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1 Introduction

Neural networks have been exploited in a wide variety of applications, the majority of which are
concerned with pattern recognition in one form or another. However, it has become widely ac-
knowledged that the effective solution of all but the simplest of such problems requires a principled
treatment, in other words one based on a sound theoretical framework.

From the perspective of pattern recognition, neural networks can be regarded as an extension
of the many conventional techniques which have been developed over several decades. Lack of
understanding of the basic principles of statistical pattern recognition lies at the heart of many
of the common mistakes in the application of neural networks. In this chapter we aim to show
that the ‘black box’ stigma of neural networks is largely unjustified, and that there is actually
considerable insight available into the way in which neural networks operate, and how to use them
effectively.

Some of the key points which are discussed in this chapter are as follows:

1. Neural networks can be viewed as a general framework for representing non-linear mappings
between multi-dimensional spaces in which the form of the mapping is governed by a number
of adjustable parameters. They therefore belong to a much larger class of such mappings,
many of which have been studied extensively in other fields.

2. Simple techniques for representing multi-variate non-linear mappings in one or two dimen-
sions (e.g. polynomials) rely on linear combinations of fized basis functions (or ‘hidden
functions’). Such methods have severe limitations when extended to spaces of many dimen-
sions; a phenomenon known as the curse of dimensionality. The key contribution of neural
networks in this respect is that they employ basis functions which are themselves adapted
to the data, leading to efficient techniques for multi-dimensional problems.

3. The formalism of statistical pattern recognition, introduced briefly in Section 2.3, lies at
the heart of a principled treatment of neural networks. Many of these topics are treated
in standard texts on statistical pattern recognition, including Duda and Hart (1973), Hand

(1981), Devijver and Kittler (1982), and Fukunaga (1990).
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4. Network training is usually based on the minimization of an error function. We show how
error functions arise naturally from the principle of maximum likelihood, and how different
choices of error function correspond to different assumptions about the statistical proper-
ties of the data. This allows the appropriate error function to be selected for a particular
application.

5. The statistical view of neural networks motivates specific forms for the activation functions
which arise in network models. In particular we see that the logistic sigmoid, often introduced
by analogy with the mean firing rate of a biological neuron, is precisely the function which
allows the activation of a unit to be given a particular probabilistic interpretation.

6. Provided the error function and activation functions are correctly chosen, the outputs of a
trained network can be given precise interpretations. For regression problems they approxi-
mate the conditional averages of the distribution of target data, while for classification prob-
lems they approximate the posterior probabilities of class membership. This demonstrates
why neural networks can approximate the optimal solution to a regression or classification
problem.

7. Error back-propagation is introduced as a general framework for evaluating derivatives for
feed-forward networks. The key feature of back-propagation is that it is computationally
very efficient compared with a simple direct evaluation of derivatives. For network training
algorithms, this efficiency is crucial.

8. The original learning algorithm for multi-layer feed-forward networks (Rumelhart et al.,
1986) was based on gradient descent. In fact the problem of optimizing the weights in a
network corresponds to unconstrained non-linear optimization for which many substantially
more powerful algorithms have been developed.

9. Network complexity, governed for example by the number of hidden units, plays a central
role in determining the generalization performance of a trained network. This is illustrated
using a simple curve fitting example in one dimension.

These and many related issues are discussed at greater length in Bishop (1995).

2 Classification and Regression

In this chapter we concentrate on the two most common kinds of pattern recognition problem.
The first of these we shall refer to as regression, and is concerned with predicting the values of one
or more continuous output variables, given the values of a number of input variables. Examples
include prediction of the temperature of a plasma given values for the intensity of light emitted
at various wavelengths, or the estimation of the fraction of oil in a multi-phase pipeline given
measurements of the absorption of gamma beams along various cross-sectional paths through the
pipe. If we denote the input variables by a vector x with components x; where ¢ = 1,...,d and
the output variables by a vector y with components y; where £ = 1,..., ¢ then the goal of the
regression problem is to find a suitable set of functions which map the z; to the y.

The second kind of task we shall consider is called classification and involves assigning input
patterns to one of a set of discrete classes Cy where £ = 1,... ¢. An important example involves
the automatic interpretation of hand-written digits (Le Cun et al., 1989). Again, we can formulate
a classification problem in terms of a set of functions which map inputs x; to outputs y; where
now the outputs specify which of the classes the input pattern belongs to. For instance, the input
may be assigned to the class whose output value y; is largest.

In general it will not be possible to determine a suitable form for the required mapping,
except with the help of a data set of examples. The mapping i1s therefore modelled in terms of
some mathematical function which contains a number of adjustable parameters, whose values are
determined with the help of the data. We can write such functions in the form

Yr = Ye(X; W) (1)



where w denotes the vector of parameters wy, ..., wwy. A neural network model can be regarded
simply as a particular choice for the set of functions yr(x;w). In this case, the parameters
comprising w are often called weights.

The importance of neural networks in this context is that they offer a very powerful and very
general framework for representing non-linear mappings from several input variables to several
output variables. The process of determining the values for these parameters on the basis of the
data set is called learning or training, and for this reason the data set of examples is generally
referred to as a training set. Neural network models, as well as many conventional approaches
to statistical pattern recognition, can be viewed as specific choices for the functional forms used
to represent the mapping (1), together with particular procedures for optimizing the parameters
in the mapping. In fact, neural network models often contain conventional approaches (such as
linear or logistic regression) as special cases.

