalence
as our authenticity property: Inst(M) ~ Instse.(M), for
any M.

In summary, we have:

>

1>

Authenticity: Inst(M) ~ Instpe. (M),
for any M.
Secrecy: Inst(M) ~ Inst(M') if F(M) ~ F(M'),

for any M, M'.

1. new channel

2. new channel

3. data on new channel

Figure 1: Structure of the Wide Mouthed Frog Protocol

Each of these equivalences means that two processes being
equated are indistinguishable, even when an active attacker
is their environment. Neither of these equivalences would
hold without the restriction of channel cap.

2.3.2 An example with channel
establishment

A more interesting variant of our first example is obtained by
adding a channel establishment phase. In this phase, before
communication of data, the principals A and B obtain a new
channel with the help of a server S.

There are many different ways of establishing a channel,
even at the abstract level at which we work here. The one
we describe is inspired by the Wide Mouthed Frog proto-
col [BAN8Y], which has the basic structure shown in Fig-
ure 1.

We consider an abstract and simplified version of the
Wide Mouthed Frog protocol. Our version is abstract in that
we deal with channels instead of keys; it is simplified in that
channel establishment and data communication happen only
once (so there is no need for timestamps). In the next section
we show how to treat keys and how to allow many instances
of the protocol, with an arbitrary number of messages.

Informally, our version is:

Message 1 A — S: cap oncas
Message 2 S — B: cap oncss
Message 3 A— B: M oncas

Here cas is a channel that A and S share initially, csp is a
channel that S and B share initially, and cap is a channel
that A creates for communication with B. After passing the
channel cap to B through S, A sends a message M on cap.
Note that S does not use the channel, but only transmits it.

In the pi calculus, we formulate this protocol as follows:

A(M) = (veas)eas(cas).can(M)
s = cas(x).csp(w)
B 2 csp(x).a(y).Fy)
Inst(M) = (veas)(vess)(A(M) | S| B)

Here we write F(y) to represent what B does with the mes-
sage y that it receives, as in the previous example. The
restrictions on the channels cas, csp, and cap reflect the
expected privacy guarantees for these channels. The most
salient new feature of this specification is the use of scope
extrusion: A generates a fresh channel cap, and then sends
it out of scope to B via S. We could not have written this
description in formalisms such as CCS or CSP; the use of
the pi calculus is important.

For discussing authenticity, we introduce the following
specification:

A(M) = (vcap)eas(cas).cas(M)
S = cas(z)css(z)
Bayee(M) = csp(z).a(y).F(M)
Instupee(M) 2 (veas)(wess)(A(M) | S | Bupee (M)

According to this specification, the message M is communi-
cated “magically”: the process F' is applied to the message
M that A sends independently of whatever happens during
the rest of the protocol run.

We obtain the following authenticity and secrecy prop-
erties:

Authenticity: Inst(M) ~ Instspe.(M),
for any M.

Secrecy: Inst(M) ~ Inst(M') if F(M) ~ F(M'),
for any M, M’'.

Again, these properties hold because of the scoping rules of
the pi calculus.

3 Protocols using Cryptography

Just as there are several versions of the pi calculus, there
are several versions of the spi calculus. These differ in par-
ticular in what cryptographic constructs they include. In
this section we introduce a relatively simple spi calculus,
namely the pi calculus extended with primitives for shared-
key cryptography. We then write several protocols that use
shared-key cryptography in this calculus.

Throughout the paper, we often refer to the calculus pre-
sented in this section as “the” spi calculus; but we define
other versions of the spi calculus in Section 5.

3.1 The Spi Calculus with Shared-Key
Cryptography
The syntax of the spi calculus is an extension of that of the

pi calculus. In order to represent encrypted messages, we
add a clause to the syntax of terms:

L,M,N ::= terms
as in Section 2.2

{M}n shared-key encryption

In order to represent decryption, we add a clause to the
syntax of processes:

P Q.=

case L of {x}n in P

processes
as in Section 2.2
shared-key decryption

The variable z is bound in P.
Intuitively, the meaning of the new constructs is as fol-
lows:

e The term {M}n represents the ciphertext obtained
by encrypting the term M under the key IV using a
shared-key cryptosystem such as DES [DEST77].

e The process case L of {x}n in P attempts to decrypt
the term L with the key N. If L is a ciphertext of
the form {M}n, then the process behaves as P[M/z].
Otherwise the process is stuck.

Implicit in this definition are some standard but signifi-
cant assumptions about cryptography:

e The only way to decrypt an encrypted packet is to
know the corresponding key.

e An encrypted packet does not reveal the key that was
used to encrypt it.

e There is sufficient redundancy in messages so that the
decryption algorithm can detect whether a ciphertext
was encrypted with the expected key.

It is not assumed that all messages contain information
that allows each principal to recognise its own messages
(cf. [BANRg9]).

