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Abstract – DiSOM is a software-based distributed shared
memory (DSM) system, which supports intra- and inter-
application sharing in heterogeneous networks of multiprocessor
workstations. Unlike previous DSM systems, DiSOM provides
fine-grained control over communication while retaining a simple
shared memory model. It achieves this by using an update-based
implementation of entry consistency, semaphores, remote object
invocation, dynamic decomposition of objects and object-oriented
language mechanisms. These techniques allow programmers to
exploit application-specific knowledge to improve performance.
A comparison between DiSOM and TreadMarks, a state-of-the-
art DSM system, shows that on average DiSOM executes 33%
faster, and sends 69% fewer messages and 38% less data.

INTRODUCTION

Distributed shared memory (DSM) systems [14, 10, 16, 9,
7, 4] offer the abstraction of a centralized memory that is shared by
all the processors in a distributed system. This abstraction sim-
plifies programming because it makes communication implicit.
However, communication is frequently the main performance
bottleneck in parallel applications, and the abstraction creates
a barrier that prevents the programmer from taking advantage of
application-specific knowledge to optimize communication.

DiSOM is a software-based DSM system, which supports
intra- and inter-application sharing in heterogeneous networks of
multiprocessor workstations. Unlike previous DSM systems, Di-
SOM provides fine-grained control over communication. It allows
programmers to take advantage of application-specific knowledge
to improve performance, and still benefit from the use of a simple
shared memory programming model.

DiSOM offers a programming model where concurrent
threads synchronize explicitly and communicate by executing
operations on shared objects. The objects are kept consistent
according to a variant of the entry consistency [3] memory model.
This model requires shared objects to be explicitly associated with
synchronization objects; and consistency is guaranteed as long as
an access to a shared object is enclosed between an acquire and
a release on a synchronization object associated with the shared
object.

DiSOM implements entry consistency using an update pro-
tocol which piggy-backs all consistency messages on the synchro-
nization protocol messages. Thus it ensures that communication
occurs only when threads synchronize, allowing the programmer
to control when to communicate.

When communication occurs, the implementation transfers
only updates to the shared objects associated with the synchro-
nization object. Therefore, the programmer can choose which
data to transfer by controlling the association between shared
data objects and synchronization objects. However, data objects
are not always a convenient unit of synchronization and commu-
nication. DiSOM addresses this problem by providing a region
mechanism that allows the programmer to dynamically associate
regions of a data object with a synchronization object.

DiSOM uses object-oriented inheritance to allow program-
mers to customize system mechanisms and control communica-
tion at an even finer granularity. For example, each class can
redefine the operations that are executed by the system when
marshaling and unmarshaling its instances. The lower layers of
the system are structured as a toolkit that ensures customization
involves a minimum programming effort.

Barriers are a popular synchronization primitive in parallel
programs. However, they typically over-synchronize cooperat-
ing threads and they can lead to the transmission of more data
than needed. As an alternative, DiSOM offers an implementa-
tion of binary semaphores, optimized to support communication
between one producer and several consumers in a distributed sys-
tem. Semaphores provide the programmer with additional control
over synchronization and communication. The performance re-
sults in the evaluation section show that semaphores can be used
to improve performance over a barrier-based implementation.

DiSOM also offers a remote object invocation mechanism
consistently integrated with the memory coherence protocol. This
allows programmers to choose between function-shipping and
data-shipping communication. This mechanism can be used to
reduce the number of messages sent and the amount of data trans-
ferred, as shown in the evaluation section.

This paper compares the performance and programming
complexity of DiSOM and TreadMarks [7], a state-of-the-art dis-
tributed shared memory system that implements lazy release con-
sistency. The measurements were obtained by running the same
set of applications both on DiSOM and on TreadMarks on the
same cluster of workstations. The results show that on average
DiSOM executes 33% faster, and sends 69% fewer messages and
38% less data. The improved performance comes at the expense
of a slight increase in programming complexity.

The rest of the paper is organized as follows. First, we
discuss related work. Next, we describe the programming model
and its implementation. Later, we evaluate the performance and
programmability of DiSOM.



RELATED WORK

The first software distributed shared memory systems [14,
10, 16, 9] used pages or coarse-grained segments as the unit of
coherence, and had a sequential consistency[13] memory model.

A second generation of DSM systems explored relaxed
memory consistency models to improve performance. Munin [4]
provided a software implementation of release consistency [6] and
TreadMarks introduced lazy release consistency [7]. In both these
systems the unit of coherence is a virtual memory page and they
support concurrent writers on the same coherence unit. Tread-
Marks uses an invalidate protocol: when a process executes an
acquire it receives a notification with all the pages that have been
modified and invalidates those pages. At page fault time, the pro-
cess requests all the modifications made on the page, incorporates
them on its copy of the page and unprotects the page. Processes
maintain an original copy of each page they modify and compare
the original copy to the modified page to determine which words
were updated. Only those words are sent to a process requesting
modifications to a page.

