Proceedings of the 2nd International Software Architecture Workshop, 1996, pp. 47-49.

Toward User-Defined Element Types and Architectural Styles

Robert DeLine
Computer Science Department
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213-3891
rdeline@cs.cmu.edu

Abstract

When considering the design of an architectural description
language (ADL) to be used as part of a software developer’s
daily practice, two goals merit attention. First, the language
should support the easy definition of new element types and
architectural styles. Second, it should play a central role in
system construction. A proposed ADL, called UniCon-2,
addresses these goals with its flexible type system, its duty
construct, and its extensible compiler architecture based on
OLE. Such an ADL provides a good starting point for explor-
ing the architectural description of families of systems and
flexible componentry.

Introduction

A number of researchers in the field of software architecture
are centering their work on new notations, called architec-
tural description languages (ADLS). When considering the
eventual adoption of ADLs into standard software develop-
ment practice, two language features seem worthy goals.
First, the ADL should support the definition of new types of
components, new types of connectors, and new architectural
styles. Second, the ADL should play a central role in system
construction. Designing an ADL that meets both these goals
is the focus of this paper.

The world is populated with a diversity of software
architectures both across and within software systems. This
diversity is not a historical accident or a practice to be
denigrated: certain architectural styles are simply better
suited than others to solve certain problems [3]. As long as
there is a variety of problems to solve, there will be a variety
of architectural styles. To support this diversity, an ADL
should allow architects to define their own architectural
styles, along with the new types of components and
connectors that are a part of that style. Moreover, the
definition of new types and styles should not require exotic
skills. The more ordinary the skill set required to define a
new type or style, the more the average architect can
participate.

The second goal is for the ADL to play a central role in

system construction. The marriage between system
description and system construction is natural, since both at
heart are about the pieces make up a system and how those
pieces fit together. The compiler or environment for an ADL
can provide a natural home for the construction methods of
a given architectural style, as well as many of the niggling
details that underlie architectural connections. Typical
details include: the input format for the RPC stub generator
and the knowledge of how to invoke it; methods for creating
pipe and filter systems with arbitrary topologies, without
causing deadlock; and the right list of kernel calls to
initialize a system under a real-time operating system. An
ADL that encapsulates such details and makes system
construction easier would be especially attractive to
practitioners.

An ADL that meets these goals makes a good starting point
for exploring architectural descriptions of families of
systems. Many developers work not on a single product, but
on a group of products, each of which is a small variation on
a common theme. The architectures of these variants may
have many, but not all, parts in common and may connect
those parts in slightly different ways. Current ADLS are
inadequate to describe architectural styles that have this
kind of prescribed envelope of variability. Further, a cousin
of the family of systems problem is the problem of
describing flexible componentry, for example, a component
that features an Open Implementation [4]. Here too the
description of such a component needs to capture its
envelope of possible behaviors.

Several research projects have begun to work toward the
two goals mentioned above. Aesop [2] allows new element
types and architectural styles to be defined as subclasses of
existing types and styles stored in an object-oriented
database; refinements are made by overriding the methods
that govern that type or style. Moriconi et al [5] allow user-
defined types and styles whose emphasis is on provably
correct architectural refinement; hence, their type and style
definitions require mathematical skills absent in many
current practitioners. Neither of these works place an
emphasis on system construction. One ADL with this
emphasis is UniCon [6]. However, the current version of
UniCon presents a closed set of element types and
architectural styles, although we have recently taken steps
towards user-defined connectors with the notion of
connector experts [7].

Quick Tour of UniCon

To design an ADL that meets both these goals, | propose a
new version of UniCon, called UniCon-2, with three major
changes: a rich type system; a new construct, called a duty;
and an extensible compiler architecture. Since the first two of
these new features focus largely on syntactic issues, a quick
review of UniCon’s terminology and syntax is needed to
understand them.

