
Neural Networks: A PatternRecognition PerspectiveyChristopher M. BishopNeural Computing Research GroupAston University, Birmingham, UKJanuary, 1996Technical Report: NCRG/96/001Available from: http://www.ncrg.aston.ac.uk/1 IntroductionNeural networks have been exploited in a wide variety of applications, the majority of which areconcerned with pattern recognition in one form or another. However, it has become widely ac-knowledged that the e�ective solution of all but the simplest of such problems requires a principledtreatment, in other words one based on a sound theoretical framework.From the perspective of pattern recognition, neural networks can be regarded as an extensionof the many conventional techniques which have been developed over several decades. Lack ofunderstanding of the basic principles of statistical pattern recognition lies at the heart of manyof the common mistakes in the application of neural networks. In this chapter we aim to showthat the `black box' stigma of neural networks is largely unjusti�ed, and that there is actuallyconsiderable insight available into the way in which neural networks operate, and how to use theme�ectively.Some of the key points which are discussed in this chapter are as follows:1. Neural networks can be viewed as a general framework for representing non-linear mappingsbetween multi-dimensional spaces in which the form of the mapping is governed by a numberof adjustable parameters. They therefore belong to a much larger class of such mappings,many of which have been studied extensively in other �elds.2. Simple techniques for representing multi-variate non-linear mappings in one or two dimen-sions (e.g. polynomials) rely on linear combinations of �xed basis functions (or `hiddenfunctions'). Such methods have severe limitations when extended to spaces of many dimen-sions; a phenomenon known as the curse of dimensionality. The key contribution of neuralnetworks in this respect is that they employ basis functions which are themselves adaptedto the data, leading to e�cient techniques for multi-dimensional problems.3. The formalism of statistical pattern recognition, introduced brie
y in Section 2.3, lies atthe heart of a principled treatment of neural networks. Many of these topics are treatedin standard texts on statistical pattern recognition, including Duda and Hart (1973), Hand(1981), Devijver and Kittler (1982), and Fukunaga (1990).yTo be published in Fiesler E and Beale R (eds) 1996 Handbook of Neural Computation, (New York: OxfordUniversity Press; Bristol: IOP Publishing Ltd) 1



4. Network training is usually based on the minimization of an error function. We show howerror functions arise naturally from the principle of maximum likelihood, and how di�erentchoices of error function correspond to di�erent assumptions about the statistical proper-ties of the data. This allows the appropriate error function to be selected for a particularapplication.5. The statistical view of neural networks motivates speci�c forms for the activation functionswhich arise in network models. In particular we see that the logistic sigmoid, often introducedby analogy with the mean �ring rate of a biological neuron, is precisely the function whichallows the activation of a unit to be given a particular probabilistic interpretation.6. Provided the error function and activation functions are correctly chosen, the outputs of atrained network can be given precise interpretations. For regression problems they approxi-mate the conditional averages of the distribution of target data, while for classi�cation prob-lems they approximate the posterior probabilities of class membership. This demonstrateswhy neural networks can approximate the optimal solution to a regression or classi�cationproblem.7. Error back-propagation is introduced as a general framework for evaluating derivatives forfeed-forward networks. The key feature of back-propagation is that it is computationallyvery e�cient compared with a simple direct evaluation of derivatives. For network trainingalgorithms, this e�ciency is crucial.8. The original learning algorithm for multi-layer feed-forward networks (Rumelhart et al.,1986) was based on gradient descent. In fact the problem of optimizing the weights in anetwork corresponds to unconstrained non-linear optimization for which many substantiallymore powerful algorithms have been developed.9. Network complexity, governed for example by the number of hidden units, plays a centralrole in determining the generalization performance of a trained network. This is illustratedusing a simple curve �tting example in one dimension.These and many related issues are discussed at greater length in Bishop (1995).2 Classi�cation and RegressionIn this chapter we concentrate on the two most common kinds of pattern recognition problem.The �rst of these we shall refer to as regression, and is concerned with predicting the values of oneor more continuous output variables, given the values of a number of input variables. Examplesinclude prediction of the temperature of a plasma given values for the intensity of light emittedat various wavelengths, or the estimation of the fraction of oil in a multi-phase pipeline givenmeasurements of the absorption of gamma beams along various cross-sectional paths through thepipe. If we denote the input variables by a vector x with components xi where i = 1; : : : ; d andthe output variables by a vector y with components yk where k = 1; : : : ; c then the goal of theregression problem is to �nd a suitable set of functions which map the xi to the yk.The second kind of task we shall consider is called classi�cation and involves assigning inputpatterns to one of a set of discrete classes Ck where k = 1; : : : ; c. An important example involvesthe automatic interpretation of hand-written digits (Le Cun et al., 1989). Again, we can formulatea classi�cation problem in terms of a set of functions which map inputs xi to outputs yk wherenow the outputs specify which of the classes the input pattern belongs to. For instance, the inputmay be assigned to the class whose output value yk is largest.In general it will not be possible to determine a suitable form for the required mapping,except with the help of a data set of examples. The mapping is therefore modelled in terms ofsome mathematical function which contains a number of adjustable parameters, whose values aredetermined with the help of the data. We can write such functions in the formyk = yk(x;w) (1)2



where w denotes the vector of parameters w1; : : : ; wW . A neural network model can be regardedsimply as a particular choice for the set of functions yk(x;w). In this case, the parameterscomprising w are often called weights.The importance of neural networks in this context is that they o�er a very powerful and verygeneral framework for representing non-linear mappings from several input variables to severaloutput variables. The process of determining the values for these parameters on the basis of thedata set is called learning or training, and for this reason the data set of examples is generallyreferred to as a training set. Neural network models, as well as many conventional approachesto statistical pattern recognition, can be viewed as speci�c choices for the functional forms usedto represent the mapping (1), together with particular procedures for optimizing the parametersin the mapping. In fact, neural network models often contain conventional approaches (such aslinear or logistic regression) as special cases.2.1 Polynomial curve �ttingMany of the important issues concerning the application of neural networks can be introducedin the simpler context of curve �tting using polynomial functions. Here the problem is to �t apolynomial to a set of N data points by minimizing an error function. Consider the M th-orderpolynomial given by y(x) = w0 + w1x+ � � �+ wMxM = MXj=0wjxj: (2)This can be regarded as a non-linearmapping which takes x as input and produces y as output. Theprecise form of the function y(x) is determined by the values of the parameters w0; : : :wM , whichare analogous to the weights in a neural network. It is convenient to denote the set of parameters(w0; : : : ; wM) by the vector w in which case the polynomial can be written as a functional mappingin the form (1). Values for the coe�cients can be found by minimization of an error function, aswill be discussed in detail in Section 3. We shall give some examples of polynomial curve �ttingin Section 42.2 Why neural networks?Pattern recognition problems, as we have already indicated, can be represented in terms of generalparametrized non-linear mappings between a set of input variables and a set of output variables.A polynomial represents a particular class of mapping for the case of one input and one output.Provided we have a su�ciently large number of terms in the polynomial, we can approximatea wide class of functions to arbitrary accuracy. This suggests that we could simply extend theconcept of a polynomial to higher dimensions. Thus, for d input variables, and again one outputvariable, we could, for instance, consider a third-order polynomial of the formy = w0 + dXi1=1wi1xi1 + dXi1=1 dXi2=1wi1i2xi1xi2 + dXi1=1 dXi2=1 dXi3=1wi1i2i3xi1xi2xi3 : (3)For an M th-order polynomial of this kind, the number of independent adjustable parameterswould grow like dM , which represents a dramatic growth in the number of degrees of freedom inthe model as the dimensionality of the input space increases. This is an example of the curseof dimensionality (Bellman, 1961). The presence of a large number of adaptive parameters in amodel can cause major problems as we shall discuss in Section 4. In order that the model makegood predictions for new inputs it is necessary that the number of data points in the training setbe much greater than the number of adaptive parameters. For medium to large applications, sucha model would need huge quantities of training data in order to ensure that the parameters (inthis case the coe�cients in the polynomial) were well determined.There are in fact many di�erent ways in which to represent general non-linear mappings be-tween multidimensional spaces. The importance of neural networks, and similar techniques, lies in3



the way in which they deal with the problem of scaling with dimensionality. In order to motivateneural network models it is convenient to represent the non-linear mapping function (1) in termsof a linear combination of basis functions, sometimes also called `hidden functions' or hidden units,zj(x), so that yk(x) = MXj=0wkjzj(x): (4)Here the basis function z0 takes the �xed value 1 and allows a constant term in the expansion.The corresponding weight parameter wk0 is generally called a bias. Both the one-dimensionalpolynomial (2) and the multi-dimensional polynomial (3) can be cast in this form, in which basisfunctions are �xed functions of the input variables.We have seen from the example of the higher-order polynomial that to represent general func-tions of many input variables we have to consider a large number of basis functions, which inturn implies a large number of adaptive parameters. In most practical applications there will besigni�cant correlations between the input variables so that the e�ective dimensionality of the spaceoccupied by the data (known as the intrinsic dimensionality) is signi�cantly less than the numberof inputs. The key to constructing a model which can take advantage of this phenomenon is toallow the basis functions themselves to be adapted to the data as part of the training process. Inthis case the number of such functions only needs to grow as the complexity of the problem itselfgrows, and not simply as the number of input variables grows. The number of free parameters insuch models, for a given number of hidden functions, typically only grows linearly (or quadrati-cally) with the dimensionality of the input space, as compared with the dM growth for a generalM th-order polynomial.One of the simplest, and most commonly encountered, models with adaptive basis functions isgiven by the two-layer feed-forward network, sometimes called a multi-layer perceptron, which canbe expressed in the form (4) in which the basis functions themselves contain adaptive parametersand are given by zj(x) = g dXi=0 wjixi! (5)where wj0 are bias parameters, and we have introduced an extra `input variable' x0 = 1 inorder to allow the biases to be treated on the same footing as the other parameters and hencebe absorbed into the summation in (5). The function g(�) is called an activation function andmust be a non-linear function of its argument in order that the network model can have generalapproximation capabilities. If g(�) were linear, then (5) would reduce to the composition of twolinear mappings which would itself be linear. The activation function is also chosen to be adi�erentiable function of its argument in order that the network parameters can be optimizedusing gradient-based methods as discussed in Section 3.3. Many di�erent forms of activationfunction can be considered. However, the most common are sigmoidal (meaning `S-shaped') andinclude the logistic sigmoid g(a) = 11 + exp(�a) (6)which is plotted in Figure 1. The motivation for this form of activation function is consideredin Section 3.2. We can combine (4) and (5) to obtain a complete expression for the functionrepresented by a two-layer feed-forward network in the formyk(x) = MXj=0wkjg dXi=0 wjixi! : (7)The form of network mapping given by (7) is appropriate for regression problems, but needs somemodi�cation for classi�cation applications as will also be discussed in Section 3.2.It should be noted that models of this kind, with basis functions which are adapted to thedata, are not unique to neural networks. Such models have been considered for many years in4
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Figure 1. Plot of the logistic sigmoid activation function given by (6).
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zMFigure 2. An example of a feed-forward network having two layers of adaptiveweights.the statistics literature and include, for example, projection pursuit regression (Friedman andStuetzle, 1981; Huber, 1985) which has a form remarkably similar to that of the feed-forwardnetwork discussed above. The procedures for determining the parameters in projection pursuitregression are, however, quite di�erent from those generally used for feed-forward networks.It is often useful to represent the network mapping function in terms of a network diagram, asshown in Figure 2. Each element of the diagram represents one of the terms of the correspondingmathematical expression. The bias parameters in the �rst layer are shown as weights from anextra input having a �xed value of x0 = 1. Similarly, the bias parameters in the second layer areshown as weights from an extra hidden unit, with activation again �xed at z0 = 1.More complex forms of feed-forward network function can be considered, corresponding tomore complex topologies of network diagram. However, the simple structure of Figure 2 hasthe property that it can approximate any continuous mapping to arbitrary accuracy providedthe number M of hidden units is su�ciently large. This property has been discussed by manyauthors including Funahashi (1989), Hecht-Nielsen (1989), Cybenko (1989), Hornik et al. (1989),Stinchecombe and White (1989), Cotter (1990), Ito (1991), Hornik (1991) and Kreinovich (1991).A proof that two-layer networks having sigmoidal hidden units can simultaneously approximateboth a function and its derivatives was given by Hornik et al. (1990).5



The other major class of network model, which also possesses universal approximation capabil-ities, is the radial basis function network (Broomhead and Lowe, 1988; Moody and Darken, 1989).Such networks again take the form (4), but the basis functions now depend on some measure ofdistance between the input vector x and a prototype vector �j . A typical example would be aGaussian basis function of the formzj(x) = exp �kx � �jk22�2j ! (8)where the parameter �j controls the width of the basis function. Training of radial basis functionnetworks usually involves a two-stage procedure in which the basis functions are �rst optimizedusing input data alone, and then the parameters wkj in (4) are optimized by error functionminimization. Such procedures are described in detail in Bishop (1995).2.3 Statistical pattern recognitionWe turn now to some of the formalism of statistical pattern recognition, which we regard asessential for a clear understanding of neural networks. For convenience we introduce many of thecentral concepts in the context of classi�cation problems, although much the same ideas apply alsoto regression. The goal is to assign an input pattern x to one of c classes Ck where k = 1; : : : ; c. Inthe case of hand-written digit recognition, for example, we might have ten classes corresponding tothe ten digits 0; : : : ; 9. One of the powerful results of the theory of statistical pattern recognitionis a formalism which describes the theoretically best achievable performance, corresponding tothe smallest probability of misclassifying a new input pattern. This provides a principled contextwithin which we can develop neural networks, and other techniques, for classi�cation.For any but the simplest of classi�cation problems it will not be possible to devise a systemwhich is able to give perfect classi�cation of all possible input patterns. The problem arisesbecause many input patterns cannot be assigned unambiguously to one particular class. Insteadthe most general description we can give is in terms of the probabilities of belonging to each ofthe classes Ck given an input vector x. These probabilities are written as P (Ckjx), and are calledthe posterior probabilities of class membership, since they correspond to the probabilities afterwe have observed the input pattern x. If we consider a large set of patterns all from a particularclass Ck then we can consider the probability distribution of the corresponding input patterns,which we write as p(xjCk). These are called the class-conditional distributions and, since thevector x is a continuous variable, they correspond to probability density functions rather thanprobabilities. The distribution of input vectors, irrespective of their class labels, is written as p(x)and is called the unconditional distribution of inputs. Finally, we can consider the probabilitiesof occurrence of the di�erent classes irrespective of the input pattern, which we write as P (Ck).These correspond to the relative frequencies of patterns within the complete data set, and arecalled prior probabilities since they correspond to the probabilities of membership of each of theclasses before we observe a particular input vector.These various probabilities can be related using two standard results from probability theory.The �rst is the product rule which takes the formP (Ck;x) = P (Ckjx)p(x) (9)and the second is the sum rule given byXk P (Ck;x) = p(x): (10)From these rules we obtain the following relationP (Ckjx) = p(xjCk)P (Ck)p(x) (11)6



which is known as Bayes' theorem. The denominator in (11) is given byp(x) =Xk p(xjCk)P (Ck) (12)and plays the role of a normalizing factor, ensuring that the posterior probabilities in (11) sum toonePk P (Ckjx) = 1. As we shall see shortly, knowledge of the posterior probabilities allows us to�nd the optimal solution to a classi�cation problem. A key result, discussed in Section 3.2, is thatunder suitable circumstances the outputs of a correctly trained neural network can be interpretedas (approximations to) the posterior probabilities P (Ckjx) when the vector x is presented to theinputs of the network.As we have already noted, perfect classi�cation of all possible input vectors will in general beimpossible. The best we can do is to minimize the probability that an input will be misclassi-�ed. This is achieved by assigning each new input vector x to that class for which the posteriorprobability P (Ckjx) is largest. Thus an input vector x is assigned to class Ck ifP (Ckjx) > P (Cjjx) for all j 6= k: (13)We shall see the justi�cation for this rule shortly. Since the denominator in Bayes' theorem (11)is independent of the class, we see that this is equivalent to assigning input patterns to class Ckprovided p(xjCk)P (Ck) > p(xjCj)P (Cj) for all j 6= k: (14)A pattern classi�er provides a rule for assigning each point of feature space to one of c classes.We can therefore regard the feature space as being divided up into c decision regions R1; : : : ;Rcsuch that a point falling in region Rk is assigned to class Ck. Note that each of these regionsneed not be contiguous, but may itself be divided into several disjoint regions all of which areassociated with the same class. The boundaries between these regions are known as decisionsurfaces or decision boundaries.In order to �nd the optimal criterion for placement of decision boundaries, consider the case ofa one-dimensional feature space x and two classes C1 and C2. We seek a decision boundary whichminimizes the probability of misclassi�cation, as illustrated in Figure 3. A misclassi�cation errorwill occur if we assign a new pattern to class C1 when in fact it belongs to class C2, or vice versa.We can calculate the total probability of an error of either kind by writing (Duda and Hart, 1973)P (error) = P (x 2 R2; C1) + P (x 2 R1; C2)= P (x 2 R2jC1)P (C1) + P (x 2 R1jC2)P (C2)= ZR2 p(xjC1)P (C1) dx+ ZR1 p(xjC2)P (C2) dx (15)where P (x 2 R1; C2) is the joint probability of x being assigned to class C1 and the true class beingC2. From (15) we see that, if p(xjC1)P (C1) > p(xjC2)P (C2) for a given x, we should choose theregions R1 and R2 such that x is in R1, since this gives a smaller contribution to the error. Werecognise this as the decision rule given by (14) for minimizing the probability of misclassi�cation.The same result can be seen graphically in Figure 3, in which misclassi�cation errors arise fromthe shaded region. By choosing the decision boundary to coincide with the value of x at which thetwo distributions cross (shown by the arrow) we minimize the area of the shaded region and henceminimize the probability of misclassi�cation. This corresponds to classifying each new pattern xusing (14), which is equivalent to assigning each pattern to the class having the largest posteriorprobability. A similar justi�cation for this decision rule may be given for the general case of cclasses and d-dimensional feature vectors (Duda and Hart, 1973).It is important to distinguish between two separate stages in the classi�cation process. The�rst is inference whereby data is used to determine values for the posterior probabilities. Theseare then used in the second stage which is decision making in which those probabilities are usedto make decisions such as assigning a new data point to one of the possible classes. So far we7
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xFigure 3. Schematic illustration of the joint probability densities, given byp(x;Ck) = p(xjCk)P (Ck), as a function of a feature value x, for two classes C1and C2. If the vertical line is used as the decision boundary then the classi�ca-tion errors arise from the shaded region. By placing the decision boundary atthe point where the two probability density curves cross (shown by the arrow),the probability of misclassi�cation is minimized.have based classi�cation decisions on the goal of minimizing the probability of misclassi�cation.In many applications this may not be the most appropriate criterion. Consider, for instance, thetask of classifying images used in medical screening into two classes corresponding to `normal'and `tumour'. There may be much more serious consequences if we classify an image of a tumouras normal than if we classify a normal image as that of a tumour. Such e�ects may easily betaken into account by the introduction of a loss matrix with elements Lkj specifying the penaltyassociated with assigning a pattern to class Cj when in fact it belongs to class Ck. The overallexpected loss is minimized if, for each input x, the decision regions Rj are chosen such that x 2 Rjwhen cXk=1Lkjp(xjCk)P (Ck) < cXk=1Lkip(xjCk)P (Ck) for all i 6= j (16)which represents a generalization of the usual decision rule for minimizing the probability ofmisclassi�cation. Note that, if we assign a loss of 1 if the pattern is placed in the wrong class, anda loss of 0 if it is placed in the correct class, so that Lkj = 1��kj (where �kj is the Kronecker deltasymbol), then (16) reduces to the decision rule for minimizing the probability of misclassi�cation,given by (14).Another powerful consequence of knowing posterior probabilities is that it becomes possibleto introduce a reject criterion. In general we expect most of the misclassi�cation errors to occurin those regions of x-space where the largest of the posterior probabilities is relatively low, sincethere is then a strong overlap between di�erent classes. In some applications it may be better notto make a classi�cation decision in such cases. This leads to the following procedureif maxk P (Ckjx) �� �; then classify x< �; then reject x (17)where � is a threshold in the range (0; 1). The larger the value of �, the fewer points will beclassi�ed. For the medical classi�cation problem for example, it may be better not to rely on anautomatic classi�cation system in doubtful cases, but to have these classi�ed instead by a humanexpert.Yet another application for the posterior probabilities arises when the distributions of patternsbetween the classes, corresponding to the prior probabilities P (Ck), are strongly mis-matched. Ifwe know the posterior probabilities corresponding to the data in the training set, it is then it isa simple matter to use Bayes' theorem (11) to make the necessary corrections. This is achieved8



by dividing the posterior probabilities by the prior probabilities corresponding to the training set,multiplying them by the new prior probabilities, and then normalizing the results. Changes inthe prior probabilities can therefore be accommodated without retraining the network. The priorprobabilities for the training set may be estimated simply by evaluating the fraction of the trainingset data points in each class. Prior probabilities corresponding to the operating environment canoften be obtained very straightforwardly since only the class labels are needed and no input datais required. As an example, consider again the problem of classifying medical images into `normal'and `tumour'. When used for screening purposes, we would expect a very small prior probabilityof `tumour'. To obtain a good variety of tumour images in the training set would therefore requirehuge numbers of training examples. An alternative is to increase arti�cially the proportion oftumour images in the training set, and then to compensate for the di�erent priors on the testdata as described above. The prior probabilities for tumours in the general population can beobtained from medical statistics, without having to collect the corresponding images. Correctionof the network outputs is then a simple matter of multiplication and division.The most common approach to the use of neural networks for classi�cation involves havingthe network itself directly produce the classi�cation decision. As we have seen, knowledge of theposterior probabilities is substantially more powerful.3 Error FunctionsWe turn next to the problem of determining suitable values for the weight parameters w in anetwork.Training data is provided in the form of N pairs of input vectors xn and corresponding desiredoutput vectors tn where n = 1; : : : ; N labels the patterns. These desired outputs are calledtarget values in the neural network context, and the components tnk of tn represent the targetsfor the corresponding network outputs yk. For associative prediction problems of the kind we areconsidering, the most general and complete description of the statistical properties of the data isgiven in terms of the conditional density of the target data p(tjx) conditioned on the input data.A principled way to devise an error function is to use the concept of maximum likelihood. Fora set of training data fxn; tng, the likelihood can be written asL =Yn p(tnjxn) (18)where we have assumed that each data point (xn; tn) is drawn independently from the same distri-bution, so that the likelihood for the complete data set is given by the product of the probabilitiesfor each data point separately. Instead of maximizing the likelihood, it is generally more conve-nient to minimize the negative logarithm of the likelihood. These are equivalent procedures, sincethe negative logarithm is a monotonic function. We therefore minimizeE = � lnL = �Xn ln p(tnjxn) (19)where E is called an error function. We shall further assume that the distribution of the individualtarget variables tk, where k = 1; : : : ; c, are independent, so that we can writep(tjx) = cYk=1p(tkjx): (20)As we shall see, a feed-forward neural network can be regarded as a framework for modelling theconditional probability density p(tjx). Di�erent choices of error function then arise from di�erentassumptions about the form of the conditional distribution p(tjx). It is convenient to discuss errorfunctions for regression and classi�cation problems separately.9



3.1 Error functions for regressionFor regression problems, the output variables are continuous. To de�ne a speci�c error function wemust make some choice for the model of the distribution of target data. The simplest assumptionis to take this distribution to be Gaussian. More speci�cally, we assume that the target variabletk is given by some deterministic function of x with added Gaussian noise �, so thattk = hk(x) + �k: (21)We then assume that the errors �k have a normal distribution with zero mean, and standard adeviation � which does not depend on x or k. Thus, the distribution of �k is given byp(�k) = 1(2��2)1=2 exp�� �2k2�2� : (22)We now model the functions hk(x) by a neural network with outputs yk(x;w) where w is the setof weight parameters governing the neural network mapping. Using (21) and (22) we see that theprobability distribution of target variables is given byp(tkjx) = 1(2��2)1=2 exp��fyk(x;w) � tkg22�2 � (23)where we have replaced the unknown function hk(x) by our model yk(x;w). Together with (19)and (20) this leads to the following expression for the error functionE = 12�2 NXn=1 cXk=1fyk(xn;w)� tnkg2 +Nc ln� + Nc2 ln(2�): (24)We note that, for the purposes of error minimization, the second and third terms on the right-handside of (24) are independent of the weights w and so can be omitted. Similarly, the overall factorof 1=�2 in the �rst term can also be omitted. We then �nally obtain the familiar expression forthe sum-of-squares error function E = 12 NXn=1ky(xn;w)� tnk2 : (25)Note that models of the form (4), with �xed basis functions, are linear functions of the pa-rameters w and so (25) is a quadratic function of w. This means that the minimum of E can befound in terms of the solution of a set of linear algebraic equations. For this reason, the process ofdetermining the parameters in such models is extremely fast. Functions which depend linearly onthe adaptive parameters are called linear models, even though they may be non-linear functionsof the input variables. If the basis functions themselves contain adaptive parameters, we have toaddress the problem of minimizing an error function which is generally highly non-linear.The sum-of-squares error function was derived from the requirement that the network outputvector should represent the conditional mean of the target data, as a function of the input vector.It is easily shown (Bishop, 1995) that minimization of this error, for an in�nitely large data setand a highly 
exible network model, does indeed lead to a network satisfying this property.We have derived the sum-of-squares error function on the assumption that the distribution ofthe target data is Gaussian. For some applications, such an assumption may be far from valid(if the distribution is multi-modal for instance) in which case the use of a sum-of-squares errorfunction can lead to extremely poor results. Examples of such distributions arise frequently ininverse problems such as robot kinematics, the determination of spectral line parameters from thespectrum itself, or the reconstruction of spatial data from line-of-sight information. One generalapproach in such cases is to combine a feed-forward network with a Gaussian mixture model (i.e. alinear combination of Gaussian functions) thereby allowing general conditional distributions p(tjx)to be modelled (Bishop, 1994). 10



3.2 Error functions for classi�cationIn the case of classi�cation problems, the goal as we have seen is to approximate the posteriorprobabilities of class membership P (Ckjx) given the input pattern x. We now show how to arrangefor the outputs of a network to approximate these probabilities.First we consider the case of two classes C1 and C2. In this case we can consider a networkhaving a singly output y which we should represent the posterior probability P (C1jx) for class C1.The posterior probability of class C2 will then be given by P (C2jx) = 1 � y. To achieve this weconsider a target coding scheme for which t = 1 if the input vector belongs to class C1 and t = 0if it belongs to class C2. We can combine these into a single expression, so that the probability ofobserving either target value is p(tjx) = yt(1� y)1�t (26)which is a particular case of the binomial distribution called the Bernoulli distribution. With thisinterpretation of the output unit activations, the likelihood of observing the training data set,assuming the data points are drawn independently from this distribution, is then given byYn (yn)tn(1� yn)1�tn : (27)As usual, it is more convenient to minimize the negative logarithm of the likelihood. This leadsto the cross-entropy error function (Hop�eld, 1987; Baum and Wilczek, 1988; Solla et al., 1988;Hinton, 1989; Hampshire and Pearlmutter, 1990) in the formE = �Xn ftn lnyn + (1� tn) ln(1� yn)g : (28)For the network model introduced in (4) the outputs were linear functions of the activations ofthe hidden units. While this is appropriate for regression problems, we need to consider the correctchoice of output unit activation function for the case of classi�cation problems. We shall assume(Rumelhart et al., 1995) that the class-conditional distributions of the outputs of the hidden units,represented here by the vector z, are described byp(zjCk) = expnA(�k) + B(z;�) + �Tk zo (29)which is a member of the exponential family of distributions (which includes many of the commondistributions as special cases such as Gaussian, binomial, Bernoulli, Poisson, and so on). Theparameters �k and � control the form of the distribution. In writing (29) we are implicitlyassuming that the distributions di�er only in the parameters �k and not in �. An example wouldbe two Gaussian distributions with di�erent means, but with common covariance matrices. (Notethat the decision boundaries will then be linear functions of z but will of course be non-linearfunctions of the input variables as a consequence of the non-linear transformation by the hiddenunits).Using Bayes' theorem, we can write the posterior probability for class C1 in the formP (C1jz) = p(zjC1)P (C1)p(zjC1)P (C1) + p(zjC2)P (C2)= 11 + exp(�a) (30)which is a logistic sigmoid function, in whicha = ln p(zjC1)P (C1)p(zjC2)P (C2) (31)Using (29) we can write this in the form a = wTz +w0 (32)11
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0.0 0.5 1.0xFigure 4. Plots of the class-conditional densities used to generate a data set todemonstrate the interpretation of network outputs as posterior probabilities.The training data set was generated from these densities, using equal priorprobabilities.where we have de�ned w = �1 � �2 (33)w0 = A(�1)� A(�2) + ln P (C1)P (C2) : (34)Thus the network output is given by a logistic sigmoid activation function acting on a weightedlinear combination of the outputs of those hidden units which send connections to the output unit.Incidentally, it is clear that we can also apply the above arguments to the activations of hiddenunits in a network. Provided such units use logistic sigmoid activation functions, we can interprettheir outputs as probabilities of the presence of corresponding `features' conditioned on the inputsto the units.As a simple illustration of the interpretation of network outputs as probabilities, we considera two-class problem with one input variable in which the class-conditional densities are given bythe Gaussian mixture functions shown in Figure 4. A feed-forward network with �ve hidden unitshaving sigmoidal activation functions, and one output unit having a logistic sigmoid activationfunction, was trained by minimizing a cross-entropy error using 100 cycles of the BFGS quasi-Newton algorithm (Section 3.3). The resulting network mapping function is shown, along withthe true posterior probability calculated using Bayes' theorem, in Figure 5.For the case of more than two classes, we consider a network with one output for each classso that each output represents the corresponding posterior probability. First of all we choose thetarget values for network training according to a 1-of-c coding scheme, so that tnk = �kl for apattern n from class Cl. We wish to arrange for the probability of observing the set of targetvalues tnk , given an input vector xn, to be given by the corresponding network output so thatp(Cljx) = yl. The value of the conditional distribution for this pattern can therefore be written asp(tnjxn) = cYk=1(ynk )tnk : (35)If we form the likelihood function, and take the negative logarithm as before, we obtain an errorfunction of the form E = �Xn cXk=1 tnk lnynk : (36)12
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exible network function, indeed leads to network outputs whichrepresent the posterior probabilities for any input vector x.Note that the network outputs of the trained network need not be close to 0 or 1 if theclass-conditional density functions are overlapping. Heuristic procedures, such as applying extratraining using those patterns which fail to generate outputs close to the target values, will becounterproductive, since this alters the distributions and makes it less likely that the network willgenerate the correct Bayesian probabilities!3.3 Error back-propagationUsing the principle of maximum likelihood, we have formulated the problem of learning in neuralnetworks in terms of the minimization of an error function E(w). This error depends on the vector13



w of weight and bias parameters in the network, and the goal is therefore to �nd a weight vectorw� which minimizes E. For models of the form (4) in which the basis functions are �xed, andfor an error function given by the sum-of-squares form (25), the error is a quadratic function ofthe weights. Its minimization then corresponds to the solution of a set of coupled linear equationsand can be performed rapidly in �xed time. We have seen, however, that models with �xed basisfunctions su�er from very poor scaling with input dimensionality. In order to avoid this di�cultywe need to consider models with adaptive basis functions. The error function now becomes a highlynon-linear function of the weight vector, and its minimization requires sophisticated optimizationtechniques.We have considered error functions of the form (25), (28) and (36) which are di�erentiablefunctions of the network outputs. Similarly, we have considered network mappings which aredi�erentiable functions of the weights. It therefore follows that the error function itself will be adi�erentiable function of the weights and so we can use gradient-based methods to �nd its minima.We now show that there is a computationally e�cient procedure, called back-propagation, whichallows the required derivatives to be evaluated for arbitrary feed-forward network topologies.In a general feed-forward network, each unit computes a weighted sum of its inputs of the formzj = g(aj); aj =Xi wjizi (42)where zi is the activation of a unit, or input, which sends a connection to unit j, and wji is theweight associated with that connection. The summation runs over all units which send connectionsto unit j. Biases can be included in this sum by introducing an extra unit, or input, with activation�xed at +1. We therefore do not need to deal with biases explicitly. The error functions whichwe are considering can be written as a sum over patterns of the error for each pattern separatelyso that E = PnEn. This follows from the assumed independence of the data points under thegiven distribution. We can therefore consider one pattern at a time, and then �nd the derivativesof E by summing over patterns.For each pattern we shall suppose that we have supplied the corresponding input vector tothe network and calculated the activations of all of the hidden and output units in the networkby successive application of (42). This process is often called forward propagation since it can beregarded as a forward 
ow of information through the network.Now consider the evaluation of the derivative of En with respect to some weight wji. First wenote that En depends on the weight wji only via the summed input aj to unit j. We can thereforeapply the chain rule for partial derivatives to give@En@wji = @En@aj @aj@wji : (43)We now introduce a useful notation �j � @En@aj (44)where the �'s are often referred to as errors for reasons which will become clear shortly. Using(42) we can write @aj@wji = zi: (45)Substituting (44) and (45) into (43) we then obtain@En@wji = �jzi: (46)Equation (46) tells us that the required derivative is obtained simply by multiplying the value of� for the unit at the output end of the weight by the value of z for the unit at the input end ofthe weight (where z = 1 in the case of a bias). Thus, in order to evaluate the derivatives, we need14
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know the values of the �'s for the output units, it follows that by recursively applying (50) we canevaluate the �'s for all of the hidden units in a feed-forward network, regardless of its topology.Having found the gradient of the error function for this particular pattern, the process of forwardand backward propagation is repeated for each pattern in the data set, and the resulting derivativessummed to give the gradient rE(w) of the total error function.The back-propagation algorithm allows the error function gradient rE(w) to be evaluatede�ciently. We now seek a way of using this gradient information to �nd a weight vector whichminimizes the error. This is a standard problem in unconstrained non-linear optimization and hasbeen widely studied, and a number of powerful algorithms have been developed. Such algorithmsbegin by choosing an initial weight vector w(0) (which might be selected at random) and thenmaking a series of steps through weight space of the formw(�+1) = w(�) +�w(�) (51)where � labels the iteration step. The simplest choice for the weight update is given by the gradientdescent expression �w(�) = �� rEjw(�) (52)where the gradient vector rE must be re-evaluated at each step. It should be noted that gradi-ent descent is a very ine�cient algorithm for highly non-linear problems such as neural networkoptimization. Numerous ad hoc modi�cations have been proposed to try to improve its e�ciency.One of the most common is the addition of a momentum term in (52) to give�w(�) = �� rEjw(�) + ��w(��1) (53)where � is called the momentum parameter. While this can often lead to improvements in theperformance of gradient descent, there are now two arbitrary parameters � and � whose valuesmust be adjusted to give best performance. Furthermore, the optimal