In TreadMarks, the programmer cannot control when com-
munication occurs, because each cache miss involves communi-
cation; and cannot control what data is transferred, because the
system automatically determines which data to transmit based on
the access history. This causes the system to frequently send more
messages and data than needed.

Midway [3] introduced the entry consistency memory
model, implemented it using an update protocol, and made some
preliminary comparisons with eager release consistency. This
paper presents one of the first two comparison studies between
an entry consistency based system and a lazy release consistency
based system. The other study [8] compared TreadMarks with
a system very similar to Midway, and concluded that there was
no clear winner in terms of performance. Our study shows that
DiSOM has significantly better performance than TreadMarks.
The reason for this apparent contradiction is that, unlike Midway,
DiSOM uses semaphores, remote object invocation and object-
oriented language techniques to provide programmers with further
control over communication.

Orca [2] and SAM [17] use objects as the unit of mem-
ory consistency like DiSOM. Orca uses compile time analysis
to decide whether or not to replicate an object. Objects that are
not replicated are accessed using remote procedure calls. Repli-
cated objects have copies in all the processors in the system; read
operations involve no communication; and write operations are
broadcast to all the processors using a function shipping policy.
DiSOM uses communication resources more efficiently and pro-
vides finer-grained control over communication. SAM allows
programmers to choose between two consistency protocols op-
timized for different sharing patterns. Both of SAM’s protocols
can be emulated by DiSOM, and DiSOM’s programming model is
closer to the models offered by shared memory multiprocessors.

PROGRAMMING MODEL

The basic abstractions in DiSOM’s programming model are
objects and threads. Objects have a state composed of a set of
fields and export a set of operations. Objects exist in an address

space shared by all threads. Threads are active entities that syn-
chronize explicitly and communicate by sharing objects. DiSOM
offers three classes of synchronization objects, whose interfaces
are summarized in table 1: the class EcObject implements read-
write locks, the class EcBarrier implements barriers and the class
EcSemaphore implements a variant of binary semaphores.

Table 1: Synchronization interfaces.

EcObject::acqWrite() Acquire for writing
EcObject::relWrite() Release from writing
EcObject::acqRead() Aquire for reading
EcObject::relRead() Release from reading
EcBarrier::wait() Wait in barrier
EcSemaphore::wait() Wait in semaphore
EcSemaphore::signal() Signal semaphore
EcSemaphore::enroll() Associate thread/semaphore
EcSemaphore::unroll() Dissociate thread/semaphore

The objects in the EcObject class also define remote read
and write operations. Executing a remote read operation on an ob-
ject is semantically equivalent to forking and joining a thread that
executes acqRead followed by the operation, and followed by
relRead. A similar definition holds for remote write operations.
These operations allow the programmer to access objects using a
function-shipping policy instead of the usual data-shipping policy.

Each semaphore ����� has a set of associated threads,
������� �	��
���
���� . In order to receive signal notifications, threads
must associate themselves to the semaphore by calling enroll.
When a thread signals ����� , that signal is memorized by each
thread in ������� ����
���
���� by setting a per-thread boolean variable.
A wait operation completes when the boolean variable of the
thread executing the operation is true, and it resets the boolean
variable.

DiSOM uses the synchronization operations to drive the
memory consistency protocol that implements the entry consis-
tency [3] memory model. The memory consistency model is best
described as a contract between the system and the application
program. The contract specifies that programs must use synchro-
nization operations to order all conflicting accesses (two accesses
conflict if they are issued by different threads, access the same
memory word, and at least one of them is a write). If a program
satisfies this contract then the system guarantees that memory
appears to be sequentially consistent [13].

The main difference between entry consistency and other
weak consistency models, like weak and release consistency
[1, 6, 12], is that in entry consistency each synchronization object
� has a set of explicitly associated objects, ��� 
�����������
������ , and
the operations executed on � only order accesses to objects in
��� 
�����������
��	��� . In other weak consistency models this relation is
implicit, and synchronization operations order accesses to arbi-
trary objects. This restriction complicates programming but it can
be used to reduce the amount of data that needs to be exchanged
to ensure consistency; only the modified state of the objects in
��� 
�����������
��	��� needs to be exchanged. Another important differ-
ence is that, in order to update an object, a thread must acquire
for writing a read-write lock associated with the object.



In DiSOM, all shared objects are instances of classes de-
rived from EcObject and, therefore, have an implicitly associated
read-write lock. The EcBarrier and EcSemaphore classes offer
the methodsaddObject andremoveObject, which allow the
programmer to dynamically associate shared objects with barriers
and semaphores.

The implicit association between a shared object and a syn-
chronization object is a convenient model in an object-oriented
programming environment because the object corresponds to a
logical unit of data decomposition within the program, as op-
posed to a fixed size page. However, we frequently found that
the object is ill-suited as the unit of synchronization because sev-
eral portions of the object are independently shared. Since in
our implementation the unit of synchronization is also the unit
of communication, associating a synchronization object with a
large object may also lead to the transmission of more data than
required. The most common example of this problem is that of
a large matrix where groups of lines or rows are independently
shared. One solution to this problem is to force the programmer to
statically decompose the matrix into objects that are independently
shared [2, 17]. However, decomposing an object to achieve this
goal frequently requires a significant programming effort, does
not adapt to dynamic changes in the sharing patterns, and can
lead to poor performance.

DiSOM handles the problem by allowing programmers to
dynamically decompose an object into regions, i.e. subsets of
fields. Regions are instances of EcRegion which is a subclass of
EcObject. As for other objects, the system ensures consistency
for regions provided the program synchronizes adequately, either
using the region as a read-write lock or associated with other
synchronization constructs.

The example in Figure 1 illustrates some important aspects
of DiSOM’s programming model. The program computes the
product

�
of two matrices � and � , assigning a different stripe

of
�

to each thread. A program in DiSOM starts its execution
in function Main. In this case it creates the matrix multiplication
application and forks a thread on each processor executing the
application’s method entry. The application’s constructor cre-
ates the matrices and the synchronization objects, and associates
each stripe of � with an element in stripesA. The method entry
acquires the relevant parts of matrices � and � for reading; as-
sociates the stripe of matrix

�
to barrier done; and performs the

multiplication.
The association between matrices � and

�
, and the corre-

sponding synchronization objects is performed with a MatrixRe-
gion object (MatrixRegion derives from EcRegion). The con-
structor of this class receives as arguments the matrix where the
region is defined, the line where the region starts, and the number
of elements in the region. It can optionally receive a stride.

IMPLEMENTATION

The programming model described in the previous sec-
tion is implemented as a C++ class library that works on several
UNIX variants. This section describes the implementation of
the class library. It starts by discussing our approach to provide a
shared address space and support heterogeneity. Then it describes
the algorithm we use to implement the read-write locks that are

int Main(int argc, char **argv) �
// allocate processors and multiply application
Processors *p = new Processors(N);
MatrixMultiply *app = new MatrixMultiply();

app- � start(p); // start threads

// done, deallocate application and processors
delete app;
delete procs;�

class MatrixMultiply : public Application �
Matrix *A, *B, *C;
EcBarrier *done;
Array � MatrixRegion* � stripesA;

public:
MatrixMultiply(void) : stripesA(N) �

// create matrices and synchronization objects
A = new Matrix(N, N);
B = new Matrix(N, N);
C = new Matrix(N, N);
done = new EcBarrier(N);

// associate the locks to the stripes of A
for (i=0; i � N; i++)

stripesA[i] = new MatrixRegion(A,i,N);�

virtual int entry(int id) �
// acquire A and B
stripesA[id]- � acqRead();
B- � acqRead();

// associate the stripe of C to the barrier
done- � addObject(new MatrixRegion(C,id,N));

// multiply the block
for (int i=id; i � id+1; i++)

for (int j=0; j � N; j++) �
(*C)(i,j) = 0.0;
for (int k=0; k � N; k++)

(*C)(i,j) += (*A)(i,k) * (*B)(k,j);�

// release A and B
B- � relRead();
stripesA[id]- � relRead();

// wait for the others and send the results
done- � wait();�

�
;

Figure 1: Programming example.



the basis of the EcObject class. The remote object invocation
mechanism is integrated with the read-write lock algorithm and
is described next. Later, we describe the implementation of the
region mechanism, followed by a description of the implementa-
tion of semaphores and barriers. Finally, we discuss the hooks
provided by DiSOM to allow programmers to customize system
mechanisms.

The system is running on a cluster composed of several
SPARCstation 10, i486 PC and DEC Alpha and a shared-memory
multiprocessor Sun SPARCcenter 2000 with 10 processors. It
provides source code portability across all platforms and takes
advantage of the hardware shared memory on the SPARCcenter.