The semantics of the spi calculus can be formalised in
much the same way as the semantics of the pi calculus. We
carry out this formalisation in Section 4. Again, we write
P ~ () to mean that the behaviours of the processes P and
@ are indistinguishable. The notion of indistinguishability is
complicated by the presence of cryptography. As an example
of these complications, consider the following process:

P(M) 2 wK)e({M}x)

This process simply sends M under a new key K on a public
channel c; the key K is not transmitted. Intuitively, we
would like to equate P(M) and P(M'), for any M and M’,
because an observer cannot discover K and hence cannot
tell whether M or M' is sent under K. On the other hand,
P(M) and P(M') are clearly different, since they transmit
different messages on c¢. Our equivalence =~ is coarse-grained
enough to equate P(M) and P(M").

3.2 Examples using Shared-Key
Cryptography

The spi calculus enables more detailed descriptions of secu-
rity protocols than the pi calculus. While the pi calculus
enables the representation of channels, the spi calculus also
enables the representation of the channel implementations
in terms of cryptography. In this section we show a few
example cryptographic protocols.

As in the pi calculus, scoping is the basis of security
in the spi calculus. In particular, restriction can be used to
model the creation of fresh, unguessable cryptographic keys.
Restriction can also be used to model the creation of fresh
nonces of the sort used in challenge-response exchanges.

Security properties can still be expressed as equivalences,
although the notion of equivalence is more delicate, as we
have discussed.

3.2.1

Our first example is a cryptographic version of the example
of Section 2.3.1. We consider two principals A and B that
share a key Kap; in addition, we assume there is a public
channel cap that A and B can use for communication, but
which is in no way secure. The protocol is simply that A
sends a message M under Kap to B, on cag.

Informally, we write this protocol as follows:

A first cryptographic example

Message 1 A—B: {M}k,, oncas

In the spi calculus, we write:

AM) = e@s({M}x,p)
B = caB(z).case ¢ of {y}r,z n F(y)
Inst(M) = (vKap)(A(M)|B)

According to this definition, A sends {M }k,, on cap while
B listens for a message on cap. Given such a message, B at-
tempts to decrypt it using K 4 p; if this decryption succeeds,
B applies F to the result. The assumption that A and B
share K 4 p gives rise to the restriction on K4, which is syn-
tactically legal and meaningful although K ap is not used as
a channel. On the other hand, cap is not restricted, since it
is a public channel. Other principals may send messages on
caB, 50 B may attempt to decrypt a message not encrypted
under K4pg; in that case, the protocol will get stuck. We
are not concerned about this possibility, but it would be
easy enough to avoid it by writing a slightly more elaborate
program for B.
We use the following specification:

AM) = cas({M}x,p)
Bayee(M) = cap(z).case © of {y}x,, in F(M)
Instoee (M) = (vKap)(A(M) | Bupee (M)

and we obtain the properties:

Authenticity: Inst(M) ~ Instspe.(M),
for any M.

Secrecy: Inst(M) ~ Inst(M') if F(M) ~ F(M'),
for any M, M’'.

Intuitively, authenticity holds even if the key Kap is
somehow compromised after its use. Many factors can con-
tribute to key compromise, for example incompetence on the
part of protocol participants, and malice and brute force on
the part of attackers. We cannot model all these factors,
but we can model deliberate key publication, which is in a
sense the most extreme of them. It suffices to make a small
change in the definitions of B and Bipe., so that they send
Kap on a public channel after receiving {M}x,,. This
change preserves the authenticity equation, but clearly not
the secrecy equation.

3.2.2 An example with key establishment

In cryptographic protocols, the establishment of new chan-
nels often means the exchange of new keys. There are many
methods (most of them flawed) for key exchange. The fol-
lowing example is the cryptographic version of that of Sec-
tion 2.3.2; it uses a simplified (one-shot) form of the Wide
Mouthed Frog key exchange.

In the Wide Mouthed Frog protocol, the principals A
and B share keys Kas and Ksp respectively with a server
S. When A and B want to communicate securely, A creates
a new key Kap, sends it to the server under Kags, and
the server forwards it to B under Ksg. All communication
being protected by encryption, it can happen through public
channels, which we write cas, csp, and cap. Informally, a
simplified version of this protocol is:

Message 1 A —S: {Kanl}rx,s oncas
Message 2 S — B: {KaB}kgy oOncsn
Message 3 A — B: {M}k,; on cap

In the spi calculus, we can express this message sequence
as follows:

AM) = (vEap)(@as({Kap}as) Tam({M}ram)
S 2 cas(a).case v of {y}rys in 5B ({Y}ran)
B £ csp(w).case of {y}ksp in
caB(z).case z of {w}y in F(w)
Inst(M) 2 (vKas)(vKsg)(A(M)|S|B)

where F(w) is a process representing the rest of the be-
haviour of B upon receiving a message w. Notice the essen-
tial use of scope extrusion: A generates the key Kap and
sends it out of scope to B via S.

In the usual pattern, we introduce a specification for dis-
cussing authenticity:

AM) = (vKap)@as({Kap}ias) a5 {M}xan))
S 2 cas(e).case o of {yhicas in THE{Y}isn)
Baee(M) 2 c¢sp(a).case x of {y}rsy in
caB(z).case z of {w}y in F(M)
Instopee (M) 2 (vKas)(Ksp)(A(M) | S | Buyee(M))

One may be concerned about the apparent complexity of
this specification. On the other hand, despite its complex-
ity, the specification is still more evidently “correct” than
the protocol. In particular, it is still evident that Bgpec (M)
applies F' to the data M from A, rather than to some other
message chosen as the result of error or attack.