values for these parameterswill often vary during the optimization process. In fact much more powerful techniques have beendeveloped for solving non-linear optimization problems (Polak, 1971; Gill et al., 1981; Dennis andSchnabel, 1983; Luenberger, 1984; Fletcher, 1987; Bishop, 1995). These include conjugate gradientmethods, quasi-Newton algorithms, and the Levenberg-Marquardt technique.It should be noted that the term back-propagation is used in the neural computing literatureto mean a variety of di�erent things. For instance, the multi-layer perceptron architecture issometimes called a back-propagation network. The term back-propagation is also used to describethe training of a multi-layer perceptron using gradient descent applied to a sum-of-squares errorfunction. In order to clarify the terminology it is useful to consider the nature of the trainingprocess more carefully. Most training algorithms involve an iterative procedure for minimizationof an error function, with adjustments to the weights being made in a sequence of steps. At eachsuch step we can distinguish between two distinct stages. In the �rst stage, the derivatives ofthe error function with respect to the weights must be evaluated. As we shall see, the importantcontribution of the back-propagation technique is in providing a computationally e�cient methodfor evaluating such derivatives. Since it is at this stage that errors are propagated backwardsthrough the network, we use the term back-propagation speci�cally to describe the evaluation ofderivatives. In the second stage, the derivatives are then used to compute the adjustments to bemade to the weights. The simplest such technique, and the one originally considered by Rumelhartet al. (1986), involves gradient descent. It is important to recognize that the two stages are distinct.Thus, the �rst stage process, namely the propagation of errors backwards through the networkin order to evaluate derivatives, can be applied to many other kinds of network and not just themulti-layer perceptron. It can also be applied to error functions other that the simple sum-of-squares, and to the evaluation of other quantities such as the Hessian matrix whose elementscomprise the second derivatives of the error function with respect to the weights (Bishop, 1992).Similarly, the second stage of weight adjustment using the calculated derivatives can be tackledusing a variety of optimization schemes (discussed above), many of which are substantially moree�ective than simple gradient descent. 16



One of the most important aspects of back-propagation is its computational e�ciency. Tounderstand this, let us examine how the number of computer operations required to evaluatethe derivatives of the error function scales with the size of the network. A single evaluation ofthe error function (for a given input pattern) would require O(W ) operations, where W is thetotal number of weights in the network. For W weights in total there are W such derivativesto evaluate. A direct evaluation of these derivatives individually would therefore require O(W 2)operations. By comparison, back-propagation allows all of the derivatives to be evaluated usinga single forward propagation and a single backward propagation together with the use of (46).Since each of these requires O(W ) steps, the overall computational cost is reduced from O(W 2)to O(W ). The training of multi-layer perceptron networks, even using back-propagation coupledwith e�cient optimization algorithms, can be very time consuming, and so this gain in e�ciencyis crucial.4 GeneralizationThe goal of network training is not to learn an exact representation of the training data itself, butrather to build a statistical model of the process which generates the data. This is important ifthe network is to exhibit good generalization, that is, to make good predictions for new inputs.In order for the network to provide a good representation of the generator of the data it isimportant that the e�ective complexity of the model be matched to the data set. This is most easilyillustrated by returning to the analogy with polynomial curve �tting introduced in Section 2.1. Inthis case the model complexity is governed by the order of the polynomial which in turn governsthe number of adjustable coe�cients. Consider a data set of 11 points generated by sampling thefunction h(x) = 0:5 + 0:4 sin(2�x) (54)at equal intervals of x and then adding random noise with a Gaussian distribution having standarddeviation � = 0:05. This re
ects a basic property of most data sets of interest in pattern recognitionin that the data exhibits an underlying systematic component, represented in this case by thefunction h(x), but is corrupted with random noise. Figure 7 shows the training data, as well asthe function h(x) from (54), together with the result of �tting a linear polynomial, given by (2)withM = 1. As can be seen, this polynomial gives a poor representation of h(x), as a consequenceof its limited 
exibility. We can obtain a better �t by increasing the order of the polynomial, sincethis increases the number of degrees of freedom (i.e. the number of free parameters) in the function,which gives it greater 
exibility.Figure 8 shows the result of �tting a cubic polynomial (M = 3) which gives a much betterapproximation to h(x). If, however, we increase the order of the polynomial too far, then theapproximation to the underlying function actually gets worse. Figure 9 shows the result of �ttinga 10th-order polynomial (M = 10). This is now able to achieve a perfect �t to the training data,since a 10th-order polynomial has 11 free parameters, and there are 11 data points. However, thepolynomial has �tted the data by developing some dramatic oscillations and consequently gives apoor representation of h(x). Functions of this kind are said to be over-�tted to the data.In order to determine the generalization performance of the di�erent polynomials, we generatea second independent test set, and measure the root-mean-square error ERMS with respect to bothtraining and test sets. Figure 10 shows a plot of ERMS for both the training data set and thetest data set, as a function of the order M of the polynomial. We see that the training set errordecreases steadily as the order of the polynomial increases. However, the test set error reachesa minimum at M = 3, and thereafter increases as the order of the polynomial is increased. Thesmallest error is achieved by that polynomial (M = 3) which most closely matches the functionh(x) from which the data was generated.In the case of neural networks the weights and biases are analogous to the polynomial coef-�cients. These parameters can be optimized by minimization of an error function de�ned withrespect to a training data set. The model complexity is governed by the number of such parame-ters and so is determined by the network architecture and in particular by the number of hidden17
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units. We have seen that the complexity cannot be optimized by minimization of training set errorsince the smallest training error corresponds to an over-�tted model which has poor generalization.Instead, we see that the optimum complexity can be chosen by comparing the performance of arange of trained models using an independent test set. A more elaborate version of this procedureis cross-validation (Stone, 1974, 1978; Wahba and Wold, 1975).Instead of directly varying the number of adaptive parameters in a network, the e�ectivecomplexity of the model may be controlled through the technique of regularization. This involvesthe use of a model with a relatively large number of parameters, together with the addition of apenalty term 