In the following description, the cluster is modeled as a
set of processes with private memories which communicate ex-
clusively by exchanging messages. Several threads may execute
in each process. The communication channels between the pro-
cesses are assumed to be reliable and FIFO. We assume no process
failures in this paper. In a previous paper [15], we described a
checkpointing protocol that allows DiSOM to support single fail-
ures efficiently.

Shared Address Space

Most distributed shared memory systems achieve uniform
naming by mapping each shared data item to the same virtual
memory address in each process. This technique cannot support a
shared address space spanning heterogeneous architectures with-
out incurring the overhead of address translation. Furthermore,
existing systems that use this technique coordinate address space
layout only within a single application and therefore fail to support
inter-application sharing.

Since DiSOM supports sharing across different architec-
tures, it uses a form of pointer swizzling [19] to achieve uniform
object naming across different processes. The system assigns a
global identifier to each shared object and automatically converts
between the language level reference and the global identifier
when the reference is exchanged in a message. DiSOM uses both
the IP address of the machine where the process is running and
the TCP/IP port of the process to make the object identifiers glob-
ally unique. Note that the identifiers will be globally unique even
across different applications.

Our swizzling scheme is a form of node marking [11], i.e.
when the memory consistency protocol brings an object’s state
into the address space of a process, all the references in the object
are converted. Since the programming model requires explicit
insertion of synchronization operations and explicit association
of data to synchronization objects, those operations are used to
detect non-resident objects, avoiding more expensive checking
mechanisms. Our scheme is also a form of direct swizzling, i.e.,
global names are swizzled directly into pointers to objects. A
context importing a given reference for the first time allocates
space for the object and converts the global identifier into the
pointer to the allocated copy. The copy is created using a class
identifier that travels with the object’s global identifier.

Heterogeneity

In order to perform data representation conversions when

the state of an object is transferred between two processes of dif-
ferent architectures, the system must determine the type of the
object at run-time. In DiSOM each object class defines a pack
and an unpack method. These methods handle marshaling and
unmarshaling of the object state and perform the needed conver-
sions. This simple technique has been used by several object
based distributed systems, for example Argus [5]. Conversions
are performed using an external data representation policy that
avoids the conversion when communicating processes have the
same architecture.

Distributed Read-Write Locks

The distributed read-write lock algorithm implemented by
the EcObject class is a variant of Li’s dynamic distributed man-
ager with distributed copy sets [14]. Li used this algorithm to
keep memory coherent. We modified it to implement concurrent
read/exclusive write synchronization of multiple threads running
in multiple processes in a distributed system.

The algorithm associates two types of tokens with each
lock, the write token and the read token. A process must hold the
write token for one of its threads to perform an acqWrite. An
acqRead will complete if the process holds a read token. The
algorithm ensures that either exactly one process holds a write
token and no read tokens exist; or one or more processes hold
read tokens concurrently and no write token exists. This invariant
enforces concurrent read exclusive write semantics.

Each lock has an associated owner that changes dynami-
cally. The owner is either the process holding the write token or
the last process to hold a write token. Each process maintains
a forwarding pointer which points to the process it believes is
the lock owner. A process also keeps a set of token holders that
records the set of processes holding a read token received from
that process.

Processes cache tokens and can re-acquire locks locally
as long as their token is not invalidated. The algorithm sends a
token request message when a thread calls acqWrite or acqRead
and the enclosing process does not hold the needed token. The
message is sent along the forwarding pointer chain and the thread
blocks waiting for the reply. A write token can only be obtained
from the owner process, but a read token can be obtained from any
process holding a read token. Therefore, forwarding stops when
the message reaches the owner or a process holding a read token.
If the message reaches a process requesting a token for the same
lock, forwarding is suspended until the local request is satisfied.
This reduces the number of messages and provides better fairness
guarantees.

When a process receives a request for a write token that it
holds, it waits until the lock is released by all of its threads, and
then it replies with a message transferring the write token and
the token holders set to the requester. The owner then sets the
forwarding pointer to point to the requester. When the requester
receives the reply it merges the set of token holders in the reply
with its own set. Then it sends messages to all the processes in
the merged set of token holders, invalidating their read tokens,
and waits for the replies. A process receiving an invalidate mes-
sage will also send invalidate messages to the processes in its
set of token holders. Thus invalidation of read tokens proceeds



in a distributed divide and conquer fashion. The processes that
receive invalidation messages wait until local threads release the
lock before replying. The invalidate message includes the iden-
tifier of the new owner that is used to set the forwarding pointer
accordingly.

When a read token holder receives a request for a read
token, the requesting process is inserted in the set of token holders,
and a reply is sent to it. The reply includes the read token and
the forwarding pointer. Thus all readers have their forwarding
pointers set correctly. If the owner receives a read token request
and it holds a write token, it proceeds as above but first converts
its write token into a read token.

