
A Calculus for Cryptographic ProtocolsThe Spi CalculusMart��n AbadiDigital Equipment CorporationSystems Research Centerma@pa.dec.com Andrew D. GordonUniversity of CambridgeComputer Laboratoryadg@cl.cam.ac.ukAbstractWe introduce the spi calculus, an extension of the pi cal-culus designed for the description and analysis of crypto-graphic protocols. We show how to use the spi calculus,particularly for studying authentication protocols. The picalculus (without extension) su�ces for some abstract pro-tocols; the spi calculus enables us to consider cryptographicissues in more detail. We represent protocols as processes inthe spi calculus and state their security properties in termsof coarse-grained notions of protocol equivalence.1 Security and the Pi CalculusThe spi calculus is an extension of the pi calculus [MPW92]with cryptographic primitives. It is designed for the descrip-tion and analysis of security protocols, such as those for au-thentication and for electronic commerce. These protocolsrely on cryptography and on communication channels withproperties like authenticity and privacy. Accordingly, cryp-tographic operations and communication through channelsare the main ingredients of the spi calculus.We use the pi calculus (without extension) for describ-ing protocols at an abstract level. The pi calculus primitivesfor channels are simple but powerful. Channels can be cre-ated and passed, for example from authentication servers toclients. The scoping rules of the pi calculus guarantee thatthe environment of a protocol (the attacker) cannot accessa channel that it is not explicitly given; scoping is thus thebasis of security. In sum, the pi calculus appears as a fairlyconvenient calculus of protocols for secure communication.However, the pi calculus does not express the crypto-graphic operations that are commonly used for implement-ing channels in distributed systems: it does not include anyconstructs for encryption and decryption, and these do notseem easy to represent. Since the use of cryptography isnotoriously error-prone, we prefer not to abstract it away.We de�ne the spi calculus in order to permit an explicitrepresentation of the use of cryptography in protocols.There are by now many other notations for describingsecurity protocols. Some, which have long been used inthe authentication literature, have a fairly clear connection

to the intended implementations of those protocols (see,e.g., [NS78, Lie93]). Their main shortcoming is that theydo not provide a precise and solid basis for reasoning aboutprotocols. Other notations (e.g., [BAN89]) are more formal,but their relation to implementations may be more tenuousor subtle. The spi calculus is a middle ground: it is directlyexecutable and it has a precise semantics.Because the semantics of the spi calculus is not only pre-cise but intelligible, the spi calculus provides a setting foranalysing protocols. Speci�cally, we can express securityguarantees as equivalences between spi calculus processes.For example, we can say that a protocol keeps secret a pieceof data X by stating that the protocol with X is equiva-lent to the protocol with X 0, for any X 0. Here, equivalencemeans equivalence in the eyes of an arbitrary environment.The environment can interact with the protocol, perhapsattempting to create confusion between di�erent messagesor sessions. This de�nition of equivalence yields the desiredproperties for our security applications. Moreover, in ourexperience, equivalence is not too hard to prove.Although the de�nition of equivalence makes referenceto the environment, we do not need to give a model of theenvironment explicitly. This is one of the main advantagesof our approach. Writing such a model can be tedious andcan lead to new arbitrariness and error. In particular, itis always di�cult to express that the environment can in-vent random numbers but is not lucky enough to guess therandom secrets on which a protocol depends. We resolvethis con
ict by letting the environment be an arbitrary spicalculus process.Our approach has some similarities with other recent ap-proaches for reasoning about protocols. Like work based ontemporal logics or process algebras (e.g., [GM95, Low96,Sch96]), our method builds on a standard concurrency for-malism; this has obvious advantages but it also implies thatour method is less intuitive than some based on ad hoc for-malisms (e.g., [BAN89]). As in some modal logics (e.g.,[ABLP93, LABW92]), we emphasise reasoning about chan-nels and their utterances. As in state-transition models(e.g., [DY81, MCF87, Mil95, Kem89, Mea92]), we are in-terested in characterising the knowledge of an environment.The unique features of our approach are its reliance on thepowerful scoping constructs of the pi calculus; the radicalde�nition of the environment as an arbitrary spi calculusprocess; and the representation of security properties, bothintegrity and secrecy, as equivalences.Our model of protocols is simpler, but poorer, than somemodels developed for informal mathematical arguments be-

cause the spi calculus does not include any notion of prob-ability or complexity (cf. [BR95]). It would be interestingto bridge the gap between the spi calculus and those mod-els, perhaps by giving a probabilistic interpretation for ourresults.Contents of this PaperSection 2 introduces the pi calculus and our method of spec-ifying security properties as equations. Section 3 extendsthe pi calculus with primitives for shared-key cryptography.Sections 4 de�nes the formal semantics of the spi calculus.Section 5 discusses how to add primitives for hashing andpublic-key cryptography to the pi calculus, and Section 6o�ers some conclusions. An extended version of this workincludes additional material, in particular proof techniquesand proofs for examples.2 Protocols using Restricted ChannelsIn this section we review the de�nition of the pi calculusinformally. (We give a more formal presentation in Sec-tion 4.) We then introduce a new application of the pi cal-culus, namely its use for the study of security.2.1 BasicsThe pi calculus is a small but extremely expressive program-ming language. It is an important result of the search fora calculus that could serve as a foundation for concurrentcomputation, in the same way in which the lambda calculusis a foundation for sequential computation.Pi calculus programs are systems of independent, parallelprocesses that synchronise via message-passing handshakeson named channels. The channels a process knows aboutdetermine the communication possibilities of the process.Channels may be restricted, so that only certain processesmay communicate on them. In this respect the pi calculusis similar to earlier process calculi such as CSP [Hoa85] andCCS [Mil89].What sets the pi calculus apart from earlier calculi isthat the scope of a restriction|the program text in whicha channel may be used|may change during computation.When a process sends a restricted channel as a message toa process outside the scope of the restriction, the scope issaid to extrude, that is, it enlarges to embrace the processreceiving the channel. Processes in the pi calculus are mo-bile in the sense that their communication possibilities maychange over time; they may learn the names of new chan-nels via scope extrusion. Thus, a channel is a transferablecapability for communication.A central technical idea of this paper is to use the re-striction operator and scope extrusion from the pi calculusas a formal model of the possession and communication ofsecrets, such as cryptographic keys. These features of the picalculus are essential in our descriptions of security proto-cols.2.2 Outline of the Pi CalculusThere are in fact several versions of the pi calculus. Herewe review the syntax and semantics of a particular version