2.1 Polynomial curve fitting

Many of the important issues concerning the application of neural networks can be introduced
in the simpler context of curve fitting using polynomial functions. Here the problem is to fit a
polynomial to a set of N data points by minimizing an error function. Consider the Mth-order
polynomial given by
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This can be regarded as a non-linear mapping which takes z as input and produces y as output. The
precise form of the function y(z) is determined by the values of the parameters wy, . ..wpr, which
are analogous to the weights in a neural network. It is convenient to denote the set of parameters
(wy, ..., wyr) by the vector w in which case the polynomial can be written as a functional mapping
in the form (1). Values for the coefficients can be found by minimization of an error function, as
will be discussed in detail in Section 3. We shall give some examples of polynomial curve fitting
in Section 4

2.2 Why neural networks?

Pattern recognition problems, as we have already indicated, can be represented in terms of general
parametrized non-linear mappings between a set of input variables and a set of output variables.
A polynomial represents a particular class of mapping for the case of one input and one output.
Provided we have a sufficiently large number of terms in the polynomial, we can approximate
a wide class of functions to arbitrary accuracy. This suggests that we could simply extend the
concept of a polynomial to higher dimensions. Thus, for d input variables, and again one output
variable, we could, for instance, consider a third-order polynomial of the form
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For an Mth-order polynomial of this kind, the number of independent adjustable parameters
would grow like d™ | which represents a dramatic growth in the number of degrees of freedom in
the model as the dimensionality of the input space increases. This is an example of the curse
of dimensionality (Bellman, 1961). The presence of a large number of adaptive parameters in a
model can cause major problems as we shall discuss in Section 4. In order that the model make
good predictions for new inputs it 1s necessary that the number of data points in the training set
be much greater than the number of adaptive parameters. For medium to large applications, such
a model would need huge quantities of training data in order to ensure that the parameters (in
this case the coefficients in the polynomial) were well determined.

There are in fact many different ways in which to represent general non-linear mappings be-
tween multidimensional spaces. The importance of neural networks, and similar techniques, lies in



the way in which they deal with the problem of scaling with dimensionality. In order to motivate
neural network models it is convenient to represent the non-linear mapping function (1) in terms
of a linear combination of basis functions, sometimes also called ‘hidden functions’ or hidden unaits,
zj (x), so that

yr(x) = Z Wy 2j (%) (4)

Here the basis function zp takes the fixed value 1 and allows a constant term in the expansion.
The corresponding weight parameter wygo is generally called a bias. Both the one-dimensional
polynomial (2) and the multi-dimensional polynomial (3) can be cast in this form, in which basis
functions are fixed functions of the input variables.

We have seen from the example of the higher-order polynomial that to represent general func-
tions of many input variables we have to consider a large number of basis functions, which in
turn implies a large number of adaptive parameters. In most practical applications there will be
significant correlations between the input variables so that the effective dimensionality of the space
occupied by the data (known as the intrinsic dimensionality) is significantly less than the number
of inputs. The key to constructing a model which can take advantage of this phenomenon is to
allow the basis functions themselves to be adapted to the data as part of the training process. In
this case the number of such functions only needs to grow as the complexity of the problem itself
grows, and not simply as the number of input variables grows. The number of free parameters in
such models, for a given number of hidden functions, typically only grows linearly (or quadrati-
cally) with the dimensionality of the input space, as compared with the d* growth for a general
Mth-order polynomial.

One of the simplest, and most commonly encountered, models with adaptive basis functions is
given by the two-layer feed-forward network, sometimes called a multi-layer perceptron, which can
be expressed in the form (4) in which the basis functions themselves contain adaptive parameters

and are given by
d
zj(x) =g (Z wy’il‘i) (5)
i=0

where w;o are bias parameters, and we have introduced an extra ‘input variable’ zyp = 1 in
order to allow the biases to be treated on the same footing as the other parameters and hence
be absorbed into the summation in (5). The function g(-) is called an activation function and
must be a non-linear function of its argument in order that the network model can have general
approximation capabilities. If g(-) were linear, then (5) would reduce to the composition of two
linear mappings which would itself be linear. The activation function is also chosen to be a
differentiable function of its argument in order that the network parameters can be optimized
using gradient-based methods as discussed in Section 3.3. Many different forms of activation
function can be considered. However, the most common are sigmoidal (meaning ‘S-shaped’) and
include the logistic sigmoid

1

9a) = 1+ exp(—a)

(6)
which is plotted in Figure 1. The motivation for this form of activation function is considered
in Section 3.2. We can combine (4) and (5) to obtain a complete expression for the function
represented by a two-layer feed-forward network in the form

yr(x) = Zwkjg (Z wjil‘i) ~ (7)

The form of network mapping given by (7) is appropriate for regression problems, but needs some
modification for classification applications as will also be discussed in Section 3.2.

It should be noted that models of this kind, with basis functions which are adapted to the
data, are not unique to neural networks. Such models have been considered for many years in
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Figure 1. Plot of the logistic sigmoid activation function given by (6).
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Figure 2. An example of a feed-forward network having two layers of adaptive
weights.

the statistics literature and include, for example, projection pursuit regression (Friedman and
Stuetzle, 1981; Huber, 1985) which has a form remarkably similar to that of the feed-forward
network discussed above. The procedures for determining the parameters in projection pursuit
regression are, however, quite different from those generally used for feed-forward networks.

It is often useful to represent the network mapping function in terms of a network diagram, as
shown in Figure 2. Each element of the diagram represents one of the terms of the corresponding
mathematical expression. The bias parameters in the first layer are shown as weights from an
extra input having a fixed value of zy = 1. Similarly, the bias parameters in the second layer are
shown as weights from an extra hidden unit, with activation again fixed at z; = 1.

More complex forms of feed-forward network function can be considered, corresponding to
more complex topologies of network diagram. However, the simple structure of Figure 2 has
the property that it can approximate any continuous mapping to arbitrary accuracy provided
the number M of hidden units is sufficiently large. This property has been discussed by many
authors including Funahashi (1989), Hecht-Nielsen (1989), Cybenko (1989), Hornik et al. (1989),
Stinchecombe and White (1989), Cotter (1990), Tto (1991), Hornik (1991) and Kreinovich (1991).
A proof that two-layer networks having sigmoidal hidden units can simultaneously approximate
both a function and its derivatives was given by Hornik et al. (1990).



The other major class of network model, which also possesses universal approximation capabil-
ities, is the radial basis function network (Broomhead and Lowe, 1988; Moody and Darken, 1989).
Such networks again take the form (4), but the basis functions now depend on some measure of
distance between the input vector x and a prototype vector ;. A typical example would be a
Gaussian basis function of the form

llx — 2511
zj(x) = exp (—T) (8)

J

where the parameter o; controls the width of the basis function. Training of radial basis function
networks usually involves a two-stage procedure in which the basis functions are first optimized
using input data alone, and then the parameters wy; in (4) are optimized by error function
minimization. Such procedures are described in detail in Bishop (1995).