DiSOM implements entry consistency on top of the read-
write locks using an update protocol that piggy-backs the object
state in the token transfer messages. The read-write lock imple-
mentation calls the pack and unpack methods to marshal and
unmarshal the object state into the token transfer messages. The
update protocol provides programmers with a simple model, en-
suring that communication only occurs at acquires.

Remote Object Invocation

The system supports synchronous remote read and write
operations together with the algorithm described in the previous
section. Thus it allows programmers to choose between function-
shipping and data-shipping style communication. Remote opera-
tions can be used to reduce both the number of messages and the
amount of data transferred as shown in the evaluation section.

The remote operations are implemented as a remote object
invocation on top of the read-write lock protocol. When a re-
mote operation is invoked on an object of the EcObject class, a
message describing the operation and its arguments is sent along
the forwarding pointer chain. In the case of a read operation,
forwarding stops whenever a process with a read or write token
is found, and the operation is executed by a thread in that process
bracketed by an acqRead and a relRead pair. In the case of a
write operation, forwarding stops only at the owner of the invoked
object, and the operation is executed by a thread in that process
bracketed by an acqWrite and a relWrite pair. The reply is sent
directly to the invoking thread. This simple implementation en-
sures that remote operations always observe a consistent state and
explores read replication for efficiency.

Regions

Regions allow programmers to decompose objects dynam-
ically without impacting the performance of accesses to decom-
posed objects. They provide a level of indirection that allows
programs to use the most efficient memory layout for their data.
Regions allow programmers to choose a data layout independently
of the parallelization model, the number of processors used, or
how the work is distributed among processors.

Regions are instances of EcRegion which is a subclass of
EcObject. The instance variables of regions are a reference to the
decomposed object and some additional information describing
the region. When the state of a region is sent in a message to
another process, e.g. when an acquire is executed on the region,
the additional information is passed to the decomposed object,

which packs the portion of its state corresponding to the region
into the message. Similarly, when the region is received in the
remote process, the additional information is passed to the local
replica of the decomposed object, that unpacks the data in the
message into the memory locations corresponding to the abstract
region.

Semaphores and Barriers

The semaphore implementation attempts to hide network
latency by pushing new data asynchronously, and allowing pro-
grams to overlap communication and computation. It keeps a set
with the identities of the associated threads and a boolean variable
for each of the elements in the set. The boolean variable is kept in
the process of the corresponding thread, so that it can be examined
without communication. When a thread signals a semaphore, it
sends the state of the objects associated with the semaphore to
the associated threads in a single asynchronous message. A wait
operation is allowed to complete only if the boolean variable asso-
ciated with the thread executing the operation is set. This variable
is set when a signal message is received, and it is reset when a
wait operation performed by the thread completes.

The implementation of barriers uses a centralized master.
The last thread in a process to cross a barrier sends an arrival mes-
sage to the master. This message contains the objects associated
with the barrier which are owned by the process along with their
versions. The barrier master collects the objects in the arrival
messages and ensures that the last versions prevail. The master
sends a decision message to each slave after receiving messages
from all slaves and after the last of the master’s threads crosses
the barrier. This message contains the last versions of the objects
associated with the barrier.

The barrier implementation sends all the updates to all the
threads crossing the barrier. However, these threads will not
typically access all the objects associated with the barrier. There-
fore, barriers will transfer more data than needed. On the other
hand, the semaphore construct allows the programmer to specify
which threads should receive the updates. Another advantage
of semaphores is that they provide finer-grained synchroniza-
tion than barriers. Barriers typically over-synchronize computing
threads, but semaphores can be used to enforce synchronization
constraints based only on data dependencies.

Customizing the System

One of the distinguishing features of DiSOM is the flexible
fine-grained control it offers to applications. Classes can cus-
tomize system actions for their particular instances using object-
oriented inheritance. The lower layers of the system are orga-
nized as a toolkit that minimizes the programming effort required
to customize system actions. For example, a class can override
compiler-defined versions of the pack and unpack methods, that
are used to marshal and unmarshal the state of the objects in the
class.

A concrete example concerns the implementation of fine-
grained access detection. DiSOM’s memory model was defined to
allow object-level access detection using the calls to the synchro-
nization primitives. Therefore, there is no need to use page faults



or software dirty bits [20] to detect updates to shared objects.
However, if objects are large and sparsely written (e.g. large ar-
rays), this simple technique may transfer considerably more data
than needed to ensure coherency. This happens because the up-
date protocol conservatively transfers the entire object state to an
acquiring thread. This problem is solved by providing a special
array class that implements a software dirty bit scheme similar to
Midway [20]. This class is a subclass of the regular array class.
It redefines the pack and unpack methods to transfer only the
updates, and uses an instrumented store operator to set the dirty
bits.

EVALUATION

We evaluated DiSOM’s performance and the complexity of
its programming model by comparing it with TreadMarks [7]. The
measurements were obtained using four shared memory parallel
applications: Matrix Multiply (MM), Successive Over-Relaxation
(SOR), Traveling Salesperson (TSP) and Water (Water). The
code of SOR, TSP and Water was ported from TreadMarks.

The measurements were performed on a cluster of eight
SPARCstations 10/30 connected by an otherwise idle 10 Mbps
Ethernet network. Each SPARCstation 10/30 has a V8 Super-
SPARC CPU running at 36 MHz, 36 Kbytes of internal cache and
32 Mbytes of memory. All the values presented are averages of
three or more runs.

Applications

MM computes the product
�

of two matrices � and � of
512 � 512 single precision floating point numbers.

�
is stati-

cally divided in stripes with an equal number of rows and each
stripe is assigned to a different thread. The result is collected by
the initiating thread at the end of the computation. In DiSOM’s
implementation, the matrices are shared objects, and the stripes
of matrices � and

�
are described by regions. The comput-

ing threads acquire all of � for reading, and their corresponding
regions of � and

�
for reading and writing, respectively. The

regions of
�

are associated with a barrier that is used to synchro-
nize threads at the end of the computation. This barrier is the only
synchronization used in TreadMark’s implementation.

SOR is an implementation of the red-black successive over-
relaxation algorithm [7]. SOR’s input is a 1024 � 512 single
precision floating point matrix and it performs 106 iterations.
The matrix is statically divided in stripes with an equal number of
rows and each stripe is assigned to a different thread. The interior
elements of the matrix are initialized to small random values.
Each iteration has two phases, one that computes the red elements
and another that computes the black elements. Threads that were
assigned neighboring stripes must exchange boundary elements
of one color at the end of each phase. The result is collected by
the initiating thread at the end of the computation.

This implementation of SOR places red and black elements
in separate matrices. In TreadMarks, threads synchronize with a
single barrier, crossed at the end of each phase. In DiSOM,
the stripe assigned to a thread is represented by two regions,
one in each matrix. These regions are associated with a barrier,
used to synchronize threads at the end of the computation. Each

thread has four associated semaphores, and each semaphore is
associated with a region object describing a boundary line in one
of the matrices. At the end of each phase, a thread signals the
semaphores corresponding to the boundary regions just computed
and waits in its neighbor’s semaphores.

The TSP application solves the well known traveling sales-
person problem in a graph of 19 cities, using a branch and bound
algorithm [4]. The shared data structures in TSP are the minimum
length tour encountered so far, an array of structures describing
partially evaluated and unused tours, a priority queue with point-
ers to partially evaluated tours, and a stack with pointers to unused
tours. Threads remove partial tours to evaluate from the priority
queue and, if they are not long enough to apply an exhaustive
search algorithm, compute new partial tours to be evaluated and
insert them in the queue.

TreadMarks’ implementation uses locks to synchronize ac-
cesses to the shared data structures. Similarly, in DiSOM, all
the shared data structures are represented by shared objects and
accesses are enclosed between the appropriate read-write lock
synchronization operations. The array of tours and the priority
queue are large objects that are sparsely modified between syn-
chronization operations. Therefore, we used the version of the
array class that implements fine-grained access detection.

Water is a N-body molecular dynamics simulation from
the SPLASH benchmark suite [18]. It calculates forces and po-
tentials in a system of water molecules in the liquid state. We
measured 5 steps of a system with 343 molecules. The main data
structures are an array of structures describing molecules and a set
of global sums. Work is partitioned statically by assigning a set
of contiguous molecules in the array to each thread, and having
each thread compute the interactions between its molecules and
the 343

�
2 molecules that follow them in the array. We used the

optimization suggested in [18] of collecting the changes to the
molecules in private memory and updating the molecules only at
the end of the inter-molecular forces calculation phase.

The TreadMarks’ implementation uses a lock per molecule
to synchronize updates, and uses barriers before and after the
phases that compute inter-molecular interactions. In DiSOM,
each molecule is a shared object and each thread has a semaphore
to which it associates its molecules. Before the phases that
compute inter-molecular interactions, each thread signals its
semaphore and waits on the semaphores of half of the other
threads. Remote write operations are used to update the molecules
at the end of the phase that computes inter-molecular forces. Since
only approximately 1

�
4 of the object that describes a molecule is

shared [18], DiSOM’s implementation uses specialized versions
of the pack and unpack methods that only transmit the shared
fields.

Comparison between DiSOM and TreadMarks

The results presented in Figure 2 show the elapsed time to
run the application, the total amount of data transferred and the to-
tal number of messages exchanged for the four applications. The
application code is identical in both systems except for the dif-
ferent synchronization mechanisms as explained in the previous
section.

DiSOM sends less data than TreadMarks in MM; with 8
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Figure 2: Execution times (seconds), total data transferred (MBytes) and number of messages exchanged for the four
applications. The measurements were performed on a cluster of eight SPARCstations 10/30 connected by an otherwise idle
10 Mbps Ethernet network. All the values presented are averages of three or more runs.



processors, it sends 9% less data. The reason for the difference
is that, in TreadMarks, threads are forced to acquire the initial
values of their stripes of matrix

�
, and in DiSOM, they are not.

DiSOM also sends much fewer messages; with 8 processors, it
sends only 3% of the messages sent by TreadMarks. This happens
because matrix � , and each stripe of matrices � and

�
are sent

in a single message, whereas in TreadMarks they are fetched on
demand page by page. The difference in the amount of data and
number of messages exchanged leads to better performance in
DiSOM. DiSOM’s execution time with 8 processors is 23% less
than TreadMark’s.

In SOR, threads that were assigned neighboring stripes
must exchange a minimum of 2 Kbytes, corresponding to the
boundary regions, at the end of each phase. In DiSOM, only
the minimum amount of data is exchanged. On the other hand,
in TreadMarks, the threads also exchange the rest of the pages
containing the boundaries, i.e approximately 4 Kbytes. Due to
this false sharing problem, DiSOM sends significantly less data
than TreadMarks; with 8 processors it sends 40% less data.

TreadMarks also sends approximately 3 times more mes-
sages than DiSOM per phase. DiSOM sends fewer messages
because it uses semaphores with an update protocol. During each
phase all but two threads (the one at the top and the one at the
bottom of the matrix) signal 2 semaphores. The two threads at the
boundaries of the matrix signal only one semaphore. Therefore,
DiSOM sends 2

�����
1 � messages per phase, while TreadMarks

sends 2
�����

1 � messages crossing the phase barrier plus 4
�����

1 �
messages to fetch both boundary pages on demand. The overall
difference is larger because the matrix stripes are acquired in two
messages in DiSOM, and they are fetched on demand page by
page in TreadMarks. Due to these differences, DiSOM performs
much better than TreadMarks. DiSOM’s smallest execution time
is 49% less than TreadMarks’ (30 seconds with 2 processors).

TreadMarks sends more data than DiSOM in TSP due to
its fine-grained access detection technique. TreadMarks keeps
updates in the form of differences between two versions of a
page. When a process accesses an invalid page it must obtain all
the differences created since the last time it accessed the page,
and apply them in order to its old copy of the page. In this
application, the stack and the priority queue have a migratory
behavior forcing a process to acquire on average

���
1 differences,

where
�

is the number of processors, and there is a significant
overlap between these differences. DiSOM also sends fewer
messages than TreadMarks because it uses an update protocol
that piggy-backs all coherency messages on the read-write lock
token transfer messages. With 8 processors, DiSOM’s execution
time is 30% smaller than TreadMarks’, because it sends 43% less
data and 2.1 times fewer messages.

In Water, DiSOM sends less data than TreadMarks; with 8
processors, it sends 2.5 times less data, mainly because it uses spe-
cialized pack and unpack methods that only transfer the shared
portion of a molecule object. Another reason is the use of remote
object invocation. The specific contribution of each of these tech-
niques is discussed in the next section. DiSOM also exchanges
significantly fewer messages (1.9 times fewer messages with 8
processors) chiefly because it uses remote object invocations, but
also due to the efficient update protocol. These differences lead to
better performance, DiSOM’s smallest execution time (20.1 with

6 processors) is 28% smaller than TreadMarks’ (28.0 seconds
with 4 processors).

The results presented above confirm the effectiveness of
the techniques used in DiSOM to allow programmers to control
communication. On average, DiSOM sends 69% fewer messages
and 38% less data, leading to better overall performance.

Evaluation of Specific Techniques

This section discusses the impact of specific techniques on
DiSOM’s performance. It evaluates the impact of semaphores,
remote object invocation and specialized pack and unpack meth-
ods, in the performance of Water.

We implemented a version of Water that uses a barrier,
instead of semaphores, before the phases that compute inter-
molecular interactions. All the molecules are associated to this
barrier. Figure 3 presents a comparison between the performance
of this version and the version with semaphores.