 to the usual error function E to give a total error function of the formeE = E + �
 (55)where � is called a regularization coe�cient. The penalty term 
 is chosen so as to encouragesmoother network mapping functions since, by analogy with the polynomial results shown inFigures 7{9, we expect that good generalization is achieved when the rapid variations in themapping associated with over-�tting are smoothed out. There will be an optimum value for �which can again be found by comparing the performance of models trained using di�erent valuesof � on an independent test set. Regularization is usually the preferred choice for model complexitycontrol for a number of reasons: it allows prior knowledge to be incorporated into network training;it has a natural interpretation in the Bayesian framework (discussed in Section 5); and it can beextended to provide more complex forms of regularization involving several di�erent regularizationparameters which can be used, for example, to determine the relative importance of di�erentinputs.5 DiscussionIn this chapter we have presented a brief overview of neural networks from the viewpoint ofstatistical pattern recognition. Due to lack of space, there are many important issues which wehave not discussed or have only touched upon. Here we mention two further topics of considerablesigni�cance for neural computing.In practical applications of neural networks, one of the most important factors determiningthe overall performance of the �nal system is that of data pre-processing. Since a neural networkmapping has universal approximation capabilities, as discussed in Section 2.2, it would in principlebe possible to use the original data directly as the input to a network. In practice, however, thereis generally considerable advantage in processing the data in various ways before it is used fornetwork training. One important reason why preprocessing can lead to improved performance isthat it can o�set some of the e�ects of the `curse of dimensionality' discussed in Section 2.2 byreducing the number of input variables. Input can be combined in linear or non-linear ways togive a smaller number of new inputs which are then presented to the network. This is sometimescalled feature extraction. Although information is often lost in the process, this can be more thancompensated for by the bene�ts of a lower input dimensionality. Another signi�cant aspect ofpre-processing is that it allows the use of prior knowledge, in other words information which isrelevant to the solution of a problem which is additional to that contained in the training data. Asimple example would be the prior knowledge that the classi�cation of a handwritten digit shouldnot depend on the location of the digit within the input image. By extracting features which areindependent of position, this translation invariance can be incorporated into the network structure,and this will generally give substantially improved performance compared with using the originalimage directly as the input to the network. Another use for preprocessing is to clean up de�cienciesin the data. For example, real data sets often su�er from the problem of missing values in manyof the patterns, and these must be accounted for before network training can proceed.The discussion of learning in neural networks given above was based on the principle of maxi-mum likelihood, which itself stems from the frequentist school of statistics. A more fundamental,and potentially more powerful, approach is given by the Bayesian viewpoint (Jaynes, 1986). In-stead of describing a trained network by a single weight vectorw�, the Bayesian approach expresses20



our uncertainty in the values of the weights through a probability distribution p(w). The e�ectof observing the training data is to cause this distribution to become much more concentrated inparticular regions of weight space, re
ecting the fact that some weight vectors are more consistentwith the data than others. Predictions for new data points require the evaluation of integrals overweight space, weighted by the distribution p(w). The maximum likelihood approach considered inSection 3 then represents a particular approximation in which we consider only the most probableweight vector, corresponding to a peak in the distribution. Aside from o�ering a more fundamentalview of learning in neural networks, the Bayesian approach allows error bars to be assigned to net-work predictions, and regularization arises in a natural way in the Bayesian setting. Furthermore,a Bayesian treatment allows the model complexity (as determined by regularization coe�cientsfor instance) to be treated without the need for independent data as in cross-validation.Although the Bayesian approach is very appealing, a full implementation is intractable forneural networks. Two principal approximation schemes have therefore been considered. In the�rst of these (MacKay, 1992a, 1992b, 1992c) the distribution over weights is approximated by aGaussian centred on the most probable weight vector. Integrations over weight space can thenbe performed analytically, and this leads to a practical scheme which involves relatively smallmodi�cations to conventional algorithms. An alternative approach to the Bayesian treatment ofneural networks is to use Monte Carlo techniques (Neal, 1994) to perform the required integrationsnumerically without making analytical approximations. Again, this leads to a practical schemewhich has been applied to some real-world problems.An interesting aspect of the Bayesian viewpoint is that it is not, in principle, necessary to limitnetwork complexity (Neal, 1994), and that over-�tting should not arise if the Bayesian approachis implemented correctly.A more comprehensive discussion of these and other topics can be found in Bishop (1995).ReferencesAnderson, J. A. and E. Rosenfeld (Eds.) (1988). Neurocomputing: Foundations of Research.Cambridge, MA: MIT Press.Baum, E. B. and F. Wilczek (1988). Supervised learning of probability distributions by neuralnetworks. In D. Z. Anderson (Ed.), Neural Information Processing Systems, pp. 52{61. NewYork: American Institute of Physics.Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. New Jersey: Princeton Uni-versity Press.Bishop, C. M. (1992). Exact calculation of the Hessian matrix for the multilayer perceptron.Neural Computation 4 (4), 494{501.Bishop, C. M. (1994). Mixture density networks. Technical Report NCRG/94/001, Neural Com-puting Research Group, Aston University, Birmingham, UK.Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.Broomhead, D. S. and D. Lowe (1988). Multivariable functional interpolation and adaptivenetworks. Complex Systems 2, 321{355.Cotter, N. E. (1990). The Stone-Weierstrass theorem and its application to neural networks.IEEE Transactions on Neural Networks 1 (4), 290{295.Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics ofControl, Signals and Systems 2, 304{314.Dennis, J. E. and R. B. Schnabel (1983). Numerical Methods for Unconstrained Optimizationand Nonlinear Equations. Englewood Cli�s, NJ: Prentice-Hall.Devijver, P. A. and J. Kittler (1982). Pattern Recognition: A Statistical Approach. EnglewoodCli�s, NJ: Prentice-Hall. 21
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