2.3 Statistical pattern recognition

We turn now to some of the formalism of statistical pattern recognition, which we regard as
essential for a clear understanding of neural networks. For convenience we introduce many of the
central concepts in the context of classification problems, although much the same ideas apply also
to regression. The goal is to assign an input pattern x to one of ¢ classes C where k =1,... ¢. In
the case of hand-written digit recognition, for example, we might have ten classes corresponding to
the ten digits 0,...,9. One of the powerful results of the theory of statistical pattern recognition
is a formalism which describes the theoretically best achievable performance, corresponding to
the smallest probability of misclassifying a new input pattern. This provides a principled context
within which we can develop neural networks, and other techniques, for classification.

For any but the simplest of classification problems it will not be possible to devise a system
which 1s able to give perfect classification of all possible input patterns. The problem arises
because many input patterns cannot be assigned unambiguously to one particular class. Instead
the most general description we can give is in terms of the probabilities of belonging to each of
the classes Cp given an input vector x. These probabilities are written as P(C|x), and are called
the posterior probabilities of class membership, since they correspond to the probabilities after
we have observed the input pattern x. If we consider a large set of patterns all from a particular
class Cy then we can consider the probability distribution of the corresponding input patterns,
which we write as p(x|Cr). These are called the class-conditional distributions and, since the
vector x 18 a continuous variable, they correspond to probability density functions rather than
probabilities. The distribution of input vectors, irrespective of their class labels, is written as p(x)
and is called the unconditional distribution of inputs. Finally, we can consider the probabilities
of occurrence of the different classes irrespective of the input pattern, which we write as P(Cy).
These correspond to the relative frequencies of patterns within the complete data set, and are
called prior probabilities since they correspond to the probabilities of membership of each of the
classes before we observe a particular input vector.

These various probabilities can be related using two standard results from probability theory.
The first 1s the product rule which takes the form

P(Cr,x) = P(Cr|x)p(x) (9)
and the second is the sum rule given by

S P(Crx) = plx). (10)

From these rules we obtain the following relation

PO =700



which is known as Bagyes’ theorem. The denominator in (11) is given by
p(x) = Y p(x|Ce)P(Ch) (12)
k

and plays the role of a normalizing factor, ensuring that the posterior probabilities in (11) sum to
one . P(Cy|x) = 1. As we shall see shortly, knowledge of the posterior probabilities allows us to
find the optimal solution to a classification problem. A key result, discussed in Section 3.2, is that
under suitable circumstances the outputs of a correctly trained neural network can be interpreted
as (approximations to) the posterior probabilities P(Ci|x) when the vector x is presented to the
inputs of the network.

As we have already noted, perfect classification of all possible input vectors will in general be
impossible. The best we can do is to minimize the probability that an input will be misclassi-
fied. This is achieved by assigning each new input vector x to that class for which the posterior
probability P(Cr|x) is largest. Thus an input vector x is assigned to class Cy, if

P(Cx|x) > P(Cj|x) for all j # k. (13)

We shall see the justification for this rule shortly. Since the denominator in Bayes’ theorem (11)
is independent of the class, we see that this is equivalent to assigning input patterns to class Cg
provided

p(x|Cx)P(Cr) > p(x|C;)P(C;) for all j # k. (14)

A pattern classifier provides a rule for assigning each point of feature space to one of ¢ classes.
We can therefore regard the feature space as being divided up into ¢ decision regions Ry, ..., R
such that a point falling in region Ry is assigned to class C;. Note that each of these regions
need not be contiguous, but may itself be divided into several disjoint regions all of which are
associated with the same class. The boundaries between these regions are known as decision
surfaces or decision boundaries.

In order to find the optimal criterion for placement of decision boundaries, consider the case of
a one-dimensional feature space x and two classes C; and C2. We seek a decision boundary which
minimizes the probability of misclassification, as illustrated in Figure 3. A misclassification error
will occur if we assign a new pattern to class C; when in fact it belongs to class Cy, or vice versa.
We can calculate the total probability of an error of either kind by writing (Duda and Hart, 1973)

P(error) = Pz € R2,C1)+ Plx € Ry,Ca)
= P(l‘ € R2|61)P(Cl) + P(l‘ € R1|CQ)P(CQ)

/R p(]C)P(Cy) dir + / P(]C2) P(Co) de (15)

R1

where P(x € Rq,C2) is the joint probability of # being assigned to class C; and the true class being
Cy. From (15) we see that, if p(2|C1)P(C1) > p(x|C2)P(Cz) for a given x, we should choose the
regions Ry and Rs such that & is in Rq, since this gives a smaller contribution to the error. We
recognise this as the decision rule given by (14) for minimizing the probability of misclassification.
The same result can be seen graphically in Figure 3, in which misclassification errors arise from
the shaded region. By choosing the decision boundary to coincide with the value of 2 at which the
two distributions cross (shown by the arrow) we minimize the area of the shaded region and hence
minimize the probability of misclassification. This corresponds to classifying each new pattern z
using (14), which is equivalent to assigning each pattern to the class having the largest posterior
probability. A similar justification for this decision rule may be given for the general case of ¢
classes and d-dimensional feature vectors (Duda and Hart, 1973).

It is important to distinguish between two separate stages in the classification process. The
first is nference whereby data is used to determine values for the posterior probabilities. These
are then used in the second stage which is deciston making in which those probabilities are used
to make decisions such as assigning a new data point to one of the possible classes. So far we
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Figure 3. Schematic illustration of the joint probability densities, given by
p(z,Cr) = p(2|Cr)P(Cx), as a function of a feature value z, for two classes C;
and Cz. If the vertical line is used as the decision boundary then the classifica-
tion errors arise from the shaded region. By placing the decision boundary at
the point where the two probability density curves cross (shown by the arrow),
the probability of misclassification is minimized.

have based classification decisions on the goal of minimizing the probability of misclassification.
In many applications this may not be the most appropriate criterion. Consider, for instance, the
task of classifying images used in medical screening into two classes corresponding to ‘normal’
and ‘tumour’. There may be much more serious consequences if we classify an image of a tumour
as normal than if we classify a normal image as that of a tumour. Such effects may easily be
taken into account by the introduction of a loss matriz with elements Lj; specifying the penalty
associated with assigning a pattern to class C; when in fact it belongs to class C;. The overall
expected loss is minimized if, for each input x, the decision regions R; are chosen such that x € R;
when

> Ligp(x[Ch)P(Ck) < > Liip(x|Cx)P(C)  foralli # j (16)
k=1 k=1

which represents a generalization of the usual decision rule for minimizing the probability of
misclassification. Note that, if we assign a loss of 1 if the pattern is placed in the wrong class, and
a loss of 0 if it is placed in the correct class, so that Ly; = 1 —é; (where &5, is the Kronecker delta
symbol), then (16) reduces to the decision rule for minimizing the probability of misclassification,
given by (14).

Another powerful consequence of knowing posterior probabilities is that it becomes possible
to introduce a reject criterion. In general we expect most of the misclassification errors to occur
in those regions of x-space where the largest of the posterior probabilities is relatively low, since
there is then a strong overlap between different classes. In some applications it may be better not
to make a classification decision in such cases. This leads to the following procedure

> @, then classify x

< @, then reject x (17)

if mkaXP(Ck|x) {
where @ is a threshold in the range (0,1). The larger the value of 8, the fewer points will be
classified. For the medical classification problem for example, it may be better not to rely on an
automatic classification system in doubtful cases, but to have these classified instead by a human
expert.

Yet another application for the posterior probabilities arises when the distributions of patterns
between the classes, corresponding to the prior probabilities P(Cy), are strongly mis-matched. If
we know the posterior probabilities corresponding to the data in the training set, it is then it is
a simple matter to use Bayes’ theorem (11) to make the necessary corrections. This is achieved



by dividing the posterior probabilities by the prior probabilities corresponding to the training set,
multiplying them by the new prior probabilities, and then normalizing the results. Changes in
the prior probabilities can therefore be accommodated without retraining the network. The prior
probabilities for the training set may be estimated simply by evaluating the fraction of the training
set data points in each class. Prior probabilities corresponding to the operating environment can
often be obtained very straightforwardly since only the class labels are needed and no input data
is required. As an example, consider again the problem of classifying medical images into ‘normal’
and ‘tumour’. When used for screening purposes, we would expect a very small prior probability
of ‘tumour’. To obtain a good variety of tumour images in the training set would therefore require
huge numbers of training examples. An alternative is to increase artificially the proportion of
tumour images in the training set, and then to compensate for the different priors on the test
data as described above. The prior probabilities for tumours in the general population can be
obtained from medical statistics, without having to collect the corresponding images. Correction
of the network outputs is then a simple matter of multiplication and division.

The most common approach to the use of neural networks for classification involves having
the network itself directly produce the classification decision. As we have seen, knowledge of the
posterior probabilities is substantially more powerful.

3 Error Functions

We turn next to the problem of determining suitable values for the weight parameters w in a
network.

Training data 1s provided in the form of N pairs of input vectors x” and corresponding desired
output vectors t? where n = 1,..., N labels the patterns. These desired outputs are called
target values in the neural network context, and the components ¢} of t" represent the targets
for the corresponding network outputs y;. For associative prediction problems of the kind we are
considering, the most general and complete description of the statistical properties of the data is
given in terms of the conditional density of the target data p(t|x) conditioned on the input data.

A principled way to devise an error function is to use the concept of mazimum likelihood. For
a set of training data {x™,t"}, the likelihood can be written as

£ = I x") (18)

where we have assumed that each data point (x”,t") is drawn independently from the same distri-
bution, so that the likelihood for the complete data set is given by the product of the probabilities
for each data point separately. Instead of maximizing the likelihood, 1t is generally more conve-
nient to minimize the negative logarithm of the likelihood. These are equivalent procedures, since
the negative logarithm is a monotonic function. We therefore minimize

E=-InL=-> Inp(t"|x") (19)

where FE is called an error function. We shall further assume that the distribution of the individual
target variables {y, where £ = 1,..., ¢, are independent, so that we can write

p(tlx) = TT p(telx). (20)

As we shall see, a feed-forward neural network can be regarded as a framework for modelling the
conditional probability density p(t|x). Different choices of error function then arise from different
assumptions about the form of the conditional distribution p(t|x). It is convenient to discuss error
functions for regression and classification problems separately.



3.1 Error functions for regression

For regression problems, the output variables are continuous. To define a specific error function we
must make some choice for the model of the distribution of target data. The simplest assumption
is to take this distribution to be Gaussian. More specifically, we assume that the target variable
ty 1s given by some deterministic function of x with added Gaussian noise ¢, so that

i, = hk(X) + €. (21)

We then assume that the errors € have a normal distribution with zero mean, and standard a
deviation ¢ which does not depend on x or k. Thus, the distribution of € is given by

ew) = gz o (—o ). (22)

We now model the functions hj(x) by a neural network with outputs yj(x; w) where w is the set
of weight parameters governing the neural network mapping. Using (21) and (22) we see that the
probability distribution of target variables is given by

Pl = oo ewp (L0 2 ) (29)

where we have replaced the unknown function hg(x) by our model y;(x; w). Together with (19)
and (20) this leads to the following expression for the error function

N c
1 . "2 Ne
B = g D Sl w) 1) 4 Nelno + S en), 1)

n=1k=1

We note that, for the purposes of error minimization, the second and third terms on the right-hand
side of (24) are independent of the weights w and so can be omitted. Similarly, the overall factor
of 1/0? in the first term can also be omitted. We then finally obtain the familiar expression for
the sum-of-squares error function

N
1 n n
B3 Iyt w) - . (25)
n=1

Note that models of the form (4), with fixed basis functions, are linear functions of the pa-
rameters w and so (25) is a quadratic function of w. This means that the minimum of F can be
found in terms of the solution of a set of linear algebraic equations. For this reason, the process of
determining the parameters in such models is extremely fast. Functions which depend linearly on
the adaptive parameters are called linear models, even though they may be non-linear functions
of the input variables. If the basis functions themselves contain adaptive parameters, we have to
address the problem of minimizing an error function which is generally highly non-linear.