An architecture in UniCon consists of a set of components
whose interaction is mediated by a set of connectors. A
component’s interface exports a set of players that
engenders that component’s possible interactions with the
outside world. A connector’s protocol exports set of roles
that engender the ways it mediates interactions. An
architectural configuration is created by instantiating a set of
components and connectors and then hooking them
together by associating the components’ players with the
connectors’ roles. Here are two example declarations, a filter
component, and a pipe connector.

component Sort
Filter interface
Stream-In player input
Stream-Out player output
Stream-Out player error
unix-port = Stderr
end error
end interface
external
impl = Executable("sort", [])
end external
end Sort

connector Pipe
Unix-Pipe protocol
Pipe-Source role source
Pipe-Sink role sink
end protocol
external
impl = Expert("pipe")
end external
end Pipe

The component Sort exports an interface with three players:
one of type Stream-In, named input; and two of type Stream-
Out, named output and error. The error player is annotated
with a property whose name is unix-port and whose value is
Stderr. UniCon, as a property-based notation, relies on such
properties to provide most of the information about an ele-
ment. Sort’s implementation is external, i.e. given in some
notation outside the scope of UniCon; this implementation is
annotated with a property named impl. The connector
Pipe’s definition is analogous to Sort’s.

Type System

UniCon-2’s first change to support user-defined element
types and architectural styles is to make the values of prop-
erties be strongly typed. The value of a property in UniCon
is given in a syntax that’s idiosyncratic to the particular
property; this makes adding new properties tedious. Uni-
Con-2’s type system, borrowed largely from ML, instead

provides a rich language for describing the values of proper-
ties. This type system includes a number of base types, such
a bool, int, real, and string, as well as a new type called unin-
terpreted. The type uninterpreted by design supports no
operations whatsoever and allows UniCon-2 to harmlessly
carry information that outside tools are intended to con-
sume. The type system supports polymorphic types such as
lists and tuples (but not functions) and also allows user
defined types, such as these:

type unix-port
type impl-rep

= Stdin | Stdout | Stderr

= Source of string

| Object of string

| Executable of string * string list
| ObjectLibrary of string

| Expert of string

A type definition provides a list of constructors, separated
by vertical bars. Each constructor consists of a name and an
optional type and is used to denote values of the new type.
Based on the definitions above, the expression Stdin denotes
a value of type unix-port, and the expression Source(*“foo.c”)
denotes a value of type impl-rep. For a property-based lan-
guage, this ability to express precisely the type of a prop-
erty’s value is an important first step toward user-defined
element types and architectural styles.

Duty Construct

Given the flexibility to write down properties with appropri-
ate values, the question arises of what properties ought to be
written down (or in general what sub-constructs are
expected to be recorded within a given construct). For exam-
ple, how did | know to include Stream-In and Stream-Out
players in the Filter interface above or that a Stream-Out
player can be meaningfully annotated with a unix-port
property? In UniCon the answer comes from reading the
Language Reference Manual, while UniCon-2 introduces a
new construct, called a duty, to address this concern.

A duty describes what information should be supplied for
a given type of player, interface, role, protocol, or
configuration. It includes a requires clause with a list of
patterns that must be matched and an optional provides
clause with a list of constructs to be added. These patterns
consist of phrases from the language, possibly including a
dollar sign wildcard. Here’s an example:

interface duty Filter
requires
(Stream-In player $ | Stream-Out player $) +
provides
gui-icon-size = (120, 80)
gui-icon =[...omitted...]
end Filter

According to this duty, any interface that declares itself to be
a Filter, such as Sort’s interface above, must include at least
one Stream-In player (whose name doesn’t matter) or one
Stream-Out player (whose name doesn’t matter). The duty
also adds two default properties, gui-icon-size and gui-icon,
to the interface.

One duty may specialize another duty and may also
require the absence—not just the presence—of certain

constructs. Here’s an example of this:

interface duty Strict-Filter
includes Filter
requires
(Stream-In player $) +
(Stream-Out player $) +
closes
$ player $
end Strict-Filter

An interface that declares itself to be a Strict-Filter interface
must not only uphold the Filter duty but must also have at
least one Stream-In player and at least one Stream-Out
player. Further, no other types of players are allowed—spe-
cifically, no players that don’t match the requires pattern but
that do match the closes pattern. Finally, although these
examples show interface duties in particular, the type duty
is polymorphic, which allows for player duties, role duties,
protocol duties, etc. A configuration duty captures UniCon-
2’s notion of an architectural style.

