
Decision-Theoretic Troubleshooting: A Framework forRepair and ExperimentJohn S. BreeseDavid Heckermanfbreese,heckermag@microsoft.comMarch, 1996(revised May 1996)Technical ReportMSR-TR-96-06Microsoft ResearchAdvanced Technology DivisionMicrosoft CorporationOne Microsoft WayRedmond, WA 98052Also appears in the Proceedings of the Twelfth Conference on Uncertainty in Arti�cial Intelligence,August, 1996

AbstractWe develop and extend existing decision-theoretic methods for troubleshooting a nonfunction-ing device. Traditionally, diagnosis with Bayesian networks has focused on belief updating|determining the probabilities of various faults given current observations. In this paper, weextend this paradigm to include taking actions. In particular, we consider three classes of ac-tions: (1) we can make observations regarding the behavior of a device and infer likely faultsas in traditional diagnosis, (2) we can repair a component and then observe the behavior of thedevice to infer likely faults, and (3) we can change the con�guration of the device, observe itsnew behavior, and infer the likelihood of faults. Analysis of latter two classes of troubleshootingactions requires incorporating notions of persistence into the belief-network formalism used forprobabilistic inference.1 IntroductionGiven that a device is not working properly or a patient has some complaint, automated-diagnosticsystems have traditionally been been designed to determine the set of faults or diseases that explainthe symptoms [de Kleer and Williams, 1987, Genesereth, 1984, Heckerman et al., 1992, Breese et al., 1992].The diagnostician is able to ask questions about the behavior of the device or test individual com-ponents in order to determine if they are working properly. As new information is gained, theprocedure updates its current view of the world. Inference focuses on identifying the set of faultsconsistent with the observations and, in the probabilistic case, assigning probabilities to the feasiblediagnoses. Information gathering proceeds until a single cause has been identi�ed or the currentdiagnosis is su�ciently restricted to support action.From a decision making perspective, however, our primary objective is to repair the device orcure the patient, not just determine what is wrong. At any stage of the process, there are manypossible observations, tests, or repairs that can be applied. Because these operations are expensivein terms of time and/or money, we wish to generate a sequence of actions that minimizes costsand results in a functioning device (or healthy patient). In this paper, we develop a diagnosticprocedure (i.e., planner) that selects the next best action by estimating the expected cost of repairfor various plans. Because computation of the optimal plan is intractable, we develop proceduresfor estimating the expected cost of repair for plans that1. Repair system components in sequence (with no observations) until the device is repaired2. Gather evidence about the state of the system and then repair components3. Change the con�guration of the system, observe behavior, and then repair componentsWe use these cost estimates myopically to determine the next troubleshooting step. After eachaction, probabilities are updated and a new set of potential plans are generated. This cycle continuesuntil the device is working properly. 1

Figure 1: A simpli�ed Bayesian network for printing problems on personal computers.From the perspective of belief-network diagnosis, the second two classes of troubleshootingaction are problematic. When we actively set (as opposed to passively observe) the value of avariable in a Bayesian network, previous observations regarding device behavior may change. Forexample, in Figure 1 depicting a simpli�ed model of printing for personal computers, we mayinitially be unable to print over the network, but we are able to print after we set the print logic toprint locally. There is no mechanism in a single static Bayesian network to combine the observationsbefore and after this action. In this paper, we describe a notion called persistence, and show howit can be used as a solution to this problem in the context of troubleshooting.2 Basic TroubleshootingIn this section, we describe a set of assumptions under which it is possible to identify an optimalsequence of observations and repair actions in time proportional to the number of componentsin the device, without explicitly constructing and rolling back a decision tree. The approach isdescribed in Heckerman et al. (1995). Let us suppose that the device has n components c1; : : : ; cnand each component is in exactly one of a �nite set of states. We assume11The appropriateness of these assumptions is discussed in Heckerman et al. (1995).2

1. There is only one problem-de�ning variable in the Bayesian network for the device. Thisvariable represents the functional status of the device. One of the states of this variablemust correspond to normal operation. In Figure 1, the node labeled \Printer Output" isthe problem-de�ning node. We will write e = normal to denote the event that the problemde�ning node is normal.2. At the onset of troubleshooting, the device is faulty|that is the problem de�ning variable isobserved to be faulty.3. Single fault: Exactly one component is abnormal and is responsible for the failure of thedevice. We use pi to denote the probability that repairing component ci will repair the deviceunder the current state of information I, that is pi � Pr(e = normaljrepair(cI); I). Underthe single-fault assumption, Pni=1 pi = 1.4. Each component is observable or unobservable. An observable component can be unambigu-ously tested or inspected to determine correct operation. In this formulation, an observablecomponent that is observed to be abnormal is immediately repaired. An unobservable com-ponent can never be directly observed, but can be repaired or replaced. In Figure 1, thecomponents \Cable Port Hardware", \Network Connection", and \Driver File Status" areunobservable|one can reinstall the driver �le from disk, but it is extremely di�cult to deter-mine if the �le is corrupt directly. For convenience, we use observation{repair action to referboth to the observation and possible repair of an observable component and to the repair ofan unobservable component.6. The costs of observation and repair of any component do not depend on previous repair orobservation actions.7. Limited observations: No observations, other than the observation-repair of a component, areundertaken during the course of troubleshooting.For the moment, let us consider only observable components. Let Coi and Cri denote the cost ofobservation and repair of component ci. If we observe and possibly repair components in the orderc1; : : : ; cn, then for the expected cost of repair under state of information I, denoted ECR(I), wehave ECR(I) = (Co1 + p1Cr1) +(1� p1)(Co2 + p21� p1Cr2) +(1� p1 � p2)(Co3 + p31� p1 � p2Cr3) + � � �= nXi=1 240@1� i�1Xj=1 pj1ACoi + piCri 353

That is, we �rst observe component c1 incurring cost Co1 . With probability p1, we �nd that thecomponent is faulty and repair it (and the device) incurring cost Cr1. With probability 1 � p1,we �nd that the component is functioning properly, and observe component c2. With probabilityp2=(1� p1), we �nd that c2 is faulty and repair it; and so on.By reversing the order of the any two steps in the repair sequence, one can show that theminimum expected cost sequence is obtained by ordering the components according to a decreasingprobability to cost ratio. The expected cost of repair ECR(I) is understood to be that under thecomponent ordering where p1Co1 � p2Co2 � : : : � pnCon :We sequentially repair or replace the components according to the ordering of their pi=Coi ratios.After each repair, we observe whether the device is working properly, and if so, terminate.Including unobservable components in this approach is straightforward. Recall that an unob-servable component ci is simply repaired with cost Cri . Therefore, an unobservable component actsjust like an observable component that is observed with cost Cri and always found to be faulty andrepaired with cost zero. Consequently, we can include unobservable components in our procedure,provided we set Coi to the cost of repair of unobservable component ci, and set Cri to zero.22.1 Computing Probabilities of Faulty Components using PersistenceWhen troubleshooting under uncertainty, we need to compute the probabilities that componentshave failed. In our approach, we compute these probabilities using a Bayesian network. Giventhe observation that \Print Output" is false, we can use a Bayesian-network inference algorithmto compute the probability that any or all of the system components are faulty. When we wish torecalculate probabilities given a component of the device has been repaired, updating proceduresmust account for the change in underlying state of the device and the fact that previous observationsmay have been invalidated.Consider the simple causal relationship between the status of a computer's connection to thenetwork (\Net"), which we model as having states normal or abnormal, and the appearance of theprinter icon in the print manager (\Icon"), which we model as having states normal and grey. Thetwo nodes are dependent as depicted in the Bayesian network in Figure 2a.Now suppose we observe the icon to be grey, and we want to determine the probability that theicon will be normal, after we make sure the network is connected. We can do so, using the Bayesiannetwork shown in Figure 2b. In this network, \Netpre" and \Netpost" represent whether or not thenetwork is connected, respectively before and after we establish connectivity . Similarly, \Iconpre"and \Iconpost" represent whether or not the icon is normal before and after we connect the network,respectively . The node mIcon represents all of the possible mappings between \Net" and \Icon".2It is also straightforward to add the notion of a service call, a �xed charge that will repair any fault with thedevice. See Heckerman et al. (1995) for details. 4

(a)
 (b)

Icon
post

Net
pre
 Net
post

m
Icon

Net

Icon
 Icon
pre
Figure 2: (a) A Bayesian network for the interaction between net connections and print iconappearance. (b) A persistence network for determining the probability that the print icon willappear normal after we verify net connectivity, given that the icon is currently greyed out.Table 1: The four possible mappings between \Net" and \Icon".ok stuck on grey stuck on normal backwardsNet abnormal normal abnormal normal abnormal normal abnormal normalIcon grey normal grey grey normal normal normal greyFollowing Heckerman and Shachter (1995), we call mIcon and its corresponding variable a mappingnode and mapping variable, respectively. We call the remaining nodes and their correspondingvariables domain nodes and domain variables, respectively.As shown in Table 1, the mapping node mIcon has four possible states: (1) ok, where the icon isgrey if and only if there is no network, (2) stuck on grey, where the icon is grey regardless of stateof the network, (3) stuck on normal, where the icon is always normal, and (4) backwards, wherethe icon reads grey if and only if the network is connected. The node \Iconpre" is a deterministicfunction of its cause \Netpre" and the node mIcon, as indicated by the double ovals around thenode \Iconpre". For example, if \Netpre" is abnormal and mIcon is backwards, then \Iconpre" willbe normal. The node \Iconpost" is the same deterministic function of cause \Netpost" and the nodemIcon. The uncertainty in the relationship between \Net" and \Icon" is encoded in the probabilitiesfor the node mIcon. These probabilities are constrained by, but not necessarily determined by, theprobabilities in the Bayesian network.By using a single node mIcon to represent the mappings between \Network" and \Icon" bothbefore and after the action is taken, we encode the assertion that the mapping (or mechanism)between cause and e�ect is not a�ected by actions that may change the cause. Although we areuncertain about which mapping holds, representing this uncertainty in a single node enforces theassertion that the mapping persists across the action. We could equivalently have two mappingnodes, one for before and one for after the action, with an arc between the two. The state transition5

distribution for the mapping variables in this case would encode the restriction that the state ofthe mapping variable after the action is the same as the state before the action.In order to calculate the probability that the icon will be normal after establishing networkconnectivity, we set \Netpost" to state normal and set \Iconpre" to state grey in the network inFigure 2b. We then apply a standard belief network inference algorithm to to the network tocalculate the probability that \Iconpost" = normal.We refer to this notion as causal persistence. Causal persistence is closely related to Hecker-man and Shachter's (1995) concept of unresponsiveness. The latter notion, however, pertains totransitions from some state of the world to a counterfactual state of the world, whereas causalpersistence pertains to transitions between real states of the world at di�erent times. The notionof causal persistence (although not in this terminology) is discussed in Heckerman et al. (1994).Related notions are discussed in Pearl (1993), Goldszmidt and Darwiche (1994), and Balke andPearl (1994).In general, suppose we have a Bayesian network for a set of domain variables U = fx1; : : : ; xng.Further, suppose that we want to answer questions of the form: \What would be the probabilityof X � U if we were to take some action, given that we now observe Y � U ." To answer suchquestions, we construct a new Bayesian network as we did in our example. First, we copy thenetwork, using the �rst and second instances of the network to represent the domain variablesbefore and after we take the action. Second, we introduce mapping nodes mi for each domainnode xi, and assess the prior probabilities of these nodes. Typically, these mapping nodes will bemutually independent, but they need not be [Heckerman and Shachter, 1995]. Also, note that ifxi is a root node, then mi = xi and we do not need to explicitly create the mapping node. Third,we make both versions of node xi the same deterministic function of its parents and mi. Finally,we identify those domain nodes in the post-action network that are a�ected directly by our action,break the arcs from their parents, and set the states of these nodes to their values as determined byour action.3 Under this construction, as in our example, the shared mapping nodes encode causalpersistence. We refer to Bayesian networks constructed in this manner as persistence networks.2.2 Single-Copy Approximation: RepairAlthough a persistence network is a correct representation of the e�ects of actions, we are still leftwith the problem that a persistence network often contains many undirected cycles, making infer-ence computationally expensive. In this section, we describe an approximation wherein the repairprobabilities can be computed without copying the original Bayesian network. This approximationrelies on representing the behavior of the device using a form of causal independence (see, e.g.,Srinivas [1993] and Heckerman and Breese [1996]).The notion of causal independence is illustrated in Figure 3. The e�ect of set of causes3In doing so, we assume that the direct e�ects of actions are deterministic. The more general case can be handledwith in
uence diagrams in canonical form [Heckerman and Shachter, 1995].6

e

.....

f

c

1

e'

1

c

2

e'

2

c

n

e'

n
Figure 3: A Bayesian network for the interaction between a set of causes and an e�ect under causalindependence.c1; : : : ; cn on an e�ect e are modeled in terms of a set of mediator variables e01; : : : ; e0n and a func-tion f(e01; : : : ; e0n). The mediator variables are dependent on their associated causes ci, and serve asinputs to the function f . The choice of f is arbitrary, in general, though in many applications it isan or relationship, where the e�ect is abnormal if any of the causal inputs is abnormal. Typically,we also designate one of the causal inputs as a \leak" cause that is always set to its abnormalstate. Note that, for purposes of troubleshooting as described in Section 2, the leak causes aresummarized as a single \all other" fault that can be repaired at a �xed cost with a service call, asdiscussed in [Heckerman et al., 1995].Suppose our device satis�es the following conditions: (1) the interaction between the n com-ponents of the device c1; : : : ; cn and the output of the device e satisfy causal independence, and (2)the function f has the property that the output is normal if all inputs are normal. For example,the noisy-or relationship and the noisy-adder relationship (with 0 corresponding to Normal) satisfythese conditions. If we impose these restrictions, and we assume there is a single component thatis faulty, Heckerman et al. (1994) show thatPr(epost = NormaljRepair(ci); epre = Abnormal; I)= Pr(e0i;pre = Abnormaljepre = Abnormal; I)That is, the probability that the e�ect is normal after the repair is equal to the probability that theassociated mediator node is abnormal in the original network. For many troubleshooting domains,we have used the right-hand-side of Equation 1 in place of the left-hand-side as an approximation,because the right-hand-side may be computed without copying the Bayesian network for a device.Given the observation that e is abnormal, the single-fault assumption is likely to be true, because itis unlikely that two components of a device will fail at the same time. We rescale the probabilities7

for the nodes e0i, so that the sum over the probabilities of all non-normal states of all nodes e0i isequal to one.2.3 Nonbase ObservationsIn Section 2, we considered two special classes of observations: (1) the observation of the problem-de�ning variable after a repair is made, and (2) the observation of a component before a repair ismade (as part of an observation-repair action). We refer to these observations as base observations.In many situations, we want to be able to make more general observations. For example, when ourcar fails to start, we may want to check the radio or the headlights in order to check the status ofthe electrical system. In this section, we describe a method for making such general observations.Let us suppose we have m nonbase observations o1; o2; : : : ; om available to us. We assume thatobservation oi can take on exactly one of ri possible states. We write oi = k to indicate thatobservation oi takes on state k. First, we use the procedures described in Sections 2 to generate atroubleshooting sequence consisting of only base observations and repairs. Second, we imagine thatwe make observation oi �rst, and then determine the sequence. The expected cost of observing oiwith information I, denoted ECO(I; oi), consists of an observation cost plus the expected cost of aset of conditional plans as given byECO(I; oi) = Coi + riXk=1Pr(oi = kjI)ECR(I[foi = kg)Note that the troubleshooting sequence following the observation may be di�erent for everypossible outcome of the observation. Finally, we repeat the computation of ECO for every possiblenonbase observation.3 Changing the Con�gurationAn expert troubleshooter will often change the setup or con�guration of a device and observe thenew behavior of the device to infer the underlying problem(s) with the device. In this sectionwe provide a decision theoretic account of this type of troubleshooting, and show how it can beimplemented using Bayesian networks and the troubleshooting framework we have described above.A Bayesian network for a canonical con�gurable device is shown in Figure 4. The device workswith either the P1 process or the P2 process. The node Con�g corresponds to an action thatdetermines the con�guration of the device. The node Switch takes on the value of P1 if Con�g isset to 1 and the value of P2 if Con�g is set to 2. The overall behavior of the device, captured inthe problem de�ning node (PD), depends on Switch and two additional subcomponents, C5 andC6. By setting the con�guration node to one value or the other, we isolate part of the system forinspection.To further motivate the scenario, consider a failure in printing from your PC to a networkprinter. In general, the problem could be local to your PC or somewhere in the network. We can8

Switch

Config

C
1
 C
2
 C
4
C
3

C
5

C
6

P1
 P2

P3

PD
Figure 4: A Bayesian network for a simple con�guration scenario.try to print locally. If this action succeeds, then it rules out a host of problems associated withthe local con�guration. If this action fails, it will increase the probability of a local malfunction.Though changing con�guration appears to be most compelling in troubleshooting hardware orother man-made devices, the notion is also relevant for medical diagnosis. For example, a physiciandiagnosing headaches may ask a patient to change diet or work habits to rule out various allergyor stress related disorders.To incorporate this type of reasoning into our framework, we need two elements. First, weneed to calculate the updated fault probabilities, given we set a con�guration parameter and thenmake an observation. Because we are combining information from two situations|the �rst withthe con�guration parameter set in its original position and the second after the change|we willuse a persistence network. Second, we need to use these updated fault probabilities to estimatethe expected cost of a plan that starts with a con�guration change. We will describe the costestimation framework �rst, and then discuss calculation of the necessary probabilities.Our framework is as follows. In most cases, a con�guration node can be treated like anyother non-base observation (see Section 2.3) in that we may recommend that the current state beobserved without necessarily setting it to another state. In addition, we allow the following newalternative: (1) set con�guration node c to some value m, (2) make a non-base observation oi, (3)change the con�guration back to its original state, and (4) undertake a sequence of repairs. Theanalysis of this new alternative is similar to that described in Section 2.3. The expected cost ofrepair for setting con�guration node c to state m followed by observing node oi is given byECCO(I; oi; c = m) = Cs + Coi+riXk=1Pr(oi;post = kjcpost = m; Ipre)ECR(Ipre [foi;post = kg [fcpost = mg) (1)9

Switch

Config

P'
11

C
2
 C
3
 C
4
C
1

C
5
 C
2

P1
 P2

P3

P'
12
 P'
23
 P'
24

P'
35
 P'
36

P'
3Sw

PD
Figure 5: A Bayesian network for a simple con�guration scenario, expanded to expose its causalindependence representation.where Cs is the cost of changing the con�guration from its current state to a new state andback. In the course of troubleshooting, we evaluate this expression for each possible con�guration{observation pair,4 and recommend that con�guration{observation pair that has the lowest expectedcost.3.1 Calculating Probabilities after a Con�guration ChangeAs mentioned, we need to calculate the probability of the faults given we have set a con�gurationvariable to some value and then made some observation. We use a persistence network to performthis computation. As discussed in Section 2.2, we will again rely on causal independence as arepresentation of the device's operation. Here the motivation is not to allow a single-copy approx-imation, but to reduce the state space of the mapping nodes needed in the persistence network.Causal independence imposes a special structure on the mapping nodes associated with an e�ectnode. Speci�cally, there is a single mapping node associated with each cause to mediator link andthese mapping nodes are mutually independent.The �rst step is to convert the original Bayesian network into a causal-independence represen-tation with mediator nodes. This conversion was applied to the network of Figure 4 and is shownin Figure 5. We then create mapping nodes for each non-root non-deterministic domain variable asshown in the upper left-hand-corner of Figure 6. We then copy all nodes in the original network|except the component nodes|and include a new node that represents the con�guration after thechange. We do not copy the component nodes, because we assume their states persist after thecon�guration change. The result is shown in Figure 6. Finally, we copy the parent-structure and4The observation can be restricted to the problem de�ning node, if desired.10

Switch

Config

C
2
 C
3
 C
4
C
1

P1
 P2

P
12

m
P12

P
11

m
P11

P
24

m
P24

P
23

m
P23

Switch
P1
 P2

P3

P
12
P
11
 P
24
P
23

P
36
P
35

Post

C
5
 C
6

P3

m
P36

P
36
P
35

m
P35

m
P3Sw

PD

PD

P
3Sw

P
3Sw

Config

Figure 6: A persistence network for a simple con�guration scenario.probability/function tables of the copied nodes to their corresponding copies.The network in Figure 6 is used to evaluate the probabilities used in Equation 1. We retainall current observations in the original (upper left) portion of the network, presumably includ-ing the fact that the problem de�ning node is abnormal. We set the con�guration node in the\post" network to a possible value, and perform probabilistic inference using the network to obtainPr(oi;post = kjcj;post = m; Ipre) for each possible observation oi;post = k. We then compute the faultprobabilities of the components for every possible non-base observation. We use these probabili-ties to calculate the various repair sequences and associated expected costs of repair as describedpreviously. Finally, we repeat this entire set of computations for every possible state of the con�gu-ration node other than its current state. Note that if there are multiple con�guration nodes and wehypothetically set the value of one con�guration node, the value of the other con�guration nodesmust remain the same from the \pre" to \post" network, even if we do not know their values.3.2 Single-Copy Approximation: Con�gurationAn approximation can be undertaken to avoid the use of the persistence network for the computationof the fault probabilities. First, we set the con�guration node to some value and remove any downstream evidence in the original network. Next, for each possible non-base observation, we note11

which fault probabilities go to zero or one. Finally, we generate repair plans, clamping thoselogically determined component nodes to their respective values and retaining the original faultprobabilities for the remaining component nodes.4 Summary of the Troubleshooting Decision MakingIn the course of executing this plan, we generate many complete repair plans, but at each stage weonly execute the �rst step of one of the plans. Thus, our approximate decision-theoretic method forgenerating a troubleshooting sequence can be summarized as follows. First, we evaluate ECR(I)|the expected cost of repair under our current state of information I. Also, for every observationoi, the expected cost of its observation ECO(I; oi) is calculated. Also, for every combination ofcon�guration setting and observation, we calculate ECCO(I; oi; c = m). Next, we recommend thatrepair, observation, or con�guration{observation that has the lowest expected cost. If ECR(I) hasthe lowest value, then we repair c1, check if the device is functioning properly, and quit if so. If anobservation or con�guration{observation has the lowest expected value, we make that observation.Finally, we update probabilities in the network, based on the new information from the observationor the repair, and iterate this procedure.Although we evaluate the expected cost of the next step by assuming that a non-base observa-tion or con�guration{observation will be followed by a pure repair sequence, in the actual runningof the algorithm, observation and con�guration{observations can be interleaved with the repairsequence. Similarly, although the cost-estimation step assumes a single fault, the algorithm willrun (albeit approximately) for a device with multiple faults.5 ExampleWe have applied the general approach to troubleshooting printing problems, automobile startupproblems, copier feeder systems, and gas turbines. A model addressing Microsoft Windows 95 print-ing problems, without the procedure for suggesting con�guration changes described in Section 3,was implemented and delivered as part of the Microsoft Windows 95 Product Support ServicesResource Kit. This system has been well received and additional troubleshooters based on thisapproach are in development.An example of the type of steps generated by the troubleshooter follows. For the printernetwork, troubleshooting begins by observing the Print Output node in its abnormal state. Apure repair sequence|that is with no nonbase observations|starts with verifying that the networkprinter is on and online and has an expected cost of 13.62 minutes. The best nonbase observationis determination of the printer location, followed by a repair sequence, with a total expected costof 13.71 minutes. The best con�guration-observation option is to print locally and see if you getoutput. With probability 0.42 there is output and the expected cost of repair at that point is 7.0712