of the pi calculus. The di�erences with other versions aremostly orthogonal to our concerns.We assume an in�nite set of names, to be used for com-munication channels, and an in�nite set of variables. We letm, n, p, q, and r range over names, and let x, y, and z rangeover variables. The set of terms is de�ned by the grammar:L;M;N ::= termsn name(M;N) pair0 zerosuc(M) successorx variableIn the standard pi calculus, names are the only terms. Forconvenience we have added constructs for pairing and num-bers, (M;N), 0, and suc(M), and have also distinguishedvariables from names.The set of processes is de�ned by the grammar:P;Q;R ::= processesMhNi:P outputM(x):P inputP j Q composition(�n)P restriction!P replication[M is N] P match0 nillet (x; y) =M in P pair splittingcase M of 0 : P suc(x) : Q integer caseIn (�n)P , the name n is bound in P . InM(x):P , the variablex is bound in P . In let (x; y) = M in P , the variables xand y are bound in P . In case M of 0 : P suc(x) : Q,the variable x is bound in the second branch, Q. We writeP [M=x] for the outcome of replacing each free occurrence ofx in process P with the term M , and identify processes upto renaming of bound variables and names. We adopt theabbreviation MhNi for MhNi:0.Intuitively, the constructs of the pi calculus have the fol-lowing meanings:� The basic computation and synchronisation mecha-nism in the pi calculus is interaction, in which a termN is communicated from an output process to an inputprocess via a named channel, m.{ An output process mhNi:P is ready to output onchannel m. If an interaction occurs, term N iscommunicated on m and then process P runs.{ An input process m(x):P is ready to input fromchannel m. If an interaction occurs in which N iscommunicated on m, then process P [N=x] runs.(The general forms M hNi:P and M(x):P of outputand input allow for the channel to be an arbitrary termM . The only useful cases are for M to be a name, ora variable that gets instantiated to a name.)� A composition P j Q behaves as processes P and Qrunning in parallel. Each may interact with the otheron channels known to both, or with the outside world,independently of the other.� A restriction (�n)P is a process that makes a new, pri-vate name n, which may occur in P , and then behavesas P .

� A replication !P behaves as an in�nite number of copiesof P running in parallel.� A match [M isN]P behaves as P provided that termsM and N are the same; otherwise it is stuck, that is,it does nothing.� The nil process 0 does nothing.Since we added pairs and integers, we have two new processforms:� A pair splitting process let (x; y) = M in P behavesas P [N=x][L=y] if term M is the pair (N; L), and oth-erwise it is stuck.� An integer case process case M of 0 : P suc(x) : Qbehaves as P if termM is 0, as Q[N=x] ifM is suc(N),and otherwise is stuck.We write P ' Q to mean that the behaviours of theprocesses P and Q are indistinguishable. In other words, athird process R cannot distinguish running in parallel withP from running in parallel with Q; as far as R can tell, Pand Q have the same properties (more precisely, the samesafety properties). We de�ne the relation ' in Section 4.2as a form of testing equivalence. For now, it su�ces tounderstand ' informally.2.3 Examples using Restricted ChannelsNext we show how to express some abstract security proto-cols in the pi calculus. In security protocols, it is commonto �nd channels on which only a given set of principals isallowed to send data or listen. The set of principals mayexpand in the course of a protocol run, for example as theresult of channel establishment. Remarkably, it is easy tomodel this property of channels in the pi calculus, via therestriction operation; the expansion of the set of principalsthat can access a channel corresponds to scope extrusion.2.3.1 A �rst exampleOur �rst example is extremely basic. In this example, thereare two principals A and B that share a channel, cAB ; only Aand B can send data or listen on this channel. The protocolis simply that A uses cAB for sending a single message Mto B. In informal notation, we may write this protocol asfollows: Message 1 A! B : M on cABA �rst pi calculus description of this protocol is:A(M) �= cABhMiB �= cAB(x):0Inst(M) �= (�cAB)(A(M) j B)The processes A(M) and B describe the two principals, andInst(M) describes (one instance of) the whole protocol. Thechannel cAB is restricted; intuitively, this achieves the e�ectthat only A and B have access to cAB .In these de�nitions, A(M) and Inst(M) are processes pa-rameterised by M . More formally, we view A and Inst asfunctions that map terms to processes, called abstractions,

and treat the M 's on the left of �= as bound parameters.Abstractions can of course be instantiated (applied); for ex-ample, the instantiation A(0) yields cABh0i. The standardrules of substitution govern application, forbidding param-eter captures; for example, expanding Inst(cAB) would re-quire a renaming of the bound occurrence of cAB in thede�nition of Inst .The �rst pi calculus description of the protocol may seema little futile because, according to it, B does nothing withits input. A more useful and general description says thatB runs a process F with its input. We revise our de�nitionsas follows: A(M) �= cABhMiB �= cAB(x):F (x)Inst(M) �= (�cAB)(A(M) j B)Informally, F (x) is simply the result of applying F to x.More formally, F is an abstraction, and F (x) is an instanti-ation of the abstraction. We adopt the convention that thebound parameters of the protocol (in this case, M , cAB , andx) cannot occur free in F .This protocol has two important properties:� Authenticity (or integrity): B always applies F to themessage M that A sends; an attacker cannot cause Bto apply F to some other message.� Secrecy: The message M cannot be read in transitfrom A to B: if F does not reveal M , then the wholeprotocol does not reveal M .The secrecy property can be stated in terms of equiva-lences: if F (M) ' F (M 0), for any M , M 0, then Inst(M) 'Inst(M 0). This means that if F (M) is indistinguishable fromF (M 0), then the protocol with message M is indistinguish-able from the protocol with message M 0.There are many sensible ways of formalising the authen-ticity property. In particular, it may be possible to use no-tions of re�nement or a suitable program logic. However,we choose to write authenticity as an equivalence, for econ-omy. This equivalence compares the protocol with anotherprotocol. Our intent is that the latter protocol serves as aspeci�cation. In this case, the speci�cation is:A(M) �= cABhMiBspec(M) �= cAB(x):F (M)Inst spec(M) �= (�cAB)(A(M) j Bspec(M))The principal A is as usual, but the principal B is replacedwith a variant Bspec(M); this variant receives an input fromA and then acts like B when B receives M . We may saythat Bspec(M) is a \magical" version of B that knows themessage M sent by A, and similarly Instspec is a \magical"version of Inst .Although the speci�cation and the protocol are similar instructure, the speci�cation is more evidently \correct" thanthe protocol. Therefore, we take the following equivalenceas our authenticity property: Inst(M) ' Inst spec(M), forany M .In summary, we have:Authenticity: Inst(M) ' Inst spec(M),for any M .Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0),for any M , M 0.

&%'$A &%'$B
&%'$S

-3. data on new channel�������1. new channel @@@@@@R2. new channel
Figure 1: Structure of the Wide Mouthed Frog ProtocolEach of these equivalences means that two processes beingequated are indistinguishable, even when an active attackeris their environment. Neither of these equivalences wouldhold without the restriction of channel cAB .2.3.2 An example with channelestablishmentAmore interesting variant of our �rst example is obtained byadding a channel establishment phase. In this phase, beforecommunication of data, the principals A and B obtain a newchannel with the help of a server S.There are many di�erent ways of establishing a channel,even at the abstract level at which we work here. The onewe describe is inspired by the Wide Mouthed Frog proto-col [BAN89], which has the basic structure shown in Fig-ure 1.We consider an abstract and simpli�ed version of theWide Mouthed Frog protocol. Our version is abstract in thatwe deal with channels instead of keys; it is simpli�ed in thatchannel establishment and data communication happen onlyonce (so there is no need for timestamps). In the next sectionwe show how to treat keys and how to allow many instancesof the protocol, with an arbitrary number of messages.Informally, our version is:Message 1 A! S : cAB on cASMessage 2 S ! B : cAB on cSBMessage 3 A! B : M on cABHere cAS is a channel that A and S share initially, cSB is achannel that S and B share initially, and cAB is a channelthat A creates for communication with B. After passing thechannel cAB to B through S, A sends a message M on cAB .Note that S does not use the channel, but only transmits it.In the pi calculus, we formulate this protocol as follows:A(M) �= (�cAB)cAShcABi:cABhMiS �= cAS(x):cSBhxiB �= cSB(x):x(y):F (y)Inst(M) �= (�cAS)(�cSB)(A(M) j S j B)

Here we write F (y) to represent what B does with the mes-sage y that it receives, as in the previous example. Therestrictions on the channels cAS , cSB , and cAB re
ect theexpected privacy guarantees for these channels. The mostsalient new feature of this speci�cation is the use of scopeextrusion: A generates a fresh channel cAB , and then sendsit out of scope to B via S. We could not have written thisdescription in formalisms such as CCS or CSP; the use ofthe pi calculus is important.For discussing authenticity, we introduce the followingspeci�cation:A(M) �= (�cAB)cAShcABi:cABhMiS �= cAS(x):cSBhxiBspec(M) �= cSB(x):x(y):F (M)Instspec(M) �= (�cAS)(�cSB)(A(M) j S j Bspec(M))According to this speci�cation, the message M is communi-cated \magically": the process F is applied to the messageM that A sends independently of whatever happens duringthe rest of the protocol run.We obtain the following authenticity and secrecy prop-erties:Authenticity: Inst(M) ' Inst spec(M),for any M .Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0),for any M , M 0.Again, these properties hold because of the scoping rules ofthe pi calculus.3 Protocols using CryptographyJust as there are several versions of the pi calculus, thereare several versions of the spi calculus. These di�er in par-ticular in what cryptographic constructs they include. Inthis section we introduce a relatively simple spi calculus,namely the pi calculus extended with primitives for shared-key cryptography. We then write several protocols that useshared-key cryptography in this calculus.

Throughout the paper, we often refer to the calculus pre-sented in this section as \the" spi calculus; but we de�neother versions of the spi calculus in Section 5.3.1 The Spi Calculus with Shared-KeyCryptographyThe syntax of the spi calculus is an extension of that of thepi calculus. In order to represent encrypted messages, weadd a clause to the syntax of terms:L;M;N ::= terms: : : as in Section 2.2fMgN shared-key encryptionIn order to represent decryption, we add a clause to thesyntax of processes:P;Q ::= processes: : : as in Section 2.2case L of fxgN in P shared-key decryptionThe variable x is bound in P .Intuitively, the meaning of the new constructs is as fol-lows:� The term fMgN represents the ciphertext obtainedby encrypting the term M under the key N using ashared-key cryptosystem such as DES [DES77].� The process case L of fxgN in P attempts to decryptthe term L with the key N . If L is a ciphertext ofthe form fMgN , then the process behaves as P [M=x].Otherwise the process is stuck.Implicit in this de�nition are some standard but signi�-cant assumptions about cryptography:� The only way to decrypt an encrypted packet is toknow the corresponding key.� An encrypted packet does not reveal the key that wasused to encrypt it.� There is su�cient redundancy in messages so that thedecryption algorithm can detect whether a ciphertextwas encrypted with the expected key.It is not assumed that all messages contain informationthat allows each principal to recognise its own messages(cf. [BAN89]).The semantics of the spi calculus can be formalised inmuch the same way as the semantics of the pi calculus. Wecarry out this formalisation in Section 4. Again, we writeP ' Q to mean that the behaviours of the processes P andQ are indistinguishable. The notion of indistinguishability iscomplicated by the presence of cryptography. As an exampleof these complications, consider the following process:P (M) �= (�K)chfMgKiThis process simply sendsM under a new keyK on a publicchannel c; the key K is not transmitted. Intuitively, wewould like to equate P (M) and P (M 0), for any M and M 0,because an observer cannot discover K and hence cannottell whether M or M 0 is sent under K. On the other hand,P (M) and P (M 0) are clearly di�erent, since they transmitdi�erent messages on c. Our equivalence ' is coarse-grainedenough to equate P (M) and P (M 0).

3.2 Examples using Shared-KeyCryptographyThe spi calculus enables more detailed descriptions of secu-rity protocols than the pi calculus. While the pi calculusenables the representation of channels, the spi calculus alsoenables the representation of the channel implementationsin terms of cryptography. In this section we show a fewexample cryptographic protocols.As in the pi calculus, scoping is the basis of securityin the spi calculus. In particular, restriction can be used tomodel the creation of fresh, unguessable cryptographic keys.Restriction can also be used to model the creation of freshnonces of the sort used in challenge-response exchanges.Security properties can still be expressed as equivalences,although the notion of equivalence is more delicate, as wehave discussed.3.2.1 A �rst cryptographic exampleOur �rst example is a cryptographic version of the exampleof Section 2.3.1. We consider two principals A and B thatshare a key KAB ; in addition, we assume there is a publicchannel cAB that A and B can use for communication, butwhich is in no way secure. The protocol is simply that Asends a message M under KAB to B, on cAB .Informally, we write this protocol as follows:Message 1 A! B : fMgKAB on cABIn the spi calculus, we write:A(M) �= cABhfMgKAB iB �= cAB(x):case x of fygKAB in F (y)Inst(M) �= (�KAB)(A(M) j B)According to this de�nition, A sends fMgKAB on cAB whileB listens for a message on cAB . Given such a message, B at-tempts to decrypt it using KAB ; if this decryption succeeds,B applies F to the result. The assumption that A and BshareKAB gives rise to the restriction onKAB , which is syn-tactically legal and meaningful although KAB is not used asa channel. On the other hand, cAB is not restricted, since itis a public channel. Other principals may send messages oncAB , so B may attempt to decrypt a message not encryptedunder KAB ; in that case, the protocol will get stuck. Weare not concerned about this possibility, but it would beeasy enough to avoid it by writing a slightly more elaborateprogram for B.We use the following speci�cation:A(M) �= cABhfMgKAB iBspec(M) �= cAB(x):case x of fygKAB in F (M)Instspec(M) �= (�KAB)(A(M) j Bspec(M))and we obtain the properties:Authenticity: Inst(M) ' Inst spec(M),for any M .Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0),for any M , M 0.

Intuitively, authenticity holds even if the key KAB issomehow compromised after its use. Many factors can con-tribute to key compromise, for example incompetence on thepart of protocol participants, and malice and brute force onthe part of attackers. We cannot model all these factors,but we can model deliberate key publication, which is in asense the most extreme of them. It su�ces to make a smallchange in the de�nitions of B and Bspec , so that they sendKAB on a public channel after receiving fMgKAB . Thischange preserves the authenticity equation, but clearly notthe secrecy equation.3.2.2 An example with key establishmentIn cryptographic protocols, the establishment of new chan-nels often means the exchange of new keys. There are manymethods (most of them
awed) for key exchange. The fol-lowing example is the cryptographic version of that of Sec-tion 2.3.2; it uses a simpli�ed (one-shot) form of the WideMouthed Frog key exchange.In the Wide Mouthed Frog protocol, the principals Aand B share keys KAS and KSB respectively with a serverS. When A and B want to communicate securely, A createsa new key KAB , sends it to the server under KAS, andthe server forwards it to B under KSB. All communicationbeing protected by encryption, it can happen through publicchannels, which we write cAS , cSB, and cAB . Informally, asimpli�ed version of this protocol is:Message 1 A! S : fKABgKAS on cASMessage 2 S ! B : fKABgKSB on cSBMessage 3 A! B : fMgKAB on cABIn the spi calculus, we can express this message sequenceas follows:A(M) �= (�KAB)(cAShfKABgKAS i:cABhfMgKAB i)S �= cAS(x):case x of fygKAS in cSBhfygKSB iB �= cSB(x):case x of fygKSB incAB(z):case z of fwgy in F (w)Inst(M) �= (�KAS)(�KSB)(A(M) j S j B)where F (w) is a process representing the rest of the be-haviour of B upon receiving a message w. Notice the essen-tial use of scope extrusion: A generates the key KAB andsends it out of scope to B via S.In the usual pattern, we introduce a speci�cation for dis-cussing authenticity:A(M) �= (�KAB)(cAShfKABgKAS i:cABhfMgKAB i)S �= cAS(x):case x of fygKAS in cSBhfygKSB iBspec(M) �= cSB(x):case x of fygKSB incAB(z):case z of fwgy in F (M)Inst spec(M) �= (�KAS)(�KSB)(A(M) j S j Bspec(M))One may be concerned about the apparent complexity ofthis speci�cation. On the other hand, despite its complex-ity, the speci�cation is still more evidently \correct" thanthe protocol. In particular, it is still evident that Bspec(M)applies F to the data M from A, rather than to some othermessage chosen as the result of error or attack.We obtain the usual properties of authenticity and se-crecy:

Authenticity: Inst(M) ' Inst spec(M),for any M .Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0),for any M , M 0.3.2.3 A complete authentication example(with a
aw)In the examples discussed so far, channel establishment anddata communication happen only once. As we demonstratenow, it is a simple matter of programming to remove this re-striction and to represent more sophisticated examples withmany sessions between many principals. However, as theintricacy of our examples increases, so does the opportunityfor error. This should not be construed as a limitation ofour approach, but rather as the sign of an intrinsic di�culty:many of the mistakes in authentication protocols arise fromconfusion between sessions.We consider a system with a server S and n other prin-cipals. We use the terms suc(0), suc(suc(0)), . . . , which weabbreviate to 1, 2, . . . , as the names of these other princi-pals. We assume that each principal has an input channel;these input channels are public and have the names c1, c2,. . . , cn and cS. We also assume that the server shares a pairof keys with each other principal, one key for each direction:principal i uses key KiS to send to S and key KSi to receivefrom S, for 1 � i � n.We extend our standard example to this system of n+1principals, with the following message sequence:Message 1 A! S : A; fB;KABgKAS on cSMessage 2 S ! B : fA;KABgKSB on cBMessage 3 A! B : A; fMgKAB on cBHere A and B range over the n principals. The names Aand B appear in messages in order to avoid ambiguity; whenthese names appear in clear, they function as hints that helpthe recipient choose the appropriate key for decryption ofthe rest of the message. The intent is that the protocol canbe used by any pair of principals, arbitrarily often; concur-rent runs are allowed. As it stands, the protocol has obvious
aws; we discuss it in order to explain our method for rep-resenting it in the spi calculus.In our spi calculus representation, we use several con-venient abbreviations. Firstly, we rely on pair splitting oninput and on decryption:c(x1; x2):P �= c(y):let (x1; x2) = y in Pcase L of fx1; x2gN in P �= case L of fygN inlet (x1; x2) = y in Pwhere variable y is fresh. Secondly, we need the standard no-tation for the composition of a �nite set of processes. Givena �nite family of processes P1; : : : ; Pk, we let Qi21::k Pi betheir k-way composition P1 j � � � j Pk. Finally, we omitthe inner parentheses from an encrypted pair of the formf(N;N 0)gN00 , and simply write fN;N 0gN00 , as is common ininformal descriptions.Informally, an instance of the protocol is determined by achoice of parties (who is A and who is B) and by the messagesent after key establishment. More formally, an instance Iis a triple (i; j;M) such that i and j are principals and Mis a message. We say that i is the source address and j the

destination address of the instance. Moreover, we assumethat there is an abstraction F representing the behaviour ofany principal after receipt of Message 3 of the protocol. Foran instance (i; j;M) that runs as intended, the argument toF is the triple (i; j;M).Given an instance (i; j;M), the following process corre-sponds to the role of A:Send (i; j;M) �= (�K)(cSh(i; fj; KgKiS)i j cjh(i; fMgK)i)The sending process creates a key K and sends it to theserver, along with the names i and j of the principals of theinstance. The sending process also sends M under K, alongwith its name i. We have put the two messages in parallel,somewhat arbitrarily; putting them in sequence would havemuch the same e�ect.The following process corresponds to the role of B forprincipal j:Recv (j) �= cj(ycipher):case ycipher of fxA; xkeygKSj incj(zA; zcipher):[xA is zA]case zcipher of fzplaingxkey in F (xA; j; zplain)The receiving process waits for a message ycipher from theserver, extracts a key xkey from this message, then waits fora message zcipher under this key, and �nally applies F to thename xA of the presumed sender, to its own name j, andto the contents zplain of the message. The variables xA andzA are both intended as the name of the sending process, sothey are expected to match.The server S is the same for all instances:S �= cS(xA; xcipher):Qi21::n[xA is i] case xcipher of fxB; xkeygKiS inQj21::n[xB is j] cjhfxA; xkeygKSj iThe variable xA is intended as the name of the sending pro-cess, xB as the name of the receiving process, xkey as thenew key, and xcipher as the encrypted part of the �rst mes-sage of the protocol. In the code for the server, we programan n-way branch on the name xA by using a parallel compo-sition of processes indexed by i 2 1::n. We also program ann-way branch on the name xB , similarly. (This casual use ofmultiple threads is characteristic of the pi calculus; in prac-tice the branch could be implemented more e�ciently, buthere we are interested only in the behaviour of the server,not in its e�cient implementation.)Finally we de�ne a whole system, parameterised on a listof instances:Sys(I1; : : : ; Im) �= (� ~KiS)(� ~KSj)(Send(I1) j � � � j Send(Im) j!S j!Recv (1) j � � � j !Recv (n))where (� ~KiS)(� ~KSj) stands for:(�K1S) : : : (�KnS)(�KS1) : : : (�KSn)The expression Sys(I1; : : : ; Im) represents a system with minstances of the protocol. The server is replicated; in addi-tion, the replication of the receiving processes means thateach principal is willing to play the role of receiver in anynumber of runs of the protocol in parallel. Thus, any two

runs of the protocol can be simultaneous, even if they involvethe same principals.As before, we write a speci�cation by modifying the pro-tocol. For this speci�cation, we revise the sending and thereceiving processes, but not the server:Send spec(i; j;M) �= (�p)(Send(i; j; p) j p(x):F (i; j;M))Recv spec(j) �= cj(ycipher):case ycipher of fxA; xkeygKSj incj(zA; zcipher):[xA is zA]case zcipher of fzplaingxkey inzplain h�iSysspec(I1; : : : ; Im) �= (� ~KiS)(� ~KSj)(Send spec(I1) j � � � j Send spec(Im) j!S j!Recv spec(1) j � � � j !Recv spec(n))In this speci�cation, the sending process for instance (i; j;M)is as in the implementation, except that it sends a freshchannel name p instead of M , and runs F (i; j;M) when itreceives any message on p. The receiving process in thespeci�cation is identical to that in the implementation, ex-cept that F (yA; j; zplain) is replaced with zplainh�i, wherethe symbol � represents a �xed but arbitrary message. Thevariable zplain will be bound to the fresh name p for thecorresponding instance of the protocol. Thus, the receiv-ing process will signal on p, triggering the execution of theappropriate process F (i; j;M).A crucial property of this speci�cation is that the onlyoccurrences of F are bundled into the description of thesending process. There, F is applied to the desired parame-ters, (i; j;M). Hence it is obvious that an instance (i; j;M)will cause the execution of F (i0; j0;M 0) only if i0 is i, j0 is j,and M 0 is M . Therefore, despite its complexity, the speci�-cation is more obviously \correct" than the implementation.Much as in previous examples, we would like the protocolto have the following authenticity property:Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im);for any instances I1, . . . , Im.Unfortunately, the protocol is vulnerable to a replay attackthat invalidates the authenticity equation. Consider the sys-tem Sys(I; I 0) where I = (i; j;M) and I 0 = (i; j;M 0). Anattacker can replay messages of one instance and get themmistaken for messages of the other instance, causingM to bepassed twice to F . Thus, Sys(I; I 0) can be made to executetwo copies of F (i; j;M). In contrast, no matter what anattacker does, Sysspec(I; I 0) will run each of F (i; j;M) andF (i; j;M 0) at most once. The authenticity equation there-fore does not hold. (We can disprove it formally by de�ningan attacker that distinguishes Sys(I; I 0) and Sysspec(I; I 0),within the spi calculus.)3.2.4 A complete authentication example(repaired)Now we improve the protocol of the previous section byadding nonce handshakes as protection against replay at-tacks. The Wide Mouthed Frog protocol uses timestampsinstead of handshakes. The treatment of timestamps in

Send(i; j;M) �= cShii jci(xnonce):(�K)(cSh(i; fi; i; j;K; xnoncegKiS)i j cjh(i; fMgK)i)S �= cS(xA):Qi21::n[xA is i] (�NS)(cihNSi jcS(x0A; xcipher):[x0A is i]case xcipher of fyA; zA; xB; xkey ; xnoncegKiS inQj21::n[yA is i] [zA is i] [xB is j] [xnonce is NS](cjh�i j cS(ynonce):cjhfS; i; j; xkey ; ynoncegKSj i))Recv (j) �= cj(w):(�NB)(cShNBi jcj(ycipher):case ycipher of fxS ; xA; xB; xkey ; ynoncegKSj inQi21::n[xS is S] [xA is i] [xB is j] [ynonce is NB]cj(zA; zcipher):[zA is xA]case zcipher of fzplaingxkey in F (i; j; zplain))Sys(I1; : : : ; Im) �= (� ~KiS)(� ~KSj)(Send (I1) j � � � j Send(Im) j!S j!Recv (1) j � � � j !Recv (n))Figure 2: Formalisation of the Seven-Message Protocolthe spi calculus is possible, but it requires additional ele-ments, including at least a rudimentary account of clocksynchronisation. Protocols that use handshakes are funda-mentally more self-contained than protocols that use times-tamps; therefore, handshakes make for clearer examples.Informally, our new protocol is:Message 1 A! S : A on cSMessage 2 S ! A : NS on cAMessage 3 A! S : A; fA;A;B;KAB ; NSgKAS on cSMessage 4 S ! B : � on cBMessage 5 B ! S : NB on cSMessage 6 S ! B : fS;A;B;KAB ; NBgKSB on cBMessage 7 A! B : A; fMgKAB on cBMessages 1 and 2 are the request for a challenge and thechallenge, respectively. The challenge is NS, a nonce cre-ated by S; the nonce must not have been used before forthis purpose. Obviously the nonce is not secret, but it mustbe unpredictable (for otherwise an attacker could simulate achallenge and later replay the response [AN96]). In Message3, A says that A and B can communicate under KAB , some-time after receipt of NS . All the components A, B, KAB ,NS appear explicitly in the message, for safety [AN96], butA could perhaps be elided. The presence of NS in Message3 proves the freshness of the message. In Message 4, � rep-resents a �xed but arbitrary message; S uses � to signal thatit is ready for a nonce challenge NB from B. In Message 6,S says that A says that A and B can communicate underKAB , sometime after receipt of NB . The �rst �eld of the en-crypted portions of Messages 3 and 6 (A or S) is included inorder to distinguish these messages; it serves as a \directionbit". Finally, Message 7 is the transmission of data underKAB .The messages of this protocol have many components.For the spi calculus representation it is therefore convenientto generalise our syntax of pairs and pair splitting to arbi-trary tuples. We use the following standard abbreviations:(N1; : : : ; Nk+1) �= ((N1; : : : ; Nk); Nk+1)