Here then are the rules to check whether some construct ¢
upholds a duty. First, for each includes clause, the body of
the named duty is textually included in situ. For each
provides clause, the given set of constructs is textually
added to c. For each requires clause, the given pattern is
compared the constructs in c. Any pattern for which no
matching construct is found generates an error. Finally, for
each closes clause, if any of the previously unmatched
constructs in ¢ matches the given pattern, an error is
generated.

Extensible Compiler Architecture

Together the new type system and duty construct allow the
definer of a new element type or architectural style to state
what information must (or must not) be included in an
instance of that type or style. However, these new languages
features are not expressive enough to capture the idiosyn-
cratic semantic checks and construction information particu-
lar to some type or style. For example, the duty construct
will allow an architect to insist that a Procedure-Call player
have a property called signature with a value whose type is
expressed in the type system. But how can the architect
express the intention that, whenever there’s a procedure-call
connection between a Procedure-Call player and a Proce-
dure-Def player, their signature properties should be com-
patible? Moreover how is she to express what constitutes
this notion of signature compatibility?

By augmenting UniCon-2 with ever more powerful
notations (logics, relational calculi, programming constructs,
etc.) one might be able to create a language capable of
capturing all of this type/style-specific information.
However, some of this information will doubtless not be
natural to express in this Uber-notation, and any notation this
powerful is also likely to be inscrutable to many
practitioners. A better strategy is to open up the UniCon-2
compiler architecture to allow the insertion of new parts to
handle these type/style-specific checks and construction
information.

UniCon has taken a step in this direction by encapsulating
the information associated with a connector type into a
connector expert. This expert is made up of a set of code
fragments, literals, and table entries that are injected into the

UniCon compiler’s source code before compilation [7]. The
UniCon-2 compiler design improves on this, not only by
adding component and style experts, but by using oLE [1] to
encapsulate the expertise. OLE offers a number of
advantages for a type or style expert: the expert is isolated
from compiler internals and other experts, and its interface
is explicit; it can be produced using any one of the growing
set of programming languages and platforms OLE supports;
and it can be linked into the compiler at run-time. To return
to our example, the previously mentioned architect would
express the algorithm for ensuring signature compatibility
by creating an expert for the procedure-call connector and
implementing the algorithm in the appropriate expert
function.

In summary, the type system and duty construct allow the
definer of a new element type or architectural style to
express precisely what information is to be included in an
instance of that type or style. How to use that information to
determine the semantic legality of the instance or to build
the instance is expressed in a standard programming
language and encapsulated in an OLE component.

Looking Ahead

Once the dust settles from this redesign, the next goal for
UniCon-2 will be the ability to specify architectural elements
that export some amount of flexibility in their interface or
behavior. Note that some initial support for this appears in
UniCon-2. In the example above, the Filter duty defines an
envelope of possible players, which the Strict-Filter duty
restricts. Surveying the kinds of flexibility that elements and
architectures need to express and finding notational ways to
express that flexibility are the next big research challenges.

References

[1] K.Brockschmidt. Inside OLE. Microsoft Press, 1995.

[2] D. Garlan, R. Allen, and J. Ockerbloom. “Exploiting style
in architectural design environments,” in Proc. ACM
SIGSOFT '94: Symp. Foundations of Software Eng., Dec.
1994,

[3] M. Jackson. Software requirements and specifications: A lexi-
con of practice, principles, and prejudices. Addison-Wesley,
1995.

[4] G. Kiczales. “Beyond the black box: Open Implementa-
tion,” IEEE Software 13(1).

[5] M. Moriconi, X. Qian, R. A. Reimenschneider. “Correct
architecture refinement,” IEEE Trans. on Software Eng.
21(4), Apr. 1994,

[6] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young,
G. Zelesnik. “Abstractions for software architecture and
tools to support them,” IEEE Trans. on Software Eng.
21(4), Apr. 1994,

[7]1 M. Shaw, R. DeLine, G. Zelