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ABSTRACT

In addition to the problem of which image analysis mod-
els to use in digital libraries, e.g. wavelet, Wold, color his-
tograms, is the problem of how to combine these models
with their different strengths. Most present systems place
the burden of combination on the user, e.g. the user speci-
fies 50% texture features, 20% color features, etc. This is a
problem since most users do not know how to best pick the
settings for the given data and search problem. This paper
addresses this problem, describing research in progress for
a system that (1) automatically infers which combination
of models best represents the data of interest to the user
and (2) learns continuously during interaction with each
user. In particular, these two components – inference and
learning – provide a solution that adapts to the subjective
and hard-to-predict behaviors frequently seen when people
query or browse image libraries.

1. INTRODUCTION

The earliest systems designed for image retrieval (see [1] for
several descriptions) and those that have become commer-
cially available, tend to follow a basic paradigm: (1) pre-
compute features or model parameters for each image, (2)
have the user specify which models or ranges of parameters
are most important, and (3) have the user select example
images to initiate a query. The system then compares the
user’s query information with all the stored information,
and retrieves images it thinks are “similar” according to
the constraints specified during step (2).

This basic paradigm is useful in limited data sets and
search problems, provided that the user is an expert in how
the underlying image similarity processing works. How-
ever, it is not suitable for general use. The average person
looking for images does not know how to choose model pa-
rameters as required in step (2). Moreover, as combinations
of models (e.g. multiple color and texture models) become
available, the choice of parameters is non-intuitive even for
the expert image processing researcher. In short, new im-
age analysis tools are needed that perform model selection
and combination. Ideally, the tools work rapidly, so the
user can iterate interactively with the system, refining his
or her request online.

Additionally, a user should be allowed to be subjective
– to give, over time, the same set of imagery different la-
bels, or to give the same labels to different content, e.g. to
the category of images “they like.” It is desirable that the
system be able to adapt itself continuously to the changing
requests of the user, e.g. to learn how to model mappings
between the image data and its labels based on changing
feedback from the user.

One of the most challenging test scenarios is when the
desired image contents are hard to describe objectively. In
the solutions we are researching, the users do not have to
select model parameters, but simply choose example images
that they like. Fig. 1 illustrates a case of two users trying
to find more images they like in a Picasso art database
of 320 paintings. Each user selects a few example images,
then the system analyzes the characteristics of the examples
and retrieves other similar images from the database. The
burden is on the system to infer how to measure similarity.

In the figure, User 1 gives two examples of textured,
cubist paintings of different colors. The system infers that
color is not relevant, and searches for images with similar
texture (using a multiscale simultaneous autoregressive tex-
ture model from [2]). User 2 also gives two examples. The
first image is identical to that of user 1, but the second
has a different texture and the same color. In this case,
the system determines that color is important and retrieves
other images with similar colors (using Euclidean distances
on 256-bucket color histograms from the decorrelating color
space of [3]). The browser can also combine texture and
color for one query, or choose combinations of other avail-
able similarity models. To refine the query results, the user
simply gives additional examples. This is called “relevance
feedback” in the information retrieval community.

It is important to note that modeling subjectivity is
an objective problem. The labelings or categories chosen
by subjective users result in objective groupings of data
over which the performance of the system can be tested
objectively.

The next section describes a method of inference for
models and their combination. Sec. 3 describes our research
on a learning algorithm that addresses the problem of gen-
eralization, i.e. taking knowledge learned from one problem
and using it to solve another.

2. MODEL INFERENCE AND COMBINATION

For years many researchers (including the authors) have
assumed that there would be “one best” model for solving
the problem of perceptual similarity, or image similarity.
Working in the area of content-based image retrieval has
changed our thinking in this regard. Although there are
searches on limited domains where one model may always
be best, in general we think the one-model solution will be
too brittle, and a relatively small set of models (less than a
dozen) will give the best performance.

Of course, which models these should be remains de-
pendent on the data and what is to be done with it. In
the Picasso example above, the particular texture model is
good at grouping some of Picasso’s cubist paintings, but
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Figure 1: Different users select different positive examples for the category “favorite Picasso images.” Image analysis aims
to infer underlying features common to the user-defined category, and then use these features to predict other images of
interest to the user. The inference is always based on the present set of positive and negative examples given by a user.

poor at grouping portraits. Another model, or combination
of models, might perform better still.

With no claims of starting with the best models, but
with evidence that combining suboptimal ones can outper-
form a single one [4], we describe the following method for
making combinations which can improve joint performance.

We have explored many ways for combining models. Ini-
tially, we considered direct linear combinations of model fea-
tures – the traditional approach. However, concatenating
model features causes an exponential growth in the space
used to represent the data, and has a variety of other prob-
lems, especially the problem when features from one model
are of a different scale than features from another model,
and simple re-scaling of them destroys their discrimination
properties [5]. To date, the most successful combination
method we have found (for avoiding the scaling and dimen-
sionality problems, and for running in interactive time) is
based on quantization of the feature spaces followed by a
learning algorithm, such as set cover [4].

The model features or parameters are used only initially
during quantization, which is represented as hierarchical
trees. (The trees provide an organization of the data which
may also be interesting for the user to browse.) The use of
trees provides not only a searching efficiency advantage, but
also takes care of the problem that there are “many ways to
segment an image.” People group image contents differently
– that is a manifestation of subjectivity and of differing
goals. With the tree representation, different segmentations
can be made by simply choosing a different partition of

the nodes. The hierarchical trees are representations that
make segmentations, as opposed to a representation that is
a fixed segmentation. Once the user is in the system loop,
the system can decide which of its possible segmentations
best suits the user’s desires.

Once the trees are constructed, the similarity problem
changes from one of metric distances on image features to
one of distances in a hierarchy-induced metric. Different
model parameter ranges and dimensionalities cease to be
an issue. The set-cover combination method then proceeds
by looking for the simplest set of nodes that covers all the
user’s positive examples and none of their negative exam-
ples. Additional criteria can also be added depending on
the domain, and performance can be improved by adding
the ability to learn these criteria. (See [4] for details.)

An example of using this method, starting with three
models (and a database of only six elements) is shown in
Fig. 2.

The inference method presently acts on both positive
and negative examples. A limitation is that the user cannot
yet give feedback such as, “I don’t like this particular spatial
arrangement of these colors.” This is an area for continued
development.

The current inference/combination method processes
about 5 examples per CPU second on an HP 735/99 us-
ing a database with thousands of leaf elements and about
a half dozen models. Details on its complexity are in [4].
While we generally don’t like to impose speed requirements
on research algorithms, the ability to perform model selec-
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Figure 2: Method for combining multiple models. Each model constructs a tree of possible segmentations. The user provides
examples: (a, b, c, d are positive, e is negative.) The system chooses tree nodes which most efficiently describe the positives
and not the negatives, resulting in the two groupings shown (shaded). The result is a combination of color and texture to
characterize the user’s examples. Note that example f is inferred as being of interest to the user.

tion interactively is a benefit in a retrieval system, where
the formulation of a query is well-suited to an iterative pro-
cess of providing a few examples, seeing what is retrieved,
modifying the example set, and so forth. This ability obvi-
ates the need for the user to “think of everything” before
posing a query. In reality, users often modify what they
want after seeing more of the database.

3. LEARNING AND GENERALIZATION –
MODELING SUBJECTIVITY

After you show somebody how to do something, and you
indicate that they are doing it to your satisfaction, you as-
sume they have “learned” this problem, and will remember
its solution (within reason) if they confront it again. Most
current retrieval systems, however, have no such memory.
When people repeatedly ask similar queries of them, the
system appears to be “stupid” because it doesn’t learn.