We obtain the usual properties of authenticity and se-
crecy:

Authenticity: Inst(M) ~ Instpe. (M),
for any M.

Secrecy: Inst(M) ~ Inst(M'") it F(M) ~ F(M'),
for any M, M'.

3.2.3 A complete authentication example
(with a flaw)

In the examples discussed so far, channel establishment and
data communication happen only once. As we demonstrate
now, it is a simple matter of programming to remove this re-
striction and to represent more sophisticated examples with
many sessions between many principals. However, as the
intricacy of our examples increases, so does the opportunity
for error. This should not be construed as a limitation of
our approach, but rather as the sign of an intrinsic difficulty:
many of the mistakes in authentication protocols arise from
confusion between sessions.

We consider a system with a server S and n other prin-
cipals. We use the terms suc(0), suc(suc(0)), ..., which we
abbreviate to 1, 2, ..., as the names of these other princi-
pals. We assume that each principal has an input channel;
these input channels are public and have the names ci1, c2,
..., cn and cs. We also assume that the server shares a pair
of keys with each other principal, one key for each direction:
principal 7 uses key K;s to send to S and key Kg; to receive
from S, for 1 <¢ < n.

We extend our standard example to this system of n+1
principals, with the following message sequence:

Message 1 A — S: A {B,Kap}k,s oOncs
Message 2 S — B: {A,Kanlrgs on cg
Message 3 A — B: A {M}x,, on ¢p

Here A and B range over the n principals. The names A
and B appear in messages in order to avoid ambiguity; when
these names appear in clear, they function as hints that help
the recipient choose the appropriate key for decryption of
the rest of the message. The intent is that the protocol can
be used by any pair of principals, arbitrarily often; concur-
rent runs are allowed. As it stands, the protocol has obvious
flaws; we discuss it in order to explain our method for rep-
resenting it in the spi calculus.

In our spi calculus representation, we use several con-
venient abbreviations. Firstly, we rely on pair splitting on
input and on decryption:

c(z1,m2). P = c(y).let (z1,22) =y in P

A

case L of {y}n in
let (x1,22) =y in P

case L of {x1,z2}Nn in P

where variable y is fresh. Secondly, we need the standard no-
tation for the composition of a finite set of processes. Given
a finite family of processes P, ..., Py, we let Hiel..k P; be
their k-way composition P | --- | Px. Finally, we omit
the inner parentheses from an encrypted pair of the form
{(N,N")}n, and simply write {N, N’} , as is common in
informal descriptions.

Informally, an instance of the protocol is determined by a
choice of parties (who is A and who is B) and by the message
sent after key establishment. More formally, an instance I
is a triple (4,7, M) such that ¢ and j are principals and M
is a message. We say that ¢ is the source address and j the

destination address of the instance. Moreover, we assume
that there is an abstraction F' representing the behaviour of
any principal after receipt of Message 3 of the protocol. For
an instance (7, j, M) that runs as intended, the argument to
F is the triple (z,j, M).

Given an instance (¢, 7, M), the following process corre-
sponds to the role of A:

Send(i, j, M) = (vK)(@5((i, {4, K}ris)) | TG (i, {M}x)))

The sending process creates a key K and sends it to the
server, along with the names ¢ and j of the principals of the
instance. The sending process also sends M under K, along
with its name i. We have put the two messages in parallel,
somewhat arbitrarily; putting them in sequence would have
much the same effect.

The following process corresponds to the role of B for
principal j:

Recv(j) 2 ¢j (Yeipher)-€ase Yeipher Of {wAywkey}KSj in
¢j(2A, Zeipher)-[T A 15 24]
case Zeipher Of {zpzam}zkuy mn F(xA7i7 Zplain)

The receiving process waits for a message ycipher from the
server, extracts a key xrey from this message, then waits for
a message Zeipher Under this key, and finally applies F' to the
name z4 of the presumed sender, to its own name j, and
to the contents zpn of the message. The variables za and
za are both intended as the name of the sending process, so
they are expected to match.
The server S is the same for all instances:

A
S = CS(xAyﬁcipher)-
Hiel..n[xA is 1] case Tcipher Of {TB, They}K;s 1N
jel__n[l'B is l] Fj({zA:zkey}KSj>

The variable x 4 is intended as the name of the sending pro-
cess, rp as the name of the receiving process, i, as the
new key, and cipher as the encrypted part of the first mes-
sage of the protocol. In the code for the server, we program
an n-way branch on the name x4 by using a parallel compo-
sition of processes indexed by ¢ € 1..n. We also program an
n-way branch on the name z g, similarly. (This casual use of
multiple threads is characteristic of the pi calculus; in prac-
tice the branch could be implemented more efficiently, but
here we are interested only in the behaviour of the server,
not in its efficient implementation.)