let (x1; : : : ; xk+1) = N in P �= let (y; xk+1) = N inlet (x1; : : : ; xk) = y in Pwhere variable y is fresh.In the spi calculus, we represent the nonces of this pro-tocol as newly created names. We obtain the spi calcu-lus expressions given in Figure 2. In those expressions, thenames NS and NB represent the nonces. The variable sub-scripts are hints that indicate what the corresponding vari-ables should represent; for example, xA, x0A, yA, and zAare all expected to be the name of the sending process, andxnonce and ynonce are expected to be the nonces generatedby S and B, respectively.The de�nition of Sysspec is exactly analogous to that ofthe previous section, so we omit it. We obtain the authen-ticity property:Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im);for any instances I1, . . . , Im.This property holds because of the use of nonces. In partic-ular, the replay attack of Section 3.2.3 can no longer distin-guish Sys(I1; : : : ; Im) and Sysspec(I1; : : : ; Im).As a secrecy property, we would like to express that thereis no way for an external observer to tell apart two execu-tions of the system with identical participants but di�erentmessages. The secrecy property should therefore assert thatthe protocol does not reveal any information about the con-tents of exchanged messages if none is revealed after the keyexchange.In order to express that no information is revealed afterthe key exchange, we introduce the following de�nition. Wesay that a pair of instances (i; j;M) and (i0; j0;M 0) is indis-tinguishable if the two instances have the same source anddestination addresses (i = i0 and j = j0) and if F (i; j;M) 'F (i; j;M 0).Our de�nition of secrecy is that, if each pair (I1; J1),. . . , (Im; Jm) is indistinguishable, then Sys(I1; : : : ; Im) 'Sys(J1; : : : ; Jm). This means that an observer cannot dis-

tinguish two systems parameterised by two sets of indistin-guishable instances. This property holds for our protocol.In summary, we have:Authenticity: Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im),for any instances I1, . . . , Im.Secrecy: Sys(I1; : : : ; Im) ' Sys(J1; : : : ; Jm),if each pair (I1; J1), . . . , (Im; Jm)is indistinguishable.We could ask for a further property of anonymity, namelythat the source and the destination addresses of instancesbe protected from eavesdroppers. However, anonymity holdsneither for our protocol nor for most current, practical pro-tocols. It would be easy enough to specify anonymity, shouldit be relevant.3.2.5 DiscussionAs these examples show, writing a protocol in the spi cal-culus is essentially analogous to writing it in any program-ming language with suitable communication and encryptionlibraries. The main advantage of the spi calculus is its for-mal precision.Writing a protocol in the spi calculus may be a littleharder than writing it in some of the notations common inthe literature. On the other hand, the spi calculus versionsare more detailed. They make clear not only what messagesare sent but how the messages are generated and how theyare checked. These aspects of the spi calculus descriptionsadd complexity, but they enable �ner analysis.4 Formal Semantics of the Spi CalculusIn this section we give a brief formal treatment of the spicalculus. In Section 4.1 we introduce the reaction relation;P ! Q means there is a reaction amongst the subprocessesof P such that the whole can take a step to process Q.Reaction is the basic notion of computation in both the picalculus and the spi calculus. In Section 4.2 we give a precisede�nition of the equivalence relation ', which we have usedfor expressing security properties.Syntactic ConventionsWe write fn(M) and fn(P) for the sets of names free in termM and process P respectively. Similarly, we write fv(M) andfv(P) for the sets of variables free in M and P respectively.We say that a term or process is closed to mean that it hasno free variables. (To be able to communicate externally, aprocess must have free names.) The set Proc = fP j fv(P) =;g is the set of closed processes.4.1 The Reaction RelationThe reaction relation is a concise account of computationin the pi calculus introduced by Milner [Mil92], inspired bythe Chemical Abstract Machine of Berry and Boudol [BB90].One thinks of a process as consisting of a chemical solutionof molecules waiting to react. A reaction step arises from theinteraction of the adjacent molecules mhNi:P and m(x):Q,as follows: mhNi:P j m(x):Q ! P j Q[N=x]

Just as one might stir a chemical solution to allow non-adjacent molecules to react, we de�ne a relation, structuralequivalence, that allows processes to be rearranged so thatthe rule above is applicable. We �rst de�ne the reductionrelation > on closed processes: !P > P j !P[M is M] P > Plet (x; y) = (M;N) in P > P [M=x][N=y]case 0 of 0 : P suc(x) : Q > Pcase suc(M) of 0 : P suc(x) : Q > Q[M=x]case fMgN of fxgN in P > P [M=x]We let structural equivalence, �, be the least relation onclosed processes that satis�es the following equations andrules: P j 0 � PP j Q � Q j PP j (Q j R) � (P j Q) j R(�m)(�n)P � (�n)(�m)P(�n)0 � 0(�n)(P j Q) � P j (�n)Q if n =2 fn(P)P > QP � Q P � PP � QQ � P P � Q Q � RP � RP � P 0P j Q � P 0 j Q P � P 0(�m)P � (�m)P 0Now we can complete the formal description of the reac-tion relation. We let the reaction relation,!, be the least re-lation on closed processes that satis�es mhNi:P j m(x):Q!P j Q[N=x] and the following rules:P � P 0 P 0 ! Q0 Q0 � QP ! QP ! P 0P j Q! P 0 j Q P ! P 0(�n)P ! (�n)P 0This de�nition of the reaction relation corresponds to the in-formal description of process behaviour given in Sections 2.2and 3.1.As an example, we can use the de�nition of the reac-tion relation to show the behaviour of the protocol of Sec-tion 3.2.2:Inst(M) � (�KAS)(�KSB)(A(M) j S j B)! (�KAS)(�KSB)(�KAB)(cABhfMgKAB i j cSBhfKABgKSB i j B)! (�KAS)(�KSB)(�KAB)(cABhfMgKAB i jcAB(z):case z of fwgKAB in F (w))! (�KAS)(�KSB)(�KAB)F (M)� F (M)The last step in this calculation is justi�ed by our generalconvention that none of the bound parameters of the pro-tocol (including, in this case, KAS , KSB, and KAB) occursfree in F .