The sum-of-squares error function was derived from the requirement that the network output
vector should represent the conditional mean of the target data, as a function of the input vector.
It is easily shown (Bishop, 1995) that minimization of this error, for an infinitely large data set
and a highly flexible network model, does indeed lead to a network satisfying this property.

We have derived the sum-of-squares error function on the assumption that the distribution of
the target data is Gaussian. For some applications, such an assumption may be far from valid
(if the distribution is multi-modal for instance) in which case the use of a sum-of-squares error
function can lead to extremely poor results. Examples of such distributions arise frequently in
inverse problems such as robot kinematics, the determination of spectral line parameters from the
spectrum itself, or the reconstruction of spatial data from line-of-sight information. One general
approach in such cases is to combine a feed-forward network with a Gaussian mizture model (i.e. a
linear combination of Gaussian functions) thereby allowing general conditional distributions p(t|x)

to be modelled (Bishop, 1994).
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3.2 Error functions for classification

In the case of classification problems, the goal as we have seen is to approximate the posterior
probabilities of class membership P(Cy|x) given the input pattern x. We now show how to arrange
for the outputs of a network to approximate these probabilities.

First we consider the case of two classes C; and Cs. In this case we can consider a network
having a singly output y which we should represent the posterior probability P(C;|x) for class C;.
The posterior probability of class Ca2 will then be given by P(Cz|x) = 1 — y. To achieve this we
consider a target coding scheme for which ¢ = 1 if the input vector belongs to class C; and ¢ = 0
if it belongs to class Co. We can combine these into a single expression, so that the probability of
observing either target value is

ptlx) =y'(1—y)'~ (26)
which is a particular case of the binomial distribution called the Bernoulli distribution. With this

interpretation of the output unit activations, the likelithood of observing the training data set,
assuming the data points are drawn independently from this distribution, is then given by

[T =y (27)

n

As usual, it is more convenient to minimize the negative logarithm of the likelihood. This leads
to the cross-entropy error function (Hopfield, 1987; Baum and Wilczek, 1988; Solla et al., 1988;
Hinton, 1989; Hampshire and Pearlmutter, 1990) in the form

E==> {t"Iny" +(1—1")In(1 — y")}. (28)

For the network model introduced in (4) the outputs were linear functions of the activations of
the hidden units. While this is appropriate for regression problems, we need to consider the correct
choice of output unit activation function for the case of classification problems. We shall assume
(Rumelhart et al., 1995) that the class-conditional distributions of the outputs of the hidden units,
represented here by the vector z, are described by

p(rIC) = exp { A6x) + B(s, ) + 612} (29)

which is a member of the ezponential family of distributions (which includes many of the common
distributions as special cases such as Gaussian, binomial, Bernoulli, Poisson, and so on). The
parameters 63 and ¢ control the form of the distribution. In writing (29) we are implicitly
assuming that the distributions differ only in the parameters 8; and not in ¢». An example would
be two Gaussian distributions with different means, but with common covariance matrices. (Note
that the decision boundaries will then be linear functions of z but will of course be non-linear
functions of the input variables as a consequence of the non-linear transformation by the hidden
units).
Using Bayes’ theorem, we can write the posterior probability for class C; in the form
p(2|C1)P(C1)
p(2]C1)P(C1) + p(z|C2) P(C2)
1
1+ exp(—a)

P(Ci|z) =

which is a logistic sigmoid function, in which

(31)
Using (29) we can write this in the form

a=w'z+wy (32)
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Figure 4. Plots of the class-conditional densities used to generate a data set to
demonstrate the interpretation of network outputs as posterior probabilities.
The training data set was generated from these densities, using equal prior
probabilities.

where we have defined

w = 61 — 62 (33)
P(Cy)
P(Ca)

Wo A(Gl) - A(Gz) + In (34)
Thus the network output is given by a logistic sigmoid activation function acting on a weighted
linear combination of the outputs of those hidden units which send connections to the output unit.

Incidentally, it is clear that we can also apply the above arguments to the activations of hidden
units in a network. Provided such units use logistic sigmoid activation functions, we can interpret
their outputs as probabilities of the presence of corresponding ‘features’ conditioned on the inputs
to the units.

As a simple illustration of the interpretation of network outputs as probabilities, we consider
a two-class problem with one input variable in which the class-conditional densities are given by
the Gaussian mixture functions shown in Figure 4. A feed-forward network with five hidden units
having sigmoidal activation functions, and one output unit having a logistic sigmoid activation
function, was trained by minimizing a cross-entropy error using 100 cycles of the BFGS quasi-
Newton algorithm (Section 3.3). The resulting network mapping function is shown, along with
the true posterior probability calculated using Bayes’ theorem, in Figure 5.

For the case of more than two classes, we consider a network with one output for each class
so that each output represents the corresponding posterior probability. First of all we choose the
target values for network training according to a l-of-c¢ coding scheme, so that ¢} = 8z for a
pattern n from class C;. We wish to arrange for the probability of observing the set of target
values 17, given an input vector x”, to be given by the corresponding network output so that
p(Ci|x) = yi. The value of the conditional distribution for this pattern can therefore be written as

c

p("x") = TT i) (35)
k=1
If we form the likelihood function, and take the negative logarithm as before, we obtain an error

function of the form .
E==3" iy} (36)

n k=1
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Figure 5. The result of training a multi-layer perceptron on data generated
from the density functions in Figure 4. The solid curve shows the output of
the trained network as a function of the input variable z, while the dashed
curve shows the true posterior probability P(Ci|z) calculated from the class-
conditional densities using Bayes’ theorem.

Again we must seek the appropriate output-unit activation function to match this choice of
error function. As before, we shall assume that the activations of the hidden units are distributed
according to (29). From Bayes’ theorem, the posterior probability of class Cj, is given by

p(2|Cr) P(Ck)

MO = 5 ele e o

Substituting (29) into (37) and re-arranging we obtain

exp(ay)

P(Celz) =y = m (38)
where
ar = Wiz + wpo (39)
and we have defined
w, = 6, (40)
wro = A(0r)+ In P(Cy). (41)

The activation function (38) is called a softmaz function or normalized exponential. Tt has the
properties that 0 <y < 1and )", yx = 1 as required for probabilities.

It is easily verified (Bishop, 1995) that the minimization of the error function (36), for an
infinite data set and a highly flexible network function, indeed leads to network outputs which
represent the posterior probabilities for any input vector x.

Note that the network outputs of the trained network need not be close to 0 or 1 if the
class-conditional density functions are overlapping. Heuristic procedures, such as applying extra
training using those patterns which fail to generate outputs close to the target values, will be
counterproductive, since this alters the distributions and makes it less likely that the network will
generate the correct Bayesian probabilities!

3.3 Error back-propagation

Using the principle of maximum likelihood, we have formulated the problem of learning in neural
networks in terms of the minimization of an error function Z(w). This error depends on the vector
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w of weight and bias parameters in the network, and the goal is therefore to find a weight vector
w* which minimizes F. For models of the form (4) in which the basis functions are fixed, and
for an error function given by the sum-of-squares form (25), the error is a quadratic function of
the weights. Its minimization then corresponds to the solution of a set of coupled linear equations
and can be performed rapidly in fixed time. We have seen, however, that models with fixed basis
functions suffer from very poor scaling with input dimensionality. In order to avoid this difficulty
we need to consider models with adaptive basis functions. The error function now becomes a highly
non-linear function of the weight vector, and its minimization requires sophisticated optimization
techniques.

We have considered error functions of the form (25), (28) and (36) which are differentiable
functions of the network outputs. Similarly, we have considered network mappings which are
differentiable functions of the weights. It therefore follows that the error function itself will be a
differentiable function of the weights and so we can use gradient-based methods to find its minima.
We now show that there is a computationally efficient procedure, called back-propagation, which
allows the required derivatives to be evaluated for arbitrary feed-forward network topologies.

In a general feed-forward network, each unit computes a weighted sum of its inputs of the form

g=gla), 4= wiz (42)

where z; is the activation of a unit, or input, which sends a connection to unit j, and wjy; is the
weight associated with that connection. The summation runs over all units which send connections
to unit 5. Biases can be included in this sum by introducing an extra unit, or input, with activation
fixed at +1. We therefore do not need to deal with biases explicitly. The error functions which
we are considering can be written as a sum over patterns of the error for each pattern separately
so that £ = >~ E™. This follows from the assumed independence of the data points under the
given distribution. We can therefore consider one pattern at a time, and then find the derivatives
of £ by summing over patterns.

For each pattern we shall suppose that we have supplied the corresponding input vector to
the network and calculated the activations of all of the hidden and output units in the network
by successive application of (42). This process is often called forward propagation since it can be
regarded as a forward flow of information through the network.

Now consider the evaluation of the derivative of £™ with respect to some weight w;;. First we
note that £™ depends on the weight w;; only via the summed input a; to unit j. We can therefore
apply the chain rule for partial derivatives to give

8E” _ 8E” aa]'

= . 43
8wﬂ 6a]' 8wﬂ ( )
We now introduce a useful notation o
b = —— 44
J aaj ( )

where the é’s are often referred to as errors for reasons which will become clear shortly. Using
(42) we can write
aa]'

3wﬂ

Substituting (44) and (45) into (43) we then obtain

Equation (46) tells us that the required derivative is obtained simply by multiplying the value of
6 for the unit at the output end of the weight by the value of z for the unit at the input end of
the weight (where z = 1 in the case of a bias). Thus, in order to evaluate the derivatives, we need
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Figure 6. Illustration of the calculation of é; for hidden unit j by back-
propagation of the §’s from those units & to which unit j sends connections.

only to calculate the value of ¢; for each hidden and output unit in the network, and then apply
(46).
For the output units the evaluation of éj is straightforward. From the definition (44) we have

OE™ OE™
8y = =4
k 3ak g (ak‘) ayk

(47)

where we have used (42) with zj, denoted by y5. In order to evaluate (47) we substitute appropriate
expressions for ¢'(a) and 9E" /Jy. If, for example, we consider the sum-of-squares error function
(25) together with a network having linear outputs, as in (7) for instance, we obtain

b =y — 1y (48)

and so &y represents the error between the actual and the desired values for output k. The same
form (48) is also obtained if we consider the cross-entropy error function (28) together with a
network with a logistic sigmoid output, or if we consider the error function (36) together with the
softmax activation function (38).

To evaluate the é’s for hidden units we again make use of the chain rule for partial derivatives,
to give

(49)

where the sum runs over all units £ to which unit j sends connections. The arrangement of units
and weights is illustrated in Figure 6. Note that the units labelled k could include other hidden
units and/or output units. In writing down (49) we are making use of the fact that variations in
a; give rise to variations in the error function only through variations in the variables a;. If we
now substitute the definition of é given by (44) into (49), and make use of (42), we obtain the
following back-propagation formula

8 =g'(a;) > wejby (50)

which tells us that the value of é for a particular hidden unit can be obtained by propagating the
8’s backwards from units higher up in the network, as illustrated in Figure 6. Since we already
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know the values of the §’s for the output units, it follows that by recursively applying (50) we can
evaluate the é’s for all of the hidden units in a feed-forward network, regardless of its topology.
Having found the gradient of the error function for this particular pattern, the process of forward
and backward propagation is repeated for each pattern in the data set, and the resulting derivatives
summed to give the gradient VE(w) of the total error function.

The back-propagation algorithm allows the error function gradient VE(w) to be evaluated
efficiently. We now seek a way of using this gradient information to find a weight vector which
minimizes the error. This is a standard problem in unconstrained non-linear optimization and has
been widely studied, and a number of powerful algorithms have been developed. Such algorithms
begin by choosing an initial weight vector w(®) (which might be selected at random) and then
making a series of steps through weight space of the form

wl™ — w4 Aw(D (51)

where 7 labels the iteration step. The simplest choice for the weight update is given by the gradient
descent expression

AW = = VE| ) (52)

where the gradient vector VE must be re-evaluated at each step. It should be noted that gradi-
ent descent is a very inefficient algorithm for highly non-linear problems such as neural network
optimization. Numerous ad hoc modifications have been proposed to try to improve its efficiency.
One of the most common is the addition of a momentum term in (52) to give

Aw') = - VE| ) + pAwT™Y (53)

where p is called the momentum parameter. While this can often lead to improvements in the
performance of gradient descent, there are now two arbitrary parameters 1 and g whose values
must be adjusted to give best performance. Furthermore, the optimal values for these parameters
will often vary during the optimization process. In fact much more powerful techniques have been
developed for solving non-linear optimization problems (Polak, 1971; Gill et al., 1981; Dennis and
Schnabel, 1983; Luenberger, 1984; Fletcher, 1987; Bishop, 1995). These include conjugate gradient
methods, quasi-Newton algorithms, and the Levenberg-Marquardt technique.

It should be noted that the term back-propagation is used in the neural computing literature
to mean a variety of different things. For instance, the multi-layer perceptron architecture is
sometimes called a back-propagation network. The term back-propagation is also used to describe
the training of a multi-layer perceptron using gradient descent applied to a sum-of-squares error
function. In order to clarify the terminology it is useful to consider the nature of the training
process more carefully. Most training algorithms involve an iterative procedure for minimization
of an error function, with adjustments to the weights being made in a sequence of steps. At each
such step we can distinguish between two distinct stages. In the first stage, the derivatives of
the error function with respect to the weights must be evaluated. As we shall see, the important
contribution of the back-propagation technique is in providing a computationally efficient method
for evaluating such derivatives. Since it is at this stage that errors are propagated backwards
through the network, we use the term back-propagation specifically to describe the evaluation of
derivatives. In the second stage, the derivatives are then used to compute the adjustments to be
made to the weights. The simplest such technique, and the one originally considered by Rumelhart
et al. (1986), involves gradient descent. Tt is important to recognize that the two stages are distinct.
Thus, the first stage process, namely the propagation of errors backwards through the network
in order to evaluate derivatives, can be applied to many other kinds of network and not just the
multi-layer perceptron. It can also be applied to error functions other that the simple sum-of-
squares, and to the evaluation of other quantities such as the Hessian matrix whose elements
comprise the second derivatives of the error function with respect to the weights (Bishop, 1992).
Similarly, the second stage of weight adjustment using the calculated derivatives can be tackled
using a variety of optimization schemes (discussed above), many of which are substantially more
effective than simple gradient descent.
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One of the most important aspects of back-propagation is its computational efficiency. To
understand this, let us examine how the number of computer operations required to evaluate
the derivatives of the error function scales with the size of the network. A single evaluation of
the error function (for a given input pattern) would require O(W) operations, where W is the
total number of weights in the network. For W weights in total there are W such derivatives
to evaluate. A direct evaluation of these derivatives individually would therefore require O(W?)
operations. By comparison, back-propagation allows all of the derivatives to be evaluated using
a single forward propagation and a single backward propagation together with the use of (46).
Since each of these requires @(W) steps, the overall computational cost is reduced from Q(W?)
to O(1W). The training of multi-layer perceptron networks, even using back-propagation coupled
with efficient optimization algorithms, can be very time consuming, and so this gain in efficiency
is crucial.

4 Generalization

The goal of network training is not to learn an exact representation of the training data itself, but
rather to build a statistical model of the process which generates the data. This i1s important if
the network is to exhibit good generalization, that is, to make good predictions for new inputs.

In order for the network to provide a good representation of the generator of the data it is
important that the effective complexity of the model be matched to the data set. This is most easily
illustrated by returning to the analogy with polynomial curve fitting introduced in Section 2.1. In
this case the model complexity is governed by the order of the polynomial which in turn governs
the number of adjustable coefficients. Consider a data set of 11 points generated by sampling the
function

h(z) = 0.5+ 0.4sin(27x) (54)

at equal intervals of x and then adding random noise with a Gaussian distribution having standard
deviation ¢ = 0.05. This reflects a basic property of most data sets of interest in pattern recognition
in that the data exhibits an underlying systematic component, represented in this case by the
function h(x), but is corrupted with random noise. Figure 7 shows the training data, as well as
the function h(z) from (54), together with the result of fitting a linear polynomial, given by (2)
with M = 1. As can be seen, this polynomial gives a poor representation of h(z), as a consequence
of its limited flexibility. We can obtain a better fit by increasing the order of the polynomial, since
this increases the number of degrees of freedom (i.e. the number of free parameters) in the function,
which gives it greater flexibility.

Figure 8 shows the result of fitting a cubic polynomial (M = 3) which gives a much better
approximation to h(xz). If, however, we increase the order of the polynomial too far, then the
approximation to the underlying function actually gets worse. Figure 9 shows the result of fitting
a 10th-order polynomial (M = 10). This is now able to achieve a perfect fit to the training data,
since a 10th-order polynomial has 11 free parameters, and there are 11 data points. However, the
polynomial has fitted the data by developing some dramatic oscillations and consequently gives a
poor representation of h(z). Functions of this kind are said to be over-fitted to the data.

In order to determine the generalization performance of the different polynomials, we generate
a second independent test set, and measure the root-mean-square error EFM® with respect to both
training and test sets. Figure 10 shows a plot of ERMS for both the training data set and the
test data set, as a function of the order M of the polynomial. We see that the training set error
decreases steadily as the order of the polynomial increases. However, the test set error reaches
a minimum at M = 3, and thereafter increases as the order of the polynomial is increased. The
smallest error is achieved by that polynomial (M = 3) which most closely matches the function
h(z) from which the data was generated.