Finally we define a whole system, parameterised on a list
of instances:

Sys(Ih,...,In) = (vKis)(vKs;)

'(ge|nd(I1) |-+ | Send(Ip) |
iRecv(l) | --- | !Recv(n))

where (vK;s)(vKs;) stands for:
(vKis)...(vKns)(wKs1) ... (vKsq)

The expression Sys([i,...,I»,) represents a system with m
instances of the protocol. The server is replicated; in addi-
tion, the replication of the receiving processes means that
each principal is willing to play the role of receiver in any
number of runs of the protocol in parallel. Thus, any two

runs of the protocol can be simultaneous, even if they involve
the same principals.

As before, we write a specification by modifying the pro-
tocol. For this specification, we revise the sending and the
receiving processes, but not the server:

Send pec (1, j, M) (vp)(Send(i, j, p) | p(x).-F (i, §, M))

. A
Recvepec(§) = ¢j(Yeipher)-)
case Yeipher Of {TA, They ticg; 0
¢j(2A, Zeipher)-[T A 15 24]
case Zeipher Of {Zplain tuy,,
Zplain(*)
Sysspec (II; cee ;Im) é (VK-;S)(VK;])
(Sendspec(I1) | -+ | Sendspec(Im) |
1S
IRecvspec(1) | - -+ | Recvspec (1))

In this specification, the sending process for instance (i, j, M)
is as in the implementation, except that it sends a fresh
channel name p instead of M, and runs F(i,j, M) when it
receives any message on p. The receiving process in the
specification is identical to that in the implementation, ex-
cept that F(ya,J, zplain) is replaced with Zpiam (), where
the symbol * represents a fixed but arbitrary message. The
variable zpnin Will be bound to the fresh name p for the
corresponding instance of the protocol. Thus, the receiv-
ing process will signal on p, triggering the execution of the
appropriate process F(i,7, M).

A crucial property of this specification is that the only
occurrences of F' are bundled into the description of the
sending process. There, F' is applied to the desired parame-
ters, (i,7, M). Hence it is obvious that an instance (i, j, M)
will cause the execution of F (¢, j', M') only if ¢’ is ¢, j' is 7,
and M’ is M. Therefore, despite its complexity, the specifi-
cation is more obviously “correct” than the implementation.

Much as in previous examples, we would like the protocol
to have the following authenticity property:

Sys(In, ..., Im) = Sys o (11, -, Im),
for any instances I1, ..., Ip,.

Unfortunately, the protocol is vulnerable to a replay attack
that invalidates the authenticity equation. Consider the sys-
tem Sys(I,1') where I = (i,j,M) and I' = (4,5, M'). An
attacker can replay messages of one instance and get them
mistaken for messages of the other instance, causing M to be
passed twice to F. Thus, Sys(I,I') can be made to execute
two copies of F(i,j,M). In contrast, no matter what an
attacker does, Sys,,..(I,I") will run each of F(i,j, M) and
F(i,j,M') at most once. The authenticity equation there-
fore does not hold. (We can disprove it formally by defining
an attacker that distinguishes Sys(I,I') and Sys,,..(I,I'),
within the spi calculus.)

spec(

3.2.4 A complete authentication example
(repaired)

Now we improve the protocol of the previous section by
adding nonce handshakes as protection against replay at-
tacks. The Wide Mouthed Frog protocol uses timestamps
instead of handshakes. The treatment of timestamps in

Send(i,j, M) = es(i) |

Ci(xnonce)-(VK)(@«ia {i:i,i, K, $nonCE}Kis)> | E((L {M}K)>)

[I>

S

s (@) Tliey. o s) (NS) @(NS) |
cs (T, Teipher). [Ty 15 1]

case Teipher Of {YA,2ZA, TB, They, Tnonce } ;g N
Hjel__n[yA is i] [za is i] [£5 5 §] [Tnonce 15 Ns]
(© (%) | cs(Ynonce) €5{{S, 4, J; They, Ynonee } K55)))

Recuv () 2 ¢j(w).(wNB)(€s(NB) |

Cj (ycipher)-

CaS€ Ycipher Of {$5;xAyxByxlceyyynonce}KS]- mn
[Lci nlzs is S][xa isi] [v5 is j] [Ynonce is Ni]
Cj (ZA) Zcipher)-[ZA 8 $A]

case Zeipher Of {Zplain }ape, 1 F (3, 3, Zplain))

Sys(L,....In) 2 (vKis)(wKs;)
'(ge|nd(11) |-+ | Send(In) |
iRecv(l) | -+ | !Recv(n))

Figure 2: Formalisation of the Seven-Message Protocol

the spi calculus is possible, but it requires additional ele-

ments, including at least a rudimentary account of clock

synchronisation. Protocols that use handshakes are funda-

mentally more self-contained than protocols that use times-

tamps; therefore, handshakes make for clearer examples.
Informally, our new protocol is:

Messagel A—S: A on ¢s
Message 2 S — A: Ns on ca
Message 3 A—S: A {A A B,Kap,Ns}tk,s oncs
Message 4 S — B: = on ¢
Message 5 B —+S: N on cs
Message 6 S — B: {S,A,B,Kap,NB}Kkgg on cg
Message 7 A — B: A {M}x,, on ¢p