4.2 Testing EquivalenceIn order to de�ne equivalence, we �rst de�ne a predicatethat describes the channels on which a process can commu-nicate. We let a barb, �, be an input or output channel,that is, either a name m (representing input) or a co-namem (representing output). For a closed process P , we de�nethe predicate P exhibits barb �, written P # �, by the twoaxioms: m(x):P # m mhMi:P # mand the three rules:P # �P j Q # � P # � � =2 fm;mg(�m)P # �P � Q Q # �P # �Intuitively, P # � holds just if P is a closed process that mayinput or output immediately on barb �. The convergencepredicate P + � holds if P is a closed process that exhibits� after some reactions:P # �P + � P ! Q Q + �P + �We let a test consist of any closed process R and anybarb �. A closed process P passes the test if and only if(P j R) + �. The notion of testing gives rise to a testingequivalence on the set Proc of closed processes:P ' Q �= for any test (R; �),(P j R) + � if and only if (Q j R) + �The idea of testing equivalence comes from the work ofDe Nicola and Hennessy [DH84]. Despite super�cial di�er-ences, we can show that our relation ' is a version of DeNicola and Hennessy's may-testing equivalence. As De Ni-cola and Hennessy have explained, may-testing correspondsto partial correctness (or safety), while must-testing corre-sponds to total correctness. Like much of the security lit-erature, our work focuses on safety properties, hence ourde�nitions.A test neatly formalises the idea of a generic experimentor observation another process (such as an attacker) mightperform on a process, so testing equivalence captures theconcept of equivalence in an arbitrary environment. Onepossible drawback of testing equivalence is that it is sensi-tive to the choice of language [BN95]. However, our resultsappear fairly robust in that they carry over smoothly tosome extensions of our calculus.5 Further Cryptographic PrimitivesAlthough so far we have discussed only shared-key cryptog-raphy, other kinds of cryptography are also easy to treatwithin the spi calculus. In this section we show how to han-dle cryptographic hashing, public-key encryption, and digi-tal signatures. We add syntax for these operations to the spicalculus and give their semantics. We thus provide evidencethat our ideas are applicable to a wide range of securityprotocols, beyond those that rely on shared-key encryption.

We believe that we may be able to deal similarly with Di�e-Hellman techniques and with secret sharing. However, pro-tocols for oblivious transfer and for zero-knowledge proofs,for example, are probably beyond the scope of our approach.5.1 HashingA cryptographic hash function has the properties that itis very expensive to recover an input from its image or to�nd two inputs with the same image. Functions such asSHA and RIPE-MD are generally believed to have theseproperties [Sch94].When we represent hash functions in the spi calculus,we pretend that operations that are very expensive are alto-gether impossible. We simply add a construct to the syntaxof terms of the spi calculus:L;M;N ::= terms: : : as in Section 3.1H(M) hashingThe syntax of processes is unchanged. Intuitively, H(M)represents the hash of M . The absence of a construct for re-coveringM from H(M) corresponds to the assumption thatH cannot be inverted. The lack of any equations H(M) =H(M 0) corresponds to the assumption that H is free of col-lisions.5.2 Public-Key Encryption and DigitalSignaturesTraditional public-key encryption systems are based on keypairs. Normally, one of the keys in each pair is private to oneprincipal, while the other key is public. Any principal canencrypt a message using the public key; only a principal thathas the private key can then decrypt the message [DH76,RSA78].We assume that neither key can be recovered from theother. We could just as easily deal with the case where thepublic key can be derived from the private one. Much asin Section 3.1, we also assume that the only way to decryptan encrypted packet is to know the corresponding privatekey; that an encrypted packet does not reveal the publickey that was used to encrypt it; and that there is su�cientredundancy in messages so that the decryption algorithmcan detect whether a ciphertext was encrypted with the ex-pected public key.We arrive at the following syntax for the spi calculuswith public-key encryption. (This syntax is concise, ratherthan memorable.)L;M;N ::= terms: : : as in Section 3.1M+ public partM� private partf[M]gN public-key encryptionP;Q ::= processes: : : as in Section 3.1case L of f[x]gN in P decryptionIf M represents a key pair, then M+ represents its publichalf and M� represents its private half. Given a public keyN , the term f[M]gN represents the result of the public-keyencryption of M with N . In case L of f[x]gN in P , the

variable x is bound in P . This construct is useful when Nis a private key K�; then it binds x to the M such thatf[M]gK+ is L, if such an M exists.It is also common to use key pairs for digital signatures.Private keys are used for signing, while public keys are usedfor checking signatures. We can represent digital signaturesthrough the following extended syntax:L;M;N ::= terms: : : as above[fMg]N private-key signatureP;Q ::= processes: : : as abovecase N of [fxg]M in P signature checkGiven a private keyN , the term [fMg]N represents the resultof the signature ofM with N . Again, the variable x is boundin P in the construct case N of [fxg]M in P . This constructis dual to case L of f[x]gN in P . The new construct isuseful when N is a public key K+; then it binds x to the Msuch that [fMg]K� is L, if such an M exists. (Thus, we areassuming thatM can be recovered from the result of signingit; but there is no di�culty in dropping this assumption.)Formally, the semantics of the new constructs is capturedwith two new rules for the reduction relation:case f[M]gN+ of f[x]gN� in P > P [M=x]case [fMg]N� of [fxg]N+ in P > P [M=x]As a small example, we can write the following public-key analogue for the protocol of Section 3.2.1:A(M) �= cABhf[M; [fH(M)g]K�A]gK+B iB �= cAB(x):case x of f[y]gK�B inlet (y1; y2) = y incase y2 of [fzg]K+A in[H(y1) is z] F (y1)Inst(M) �= (�KA)(�KB)(A(M) j B)In this protocol, A sends M on the channel cAB , signedwith A's private key and encrypted under B's public key;the signature is applied to a hash of M rather than to Mitself. On receipt of a message on cAB , B decrypts usingits private key, checks A's signature using A's public key,checks the hash, and applies F to the body of the message(to M). The key pairs KA and KB are restricted; but therewould be no harm in sending their public parts K+A and K+Bon a public channel.Undoubtedly, other formalisations of public-key cryptog-raphy are possible, perhaps even desirable. In particular, wehave represented cryptographic operations at an abstractlevel, and do not attempt to model closely the properties ofany one algorithm. We are concerned with public-key en-cryption and digital signatures in general rather than withtheir RSA implementations, say. The RSA system satis�esequations that our formalisation does not capture. For ex-ample, in the RSA system, [ff[M]gK+ g]K� equals M . Weleave the treatment of those equations for future work.6 ConclusionsWe have applied both the standard pi calculus and the newspi calculus in the description and analysis of security proto-cols. We showed how to represent protocols and how to ex-press their security properties. Our model of protocols takes