In the case of neural networks the weights and biases are analogous to the polynomial coef-
ficients. These parameters can be optimized by minimization of an error function defined with
respect to a training data set. The model complexity is governed by the number of such parame-
ters and so is determined by the network architecture and in particular by the number of hidden
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Figure 7. An example of a set of 11 data points obtained by sampling the
function h(z), defined by (54), at equal intervals of # and adding random noise.
The dashed curve shows the function h(z), while the solid curve shows the
rather poor approximation obtained with a linear polynomial, corresponding
to M =11in (2).
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Figure 8. This shows the same data set as in Figure 7, but this time fitted by a
cubic (M = 3) polynomial, showing the significantly improved approximation
to h(z) achieved by this more flexible function.
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Figure 9. The result of fitting the same data set as in Figure 7 using a 10th-
order (M = 10) polynomial. This gives a perfect fit to the training data, but
at the expense of a function which has large oscillations, and which therefore
gives a poorer representation of the generator function k(z) than did the cubic

polynomial of Figure 8.
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Figure 10. Plots of the RMS error F*M® as a function of the order of the poly-
nomial for both training and test sets, for the example problem considered in
the previous three figures. The error with respect to the training set decreases
monotonically with M, while the error in making predictions for new data (as
measured by the test set) shows a minimum at M = 3.
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units. We have seen that the complexity cannot be optimized by minimization of training set error
since the smallest training error corresponds to an over-fitted model which has poor generalization.
Instead, we see that the optimum complexity can be chosen by comparing the performance of a
range of trained models using an independent test set. A more elaborate version of this procedure
is cross-validation (Stone, 1974, 1978; Wahba and Wold, 1975).

Instead of directly varying the number of adaptive parameters in a network, the effective
complexity of the model may be controlled through the technique of regularization. This involves
the use of a model with a relatively large number of parameters, together with the addition of a
penalty term  to the usual error function F to give a total error function of the form

E=FE+vQ (55)

where v is called a regularization coefficient. The penalty term €2 is chosen so as to encourage
smoother network mapping functions since, by analogy with the polynomial results shown in
Figures 7-9, we expect that good generalization is achieved when the rapid variations in the
mapping associated with over-fitting are smoothed out. There will be an optimum value for v
which can again be found by comparing the performance of models trained using different values
of v on an independent test set. Regularization is usually the preferred choice for model complexity
control for a number of reasons: it allows prior knowledge to be incorporated into network training;
it has a natural interpretation in the Bayesian framework (discussed in Section 5); and it can be
extended to provide more complex forms of regularization involving several different regularization
parameters which can be used, for example, to determine the relative importance of different
inputs.

5 Discussion

In this chapter we have presented a brief overview of neural networks from the viewpoint of
statistical pattern recognition. Due to lack of space, there are many important issues which we
have not discussed or have only touched upon. Here we mention two further topics of considerable
significance for neural computing.

In practical applications of neural networks, one of the most important factors determining
the overall performance of the final system is that of data pre-processing. Since a neural network
mapping has universal approximation capabilities, as discussed in Section 2.2, it would in principle
be possible to use the original data directly as the input to a network. In practice, however, there
is generally considerable advantage in processing the data in various ways before it is used for
network training. One important reason why preprocessing can lead to improved performance is
that it can offset some of the effects of the ‘curse of dimensionality’ discussed in Section 2.2 by
reducing the number of input variables. Input can be combined in linear or non-linear ways to
give a smaller number of new inputs which are then presented to the network. This is sometimes
called feature extraction. Although information is often lost in the process, this can be more than
compensated for by the benefits of a lower input dimensionality. Another significant aspect of
pre-processing is that it allows the use of prior knowledge, in other words information which is
relevant to the solution of a problem which i1s additional to that contained in the training data. A
simple example would be the prior knowledge that the classification of a handwritten digit should
not depend on the location of the digit within the input image. By extracting features which are
independent of position, this translation invariance can be incorporated into the network structure,
and this will generally give substantially improved performance compared with using the original
image directly as the input to the network. Another use for preprocessing is to clean up deficiencies
in the data. For example, real data sets often suffer from the problem of missing values in many
of the patterns, and these must be accounted for before network training can proceed.

The discussion of learning in neural networks given above was based on the principle of maxi-
mum likelithood, which itself stems from the frequentist school of statistics. A more fundamental,
and potentially more powerful, approach is given by the Bayesian viewpoint (Jaynes, 1986). In-
stead of describing a trained network by a single weight vector w*, the Bayesian approach expresses
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our uncertainty in the values of the weights through a probability distribution p(w). The effect
of observing the training data is to cause this distribution to become much more concentrated in
particular regions of weight space, reflecting the fact that some weight vectors are more consistent
with the data than others. Predictions for new data points require the evaluation of integrals over
weight space, weighted by the distribution p(w). The maximum likelihood approach considered in
Section 3 then represents a particular approximation in which we consider only the most probable
weight vector, corresponding to a peak in the distribution. Aside from offering a more fundamental
view of learning in neural networks, the Bayesian approach allows error bars to be assigned to net-
work predictions, and regularization arises in a natural way in the Bayesian setting. Furthermore,
a Bayesian treatment allows the model complexity (as determined by regularization coefficients
for instance) to be treated without the need for independent data as in cross-validation.

Although the Bayesian approach is very appealing, a full implementation is intractable for
neural networks. Two principal approximation schemes have therefore been considered. In the
first of these (MacKay, 1992a, 1992b, 1992¢) the distribution over weights is approximated by a
Gaussian centred on the most probable weight vector. Integrations over weight space can then
be performed analytically, and this leads to a practical scheme which involves relatively small
modifications to conventional algorithms. An alternative approach to the Bayesian treatment of
neural networks is to use Monte Carlo techniques (Neal, 1994) to perform the required integrations
numerically without making analytical approximations. Again, this leads to a practical scheme
which has been applied to some real-world problems.

An interesting aspect of the Bayesian viewpoint is that it is not, in principle, necessary to limit
network complexity (Neal, 1994), and that over-fitting should not arise if the Bayesian approach
is implemented correctly.

A more comprehensive discussion of these and other topics can be found in Bishop (1995).
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