minutes, with a sequence starting with verifying the net printer is online. Under this scenario, wehave generally ruled out any problems with the computer itself. If local printing fails, (probabilityis 0.58), then a print driver problem (or some other local problem) is indicated and the expectedcost of repair is 13.83 minutes. The expected cost of the con�guration-observation plan is 10.98minutes, plus 2 minutes for setting (and resetting) the con�guration for a total of 12.98 minutes,the best option at this stage.In terms of computational overhead, the primary factors are the increased size of the persistencenetwork relative to the original network and additional inference steps needed for con�gurationrecommendations. For the printing problems network (Figure 1) and the con�guration network(Figure 4), the size of the join tree inference representation and propagation times for the persistencenetworks were roughly twice that for the standard single copy versions. We need a number ofadditional inference cycles equal to the product of the number of individual con�guration settingsand the number of individual observation values. The factors have not been signi�cant in theexamples we have run to date.6 Empirical ResultsIn previous work [Heckerman et al., 1995], we developed a Monte-Carlo technique for estimatingtroubleshooting costs for a given planner and domain. We used a Bayesian network for a givendevice to generate a relatively large set of problem instances where one or more faults are knownto have occurred. This study showed that the decision-theoretic troubleshooter had lower expectedcosts of repair than a static cost{based procedure, and also performed well in situations where therewere multiple faults.We performed a similar simulation study to verify the performance of the con�guration plannerversus a planner that did not suggest con�guration changes. We applied each algorithm to theprinting network shown in Figure 1. The planner that suggested con�guration changes had anaverage time to resolution of 13.4 minutes, while the average time to repair for the planner thatdid not suggest con�guration changes was 14.4 minutes. Of course, the magnitude of savings ina particular application depend on the cost and probabilities in that domain. For a domain suchas printing problems where are there are millions of incidents per year, even the modest savingsestimated here can result in a substantial total time or dollar savings.7 SummaryWe have developed a system for decision-theoretic troubleshooting where in a system can chooseamong several classes of possible actions|repairing a component, making a passive observation, orchanging the con�guration of the device and making an observation. We have developed approxi-mations in the context of a myopic cycle for determining the best course of action. An important13

component of this work has been to show how to use the concept of persistence to compute theprobabilities of events after repairs and con�guration changes have been made.AcknowledgmentsThe authors thank Koos Rommelse and David Hovel for discussions and implementation relatedto this work.References[Balke and Pearl, 1994] Balke, A. and Pearl, J. (1994). Probabilistic evaluation of counterfactualqueries. In Proceedings of Tenth Conference on Uncertainty in Arti�cial Intelligence, Seattle,WA, pages 46{54. Morgan Kaufmann.[Breese et al., 1992] Breese, J., Horvitz, E., Peot, M., Gay, R., and Quentin, G. (1992). Automateddecision-analytic diagnosis of thermal performance in gas turbines. In Proceedings of the Inter-national Gas Turbine and Aeroengine Congress and Exposition, Cologne, Germany, AmericanSociety of Mechanical Engineers.[de Kleer and Williams, 1987] de Kleer, J. and Williams, B. (1987). Diagnosing multiple faults.Arti�cial Intelligence, 32:97{130.[Genesereth, 1984] Genesereth, M. (1984). The use of design descriptions in automated diagnosis.Arti�cial Intelligence, 24:311{319.[Goldszmidt and Darwiche, 1994] Goldszmidt, M. and Darwiche, A. (1994). Action networks: Aframework for reasoning about actions and change under uncertainty. In Proceedings of TenthConference on Uncertainty in Arti�cial Intelligence, Seattle, WA, pages 136{144. Morgan Kauf-mann.[Heckerman and Breese, 1996] Heckerman, D. and Breese, J. (1996). Causal independence for prob-ability assessment and inference using Bayesian networks. IEEE, Systems, Man, and Cybernetics,26. to appear.[Heckerman et al., 1994] Heckerman, D., Breese, J., and Rommelse, K. (1994). Sequential trou-bleshooting under uncertainty. In Proceedings of Fifth International Workshop on Principles ofDiagnosis, New Paltz, NY, pages 121{130.[Heckerman et al., 1995] Heckerman, D., Breese, J., and Rommelse, K. (1995). Decision-theoretictroubleshooting. Communications of the ACM, 38:49{57.[Heckerman et al., 1992] Heckerman, D., Horvitz, E., and Nathwani, B. (1992). Toward normativeexpert systems: Part I. The Path�nder project. Methods of Information in Medicine, 31:90{105.14

[Heckerman and Shachter, 1995] Heckerman, D. and Shachter, R. (1995). Decision-theoretic foun-dations for causal reasoning. Journal of Arti�cial Intelligence Research, 3:405{430.[Pearl, 1993] Pearl, J. (1993). From conditional oughts to qualitative decision theory. In Proceedingsof Ninth Conference on Uncertainty in Arti�cial Intelligence, Washington, DC, pages 12{20.Morgan Kaufmann.[Srinivas, 1993] Srinivas, S. (1993). A generalization of the noisy-Or model. In Proceedings of NinthConference on Uncertainty in Arti�cial Intelligence, Washington, DC, pages 208{215. MorganKaufmann.

15