Messages 1 and 2 are the request for a challenge and the
challenge, respectively. The challenge is Ng, a nonce cre-
ated by S; the nonce must not have been used before for
this purpose. Obviously the nonce is not secret, but it must
be unpredictable (for otherwise an attacker could simulate a
challenge and later replay the response [AN96]). In Message
3, A says that A and B can communicate under K 4p, some-
time after receipt of Ns. All the components A, B, Kag,
Ns appear explicitly in the message, for safety [AN96], but
A could perhaps be elided. The presence of Ns in Message
3 proves the freshness of the message. In Message 4, * rep-
resents a fixed but arbitrary message; S uses * to signal that
it is ready for a nonce challenge Np from B. In Message 6,
S says that A says that A and B can communicate under
K ap, sometime after receipt of Ng. The first field of the en-
crypted portions of Messages 3 and 6 (A or S) is included in
order to distinguish these messages; it serves as a “direction
bit”. Finally, Message 7 is the transmission of data under
Kag.

The messages of this protocol have many components.
For the spi calculus representation it is therefore convenient
to generalise our syntax of pairs and pair splitting to arbi-
trary tuples. We use the following standard abbreviations:

(N1, o, Ni1) = (N1, Ni), Nisr)

let (z1,...,0841) =N in P 2 let (y,a541) = N in
let (x1,...,2r) =y in P

where variable y is fresh.

In the spi calculus, we represent the nonces of this pro-
tocol as newly created names. We obtain the spi calcu-
lus expressions given in Figure 2. In those expressions, the
names Ns and Np represent the nonces. The variable sub-
scripts are hints that indicate what the corresponding vari-
ables should represent; for example, x4, z's, ya, and za
are all expected to be the name of the sending process, and
Znonce aNd Ynonce are expected to be the nonces generated
by S and B, respectively.

The definition of Sys,,. is exactly analogous to that of
the previous section, so we omit it. We obtain the authen-
ticity property:

Sys(Iv, ..., Im) = Sysgpec (11,5 Inm),
for any instances I, ..., Ip,.

This property holds because of the use of nonces. In partic-
ular, the replay attack of Section 3.2.3 can no longer distin-
guish Sys(I1,...,In) and Sys,,.. (I1,- .., In).

As a secrecy property, we would like to express that there
is no way for an external observer to tell apart two execu-
tions of the system with identical participants but different
messages. The secrecy property should therefore assert that
the protocol does not reveal any information about the con-
tents of exchanged messages if none is revealed after the key
exchange.

In order to express that no information is revealed after
the key exchange, we introduce the following definition. We
say that a pair of instances (i, 7, M) and (¢',5', M') is indis-
tinguishable if the two instances have the same source and
destination addresses (i = i’ and j = j') and if F(i,5, M) ~
F(i,j, M").

Our definition of secrecy is that, if each pair (I1,J1),
.oy (Im,Jm) is indistinguishable, then Sys(Ii,...,In) =~
Sys(J1,...,Jm). This means that an observer cannot dis-

tinguish two systems parameterised by two sets of indistin-
guishable instances. This property holds for our protocol.
In summary, we have:

Authenticity: Sys(I1,...,In) = Sys .. (I1,...,In),
for any instances I, ..., Ip,.
Secrecy: Sys(Ii, ..., Im) =~ Sys(J1, ..., Jm),
if each pair (I1,J1), ..., (Im, Jm)

is indistinguishable.

We could ask for a further property of anonymity, namely
that the source and the destination addresses of instances
be protected from eavesdroppers. However, anonymity holds
neither for our protocol nor for most current, practical pro-
tocols. It would be easy enough to specify anonymity, should
it be relevant.

3.2.5 Discussion

As these examples show, writing a protocol in the spi cal-
culus is essentially analogous to writing it in any program-
ming language with suitable communication and encryption
libraries. The main advantage of the spi calculus is its for-
mal precision.

Writing a protocol in the spi calculus may be a little
harder than writing it in some of the notations common in
the literature. On the other hand, the spi calculus versions
are more detailed. They make clear not only what messages
are sent but how the messages are generated and how they
are checked. These aspects of the spi calculus descriptions
add complexity, but they enable finer analysis.

4 Formal Semantics of the Spi Calculus

In this section we give a brief formal treatment of the spi
calculus. In Section 4.1 we introduce the reaction relation;
P — @ means there is a reaction amongst the subprocesses
of P such that the whole can take a step to process Q.
Reaction is the basic notion of computation in both the pi
calculus and the spi calculus. In Section 4.2 we give a precise
definition of the equivalence relation ~, which we have used
for expressing security properties.

Syntactic Conventions

We write fn(M) and fn(P) for the sets of names free in term
M and process P respectively. Similarly, we write fu(M) and
fu(P) for the sets of variables free in M and P respectively.
We say that a term or process is closed to mean that it has
no free variables. (To be able to communicate externally, a
process must have free names.) The set Proc = {P | fu(P) =
0} is the set of closed processes.