Therefore, on top of the set-covering algorithm, we’ve
added a dynamic bias. The bias of a learner is defined to
be any basis for choosing one generalization over another,
other than strict consistency with the training examples
[7]. Having the right bias is crucial to successful learning,
especially when a small number of examples (as desired in
an interactive setting) leaves open many possible solutions.
The “FourEyes” browser improves its bias over time [4].
When the system sees a problem similar to one it has seen
before, it automatically switches to the bias that it learned
for that problem. When it sees a significantly new problem,
FourEyes learns a new bias. It therefore behaves differently
over time, depending on what it has been exposed to.

FourEyes has three stages that learn at different rates,
from interactive-speed online learning, to longer-term of-
fline learning, the latter of which is analogous to human
“reflection” or “dreaming” in its abilities to process image
information over a broader scope.

One of the critical tests of a learning system is how well
does it generalize? Traditional image processing has been
concerned with generalization from a training set to a test

set. The problem in image retrieval systems is that the
same test set might have more than one “true” interpre-
tation, depending on what the user wants at the moment
(or what the next user wants, after the system has adapted
to the present user.) The user’s subjectivity, in the form
of changing feedback, creates a signal processing problem
analogous to non-stationary signal detection, where the cat-
egory of signals you are trying to detect, e.g., “images you
like,” may change its signature in time. But they also may
not change. The difficulty is to track the changes, while
preserving performance on the parts that do not change.

The system tracks the changes with online clustering of
the bias, represented as weights on the tree nodes. (These
weights are used in the set-cover process.) Another aspect
of the bias is the shape of the trees, corresponding to the
quantization of the space. This is also learned during inter-
action with the user. (See [4] for details.)

We have applied a test of generalization to FourEyes,
to evaluate how its learning mechanism performs on prob-
lems it hasn’t seen before. Each different “problem” can be
thought of as a labeling in a user’s head – all users label
the same data, but do so differently, or one user may do so
differently over time. A test of FourEyes’ performance on
such a task is shown in Fig. 3.

Fig. 3 simulates ten different learning problems on N =
1008 images in the Brodatz Database. Each problem has
two labeling categories of size 504 images. The ten problems
are similar in that each category is a random merging of
the 112 9-image classes of Brodatz patterns (112 classes x
9 images/class = 1008 images total; 56 classes were merged
to form each category). Although the categories were not
chosen by people, they simulate categories that might have
been chosen by people.

Training on only one problem and testing on that same
problem gives the best performance – the “ideal” points
shown in Fig. 3. Generalization is more challenging – in-
volving training on one problem, and testing on another.

The details of the learner and of this particular general-
ization study are in [4], which also contains additional eval-
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Figure 3: Test of generalization on ten similar problems. The vertical axis is the learning time, measured in terms of how
many examples had to be provided before the problem was solved. The “no training” and “ideal” curves are the results
of running the learner once, and then again on the same problem. The other curves are the result of sequential training –
running on problem 1, then problem 2, etc. They tilt slightly downward to the right, indicating the presence of generalization.

uations. To summarize the results here, the curves above
indicate that the time needed to learn decreases from left
to right, showing that the learner gains performance on the
later problems, even before having seen them. For this eval-
uation, training on the first nine problems is half as good
as training on the tenth by itself.

4. SUMMARY

This paper has highlighted results from our recent research
focusing on image analysis for (1) model inference and com-
bination, and (2) learning for generalization. The underly-
ing premise is that a subjective human is in the loop with
the image analysis and retrieval system. Not only is the
human user unlikely to know how to set all the model pa-
rameters optimally, but his or her subjectivity leads to the
same data needing to be treated in different ways.

A method was described for automatically choosing com-
binations from multiple image models. This releases the
human from the task of adjusting image features or model
parameters. Instead, the human interacts with the system
by providing a stream of positive and negative examples.

An example was provided of a learning system with the
ability to generalize what it has learned across new prob-
lems. This is intended to simulate training after interacting
with one user, and then having to perform well while work-
ing with another user or with the same user who is behaving
differently over time. To a user, this behavior would make
the system appear “smarter and faster” with increasing use.
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