into account the possibility of attacks, but does not requirewriting explicit speci�cations for an attacker. In particu-lar, we express secrecy properties as simple equations thatmean indistinguishability from the point of view of an arbi-trary attacker. To our knowledge, this sharp treatment ofattacks has not been previously possible.As examples, we chose protocols of the sort commonlyfound in the authentication literature. Although our exam-ples are small, we have found them instructive and encour-aging. In particular, there seems to be no fundamental dif-�culty in writing other kinds of examples, such as protocolsfor electronic commerce. Unfortunately, the speci�cationsfor those protocols do not yet seem to be fully understood,even in informal terms [Mao96].In both the pi calculus and the spi calculus, restrictionand scope extrusion play a central role. The pi calculusprovides an abstract treatment of channels, while the spicalculus expresses the cryptographic operations that usu-ally underlie channels in systems for distributed security.Thus, the pi calculus and the spi calculus are appropriateat di�erent levels. Still, it should be possible and useful torelate those levels, enabling the formal development of cryp-tographic protocols from non-cryptographic speci�cations.AcknowledgementsPeter Sewell and Phil Wadler suggested improvements to adraft of this paper.References[ABLP93] M. Abadi, M. Burrows, B. Lampson, andG. Plotkin. A calculus for access control in dis-tributed systems. ACM Transactions on Pro-gramming Languages and Systems, 15(4):706{734, 1993.[AN96] M. Abadi and R. Needham. Prudent engineer-ing practice for cryptographic protocols. IEEETransactions on Software Engineering, 22(1):6{15, January 1996.[BAN89] M. Burrows, M. Abadi, and R. M. Needham. Alogic of authentication. Proceedings of the RoyalSociety of London A, 426:233{271, 1989. Apreliminary version appeared as Digital Equip-ment Corporation Systems Research Center re-port No. 39, February 1989.[BB90] G. Berry and G. Boudol. The chemical abstractmachine. In Conference Record of the Seven-teenth ACM Symposium on Principles of Pro-gramming Languages, pages 81{94, 1990.[BN95] M. Boreale and R. De Nicola. Testing equiv-alence for mobile processes. Information andComputation, 120(2):279{303, August 1995.[BR95] M. Bellare and P. Rogaway. Provably securesession key distribution: The three party case.In Proceedings of the 27th Annual ACM Sympo-sium on Theory of Computing, 1995.[DES77] Data encryption standard. Fed. Inform. Pro-cessing Standards Pub. 46, National Bureau ofStandards, Washington DC, January 1977.

[DH76] W. Di�e and M. Hellman. New directions incryptography. IEEE Transactions on Informa-tion Theory, IT-22(6):644{654, November 1976.[DH84] R. De Nicola and M. C. B. Hennessy. Test-ing equivalences for processes. Theoretical Com-puter Science, 34:83{133, 1984.[DY81] D. Dolev and A. C. Yao. On the security ofpublic key protocols. In Proc. 22th IEEE Sym-posium on Foundations of Computer Science,pages 350{357, 1981.[GM95] J. Gray and J. McLean. Using temporal logicto specify and verify cryptographic protocols(progress report). In Proceedings of the 8thIEEE Computer Security Foundations Work-shop, pages 108{116, 1995.[Hoa85] C. A. R. Hoare. Communicating Sequential Pro-cesses. Prentice-Hall International, 1985.[Kem89] R. A. Kemmerer. Analyzing encryption proto-cols using formal veri�cation techniques. IEEEJournal on Selected Areas in Communications,7, 1989.[LABW92] B. Lampson, M. Abadi, M. Burrows, andE. Wobber. Authentication in distributed sys-tems: Theory and practice. ACM Transactionson Computer Systems, 10(4):265{310, Novem-ber 1992.[Lie93] A. Liebl. Authentication in distributed systems:A bibliography. ACM Operating Systems Re-view, 27(4):31{41, 1993.[Low96] G. Lowe. Breaking and �xing the Needham-Schroeder public-key protocol using FDR. InTools and Algorithms for the Construction andAnalysis of Systems, volume 1055 of LectureNotes in Computer Science, pages 147{166.Springer Verlag, 1996.[Mao96] W. Mao. On two proposals for on-line bankcardpayments using open networks: Problems andsolutions. In IEEE Symposium on Security andPrivacy, pages 201{210, 1996.[MCF87] J. K. Millen, S. C. Clark, and S. B. Freed-man. The Interrogator: Protocol security anal-ysis. IEEE Transactions on Software Engineer-ing, SE-13(2):274{288, February 1987.[Mea92] C. Meadows. Applying formal methods to theanalysis of a key management protocol. Journalof Computer Security, 1(1):5{36, 1992.[Mil89] R. Milner. Communication and Concurrency.Prentice-Hall International, 1989.[Mil92] R. Milner. Functions as processes. Mathemati-cal Structures in Computer Science, 2:119{141,1992.[Mil95] J. K. Millen. The Interrogator model. In IEEESymposium on Security and Privacy, pages 251{260, 1995.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calcu-lus of mobile processes, parts I and II. Informa-tion and Computation, pages 1{40 and 41{77,September 1992.[NS78] R. M. Needham and M. D. Schroeder. Usingencryption for authentication in large networksof computers. Communications of the ACM,21(12):993{999, December 1978.[RSA78] R. L. Rivest, A. Shamir, and L. Adleman.A method for obtaining digital signatures andpublic-key cryptosystems. Communications ofthe ACM, 21(2):120{126, February 1978.[Sch94] B. Schneier. Applied Cryptography: Protocols,Algorithms, and Source Code in C. John Wiley& Sons, Inc., 1994.[Sch96] S. Schneider. Security properties and CSP.In IEEE Symposium on Security and Privacy,pages 174{187, 1996.