The barrier implementation sends significantly more data
than the one using semaphores (55% more with 8 processors). The
reason is that when the barrier is crossed all the threads receive
the state of all the molecules, whereas in the implementation
with semaphores a thread receives the state of approximately
half the molecules. Both versions exchange the same number
of messages. The version with barriers is 18% slower than the
version with semaphores but its performance is still better than
TreadMarks’.

We performed a similar study for SOR and the version
with barriers exchanged 3.8 times more data with 8 processors,
leading to slow-down for more than 5 processors. Its performance
was better than TreadMark’s for a small number of processors but
significantly worse for larger numbers of processors.

One solution to this problem is not to associate objects with
barriers and instead acquire the objects for reading after the barrier
crossing. This approach was used in [20]. It avoids sending more
data than needed but it can send significantly more messages.
For example, in Water with 8 processors it would send 2.5 times
more messages than DiSOM and 1.3 times more messages than
TreadMarks. Therefore, semaphores are a more efficient solution.

The versions of Water described so far use remote object
invocation to update the molecule data directly in the process of
the thread to which the molecule is assigned. This ensures that
a thread is always the owner of its molecules, and therefore can
always acquire them for writing without exchanging messages
with other threads. Without remote operations, a thread must
acquire the object describing the molecule and invalidate the ob-
ject’s copy in the remote process. This forces the thread to which
the molecule is assigned to re-acquire the object. Therefore, a
version of Water without remote object invocation sends more
data and more messages.

The performance results presented in Figure 4 compare the
version of Water with remote operations to a version without
them, labeled “DiSOM no RemOps” in the figure. The results
confirm the latter claim, the version without remote object invoca-
tion sends 38% more data and transfers 1.6 times more messages
than the version with remote object invocation. These differ-
ences cause the version without remote invocations to perform
significantly worse.
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Figure 3: Comparison of semaphores vs. barriers for synchronization in Water.
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Figure 4: Effect of using remote operations in Water.

Our version of Water uses specialized pack and unpack
methods in the class of objects that describe molecules. These
methods only transfer the shared portion of the objects. Figure 5
compares the performance of Water with and without special-
ized pack and unpack methods. The version without specialized
methods sends significantly more data (2.4 times more data with 8
processors) which leads to worse performance. Note that the ver-
sion without specialized methods sends approximately the same
amount of data as TreadMarks but fewer messages, however it has
worse performance because TreadMarks’ communication subsys-
tem is more efficient than DiSOM’s.

Like DiSOM, Midway uses an update-based implementa-
tion of entry consistency but it does not use the techniques de-
scribed in this section. Therefore, the results presented in this
section imply that an implementation of Water on Midway will
have significantly worse performance than DiSOM’s implemen-
tation.

Programming Complexity

Table 2 compares the code size of the applications in Di-
SOM and TreadMarks. The values were obtained by counting
the number of semicolons in the code. The values obtained for
DiSOM are larger than those obtained for TreadMarks due to a
more complex programming model. Programming in DiSOM is
more complex because the programmer has to explicitly associate
data and synchronization objects, and in some places has to insert
additional synchronization calls. The difference in code size is

significant for the simple scientific kernels MM and SOR. How-
ever, for TSP the difference is 13% and for Water, the most real-
istic application, the difference is only 4%. These results support
the claim that DiSOM’s programming model is not significantly
more complex than the one offered by TreadMarks.

Table 2: Application code size (obtained with grep ’;’
*.[cChH] | wc).

Application DiSOM TreadMarks
MM 206 162

SOR 163 91
TSP 386 340

Water 821 786

CONCLUSIONS

We presented a distributed shared memory system that pro-
vides programmers with fine-grained control over communication
while retaining a convenient shared memory programming model.
This is achieved by using an update-based implementation of en-
try consistency, efficient semaphores, remote object invocation,
dynamic decomposition of objects, and allowing programmers to
customize system actions on a per-object basis. Together these
techniques provide a consistent framework for the development
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Figure 5: Effect of using specialized pack and unpack methods in Water.

of parallel and distributed applications.
The results of our comparative performance study show

that DiSOM sends on average 69% fewer messages and 38% less
data than TreadMarks, a state-of-the-art distributed shared mem-
ory system, at the expense of a slight increase in programming
complexity. Therefore, the overall performance of DiSOM is sig-
nificantly better, the smallest execution times on DiSOM are on
the average 33% lower than TreadMarks’.

The increasing gap between processor performance and net-
work latency stresses the need to offer fine-grained control over
communication in order to achieve good performance. There-
fore, the techniques used in DiSOM and its functionality make
it an attractive system for the development of parallel and dis-
tributed applications in heterogeneous clusters of multiprocessor
workstations.
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