4.1 The Reaction Relation

The reaction relation is a concise account of computation
in the pi calculus introduced by Milner [Mil92], inspired by
the Chemical Abstract Machine of Berry and Boudol [BB90].
One thinks of a process as consisting of a chemical solution
of molecules waiting to react. A reaction step arises from the
interaction of the adjacent molecules T (N).P and m(z).Q,
as follows:

m(N).P | m(z).Q — P|Q[N/x]

Just as one might stir a chemical solution to allow non-
adjacent molecules to react, we define a relation, structural
equivalence, that allows processes to be rearranged so that
the rule above is applicable. We first define the reduction
relation > on closed processes:

P > P|IP
[MisM|P > P
let (z,y) = (M,N) in P > P[M/z][N/y]
case 0 of 0: P suc(z):Q > P
case suc(M) of 0: P suc(z):Q > Q[M/x]
case {M}n of {x}n in P > P[M/x]
We let structural equivalence, =, be the least relation on

closed processes that satisfies the following equations and
rules:

P|l0O = P
PlQ = Q|P
Pl@QIR) = (P|Q)IR
(vm)(vn)P = (vn)(vm)P
(vn)0 = 0
wn)(P|1Q) = P|lwn)Q ifn¢fn(P)
P>Q
P=qQ P=P
P=qQ P=Q Q=R
Q=P P=R
P=P P=pP
P|lQ=P|Q (vm)P = (vm)P’

Now we can complete the formal description of the reac-
tion relation. We let the reaction relation, —, be the least re-
lation on closed processes that satisfies m(N).P | m(z).Q —
P | Q[N/x] and the following rules:

P=pr P —=Q Q'=Q
P—Q
P — P P— P
PlQ—-P|Q (vn)P — (vn)P’

This definition of the reaction relation corresponds to the in-
formal description of process behaviour given in Sections 2.2
and 3.1.

As an example, we can use the definition of the reac-
tion relation to show the behaviour of the protocol of Sec-
tion 3.2.2:

Inst(M) = (wKas)(vKss)(A(M)|S|B)
— (VKAs)(VKSB)(VKAB)
Cas({M}rap) | cs5({Kan}Ksy) | B)
— (IIKAs)(l/KSB)(l/KAB)
Cas({M}x,s) |
caB(z).case z of {w}k,, in F(w))
— (vKas)(vKs)(vKap)F (M)
= F(M)

The last step in this calculation is justified by our general
convention that none of the bound parameters of the pro-
tocol (including, in this case, Kas, Ksp, and Kap) occurs
free in F.

4.2 Testing Equivalence

In order to define equivalence, we first define a predicate
that describes the channels on which a process can commu-
nicate. We let a barb, 3, be an input or output channel,
that is, either a name m (representing input) or a co-name
m (representing output). For a closed process P, we define
the predicate P ezhibits barb 3, written P | B, by the two
axioms:

m(z).P | m m(M).P |l m
and the three rules:

Plp Pip B¢{m m}

PlQLB (vm)P | 8
P=Q Q45
Py

Intuitively, P | 3 holds just if P is a closed process that may
input or output immediately on barb 3. The convergence
predicate P |} 8 holds if P is a closed process that exhibits
(3 after some reactions:

Plp P-Q QIp
Pyp Pyp

We let a test consist of any closed process R and any
barb 3. A closed process P passes the test if and only if
(P | R) § B. The notion of testing gives rise to a testing
equivalence on the set Proc of closed processes:

P~Q £ for any test (R,f),
(P|R)|ypBifand only if (Q | R) |

The idea of testing equivalence comes from the work of
De Nicola and Hennessy [DH84]. Despite superficial differ-
ences, we can show that our relation ~ is a version of De
Nicola and Hennessy's may-testing equivalence. As De Ni-
cola and Hennessy have explained, may-testing corresponds
to partial correctness (or safety), while must-testing corre-
sponds to total correctness. Like much of the security lit-
erature, our work focuses on safety properties, hence our
definitions.

A test neatly formalises the idea of a generic experiment
or observation another process (such as an attacker) might
perform on a process, so testing equivalence captures the
concept of equivalence in an arbitrary environment. One
possible drawback of testing equivalence is that it is sensi-
tive to the choice of language [BN95]. However, our results
appear fairly robust in that they carry over smoothly to
some extensions of our calculus.

5 Further Cryptographic Primitives

Although so far we have discussed only shared-key cryptog-
raphy, other kinds of cryptography are also easy to treat
within the spi calculus. In this section we show how to han-
dle cryptographic hashing, public-key encryption, and digi-
tal signatures. We add syntax for these operations to the spi
calculus and give their semantics. We thus provide evidence
that our ideas are applicable to a wide range of security
protocols, beyond those that rely on shared-key encryption.

We believe that we may be able to deal similarly with Diffie-
Hellman techniques and with secret sharing. However, pro-
tocols for oblivious transfer and for zero-knowledge proofs,
for example, are probably beyond the scope of our approach.

5.1 Hashing

A cryptographic hash function has the properties that it
is very expensive to recover an input from its image or to
find two inputs with the same image. Functions such as
SHA and RIPE-MD are generally believed to have these
properties [Sch94].

When we represent hash functions in the spi calculus,
we pretend that operations that are very expensive are alto-
gether impossible. We simply add a construct to the syntax
of terms of the spi calculus:

L,M,N := terms
. as in Section 3.1
H(M) hashing

The syntax of processes is unchanged. Intuitively, H (M)
represents the hash of M. The absence of a construct for re-
covering M from H (M) corresponds to the assumption that
H cannot be inverted. The lack of any equations H(M) =
H(M') corresponds to the assumption that H is free of col-
lisions.

5.2 Public-Key Encryption and Digital
Signatures

Traditional public-key encryption systems are based on key
pairs. Normally, one of the keys in each pair is private to one
principal, while the other key is public. Any principal can
encrypt a message using the public key; only a principal that
has the private key can then decrypt the message [DH76,
RSATS].

We assume that neither key can be recovered from the
other. We could just as easily deal with the case where the
public key can be derived from the private one. Much as
in Section 3.1, we also assume that the only way to decrypt
an encrypted packet is to know the corresponding private
key; that an encrypted packet does not reveal the public
key that was used to encrypt it; and that there is sufficient
redundancy in messages so that the decryption algorithm
can detect whether a ciphertext was encrypted with the ex-
pected public key.

We arrive at the following syntax for the spi calculus
with public-key encryption. (This syntax is concise, rather
than memorable.)

L,M,N := terms
. as in Section 3.1
MT public part
M~ private part

public-key encryption

processes

. as in Section 3.1
case L of {fx}n in P decryption

If M represents a key pair, then M ™ represents its public
half and M ™ represents its private half. Given a public key
N, the term {{M]}n represents the result of the public-key
encryption of M with N. In case L of {{z]}n in P, the

variable z is bound in P. This construct is useful when N
is a private key K ; then it binds = to the M such that
{MT} x+ is L, if such an M exists.

It is also common to use key pairs for digital signatures.
Private keys are used for signing, while public keys are used
for checking signatures. We can represent digital signatures
through the following extended syntax:

L,M,N := terms
. as above
MY~ private-key signature
P Q= processes
as above

case N of Kxla in P

Given a private key IV, the term [M]y represents the result
of the signature of M with V. Again, the variable x is bound
in P in the construct case N of {z}]a in P. This construct
is dual to case L of {z}}n in P. The new construct is
useful when N is a public key KT; then it binds x to the M
such that {M}]x- is L, if such an M exists. (Thus, we are
assuming that M can be recovered from the result of signing
it; but there is no difficulty in dropping this assumption.)
Formally, the semantics of the new constructs is captured

with two new rules for the reduction relation:

case {MJ}y+ of {zlfy- in P > P[M/q]

case (MY n- of {z}]n+ in P > P[M/z]

As a small example, we can write the following public-
key analogue for the protocol of Section 3.2.1:

signature check

A

A 2 EEM, KO =Byt

A

B caB(z).case x of {[y]}Kg in

let (y1,y2) =y in
case y» of [{Z}]KI in

(H (y1) is z] F(y1)
Inst(M) = (vKa)(vKp)(A(M) | B)

In this protocol, A sends M on the channel cap, signed
with A’s private key and encrypted under B’s public key;
the signature is applied to a hash of M rather than to M
itself. On receipt of a message on cap, B decrypts using
its private key, checks A’s signature using A’s public key,
checks the hash, and applies F' to the body of the message
(to M). The key pairs K4 and Kp are restricted; but there
would be no harm in sending their public parts K} and K}
on a public channel.

Undoubtedly, other formalisations of public-key cryptog-
raphy are possible, perhaps even desirable. In particular, we
have represented cryptographic operations at an abstract
level, and do not attempt to model closely the properties of
any one algorithm. We are concerned with public-key en-
cryption and digital signatures in general rather than with
their RSA implementations, say. The RSA system satisfies
equations that our formalisation does not capture. For ex-
ample, in the RSA system, [{{M[}x+ J]x- equals M. We
leave the treatment of those equations for future work.

6 Conclusions

We have applied both the standard pi calculus and the new
spi calculus in the description and analysis of security proto-
cols. We showed how to represent protocols and how to ex-
press their security properties. Our model of protocols takes

into account the possibility of attacks, but does not require
writing explicit specifications for an attacker. In particu-
lar, we express secrecy properties as simple equations that
mean indistinguishability from the point of view of an arbi-
trary attacker. To our knowledge, this sharp treatment of
attacks has not been previously possible.

As examples, we chose protocols of the sort commonly
found in the authentication literature. Although our exam-
ples are small, we have found them instructive and encour-
aging. In particular, there seems to be no fundamental dif-
ficulty in writing other kinds of examples, such as protocols
for electronic commerce. Unfortunately, the specifications
for those protocols do not yet seem to be fully understood,
even in informal terms [Mao96].

In both the pi calculus and the spi calculus, restriction
and scope extrusion play a central role. The pi calculus
provides an abstract treatment of channels, while the spi
calculus expresses the cryptographic operations that usu-
ally underlie channels in systems for distributed security.
Thus, the pi calculus and the spi calculus are appropriate
at different levels. Still, it should be possible and useful to
relate those levels, enabling the formal development of cryp-
tographic protocols from non-cryptographic specifications.

Acknowledgements

Peter Sewell and Phil Wadler suggested improvements to a
draft of this paper.

References

[ABLP93] M. Abadi, M. Burrows, B. Lampson, and
G. Plotkin. A calculus for access control in dis-
tributed systems. ACM Transactions on Pro-
gramming Languages and Systemns, 15(4):706—
734, 1993.

M. Abadi and R. Needham. Prudent engineer-
ing practice for cryptographic protocols. IEEE
Transactions on Software Engineering, 22(1):6—
15, January 1996.

M. Burrows, M. Abadi, and R. M. Needham. A
logic of authentication. Proceedings of the Royal
Society of London A, 426:233-271, 1989. A
preliminary version appeared as Digital Equip-
ment Corporation Systems Research Center re-
port No. 39, February 1989.

[AN96]

[BANS9]

[BB90] G. Berry and G. Boudol. The chemical abstract
machine. In Conference Record of the Seven-
teenth ACM Symposium on Principles of Pro-

grammang Languages, pages 81-94, 1990.

[BN95] M. Boreale and R. De Nicola. Testing equiv-
alence for mobile processes. Information and

Computation, 120(2):279-303, August 1995.

[BRI5] M. Bellare and P. Rogaway. Provably secure
session key distribution: The three party case.
In Proceedings of the 27th Annual ACM Sympo-

sium on Theory of Computing, 1995.

[DES77] Data encryption standard. Fed. Inform. Pro-
cessing Standards Pub. 46, National Bureau of

Standards, Washington DC, January 1977.

[DH76]

[DH84]

[DY81]

[GM95]

[Hoa85]

[Kem89]

[LABW92]

[Lie93]

[Low96]

[Mao96]

[MCF87]

[Mea92]

[Mil89]

[Mil92]

[Mil95]

W. Diffie and M. Hellman. New directions in
cryptography. IEEE Transactions on Informa-
tion Theory, IT-22(6):644-654, November 1976.

R. De Nicola and M. C. B. Hennessy. Test-
ing equivalences for processes. Theoretical Com-
puter Science, 34:83-133, 1984.

D. Dolev and A. C. Yao. On the security of
public key protocols. In Proc. 22th IEEE Sym-
posium on Foundations of Computer Science,
pages 350-357, 1981.

J. Gray and J. McLean. Using temporal logic
to specify and verify cryptographic protocols
(progress report). In Proceedings of the 8th
IEEE Computer Security Foundations Work-
shop, pages 108-116, 1995.

C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall International, 1985.

R. A. Kemmerer. Analyzing encryption proto-
cols using formal verification techniques. IEEE
Journal on Selected Areas in Communications,
7, 1989.

B. Lampson, M. Abadi, M. Burrows, and
E. Wobber. Authentication in distributed sys-
tems: Theory and practice. ACM Transactions
on Computer Systems, 10(4):265-310, Novem-
ber 1992.

A. Liebl. Authentication in distributed systems:
A bibliography. ACM Operating Systems Re-
view, 27(4):31-41, 1993.

G. Lowe. Breaking and fixing the Needham-
Schroeder public-key protocol using FDR. In
Tools and Algorithms for the Construction and
Analysis of Systems, volume 1055 of Lecture
Notes in Computer Science, pages 147-166.
Springer Verlag, 1996.

W. Mao. On two proposals for on-line bankcard
payments using open networks: Problems and
solutions. In IEEE Symposium on Security and
Privacy, pages 201-210, 1996.

J. K. Millen, S. C. Clark, and S. B. Freed-
man. The Interrogator: Protocol security anal-
ysis. IEEE Transactions on Software Engineer-
ing, SE-13(2):274-288, February 1987.

C. Meadows. Applying formal methods to the
analysis of a key management protocol. Journal
of Computer Security, 1(1):5-36, 1992.

R. Milner. Communication and Concurrency.
Prentice-Hall International, 1989.

R. Milner. Functions as processes. Mathemati-
cal Structures in Computer Science, 2:119-141,
1992.

J. K. Millen. The Interrogator model. In IEEE
Symposium on Security and Privacy, pages 251—
260, 1995.

[MPW92]

[NST78]

[RSATS]

[Sch94]

[Sch96]

R. Milner, J. Parrow, and D. Walker. A calcu-
lus of mobile processes, parts I and II. Informa-
tion and Computation, pages 1-40 and 41-77,
September 1992.

R. M. Needham and M. D. Schroeder. Using
encryption for authentication in large networks
of computers. Communications of the ACM,
21(12):993-999, December 1978.

R. L. Rivest, A. Shamir, and L. Adleman.
A method for obtaining digital signatures and
public-key cryptosystems. Communications of
the ACM, 21(2):120-126, February 1978.

B. Schneier. Applied Cryptography: Protocols,
Algorithms, and Source Code in C. John Wiley
& Sons, Inc., 1994.

S. Schneider. Security properties and CSP.
In IEEE Symposium on Security and Privacy,
pages 174-187, 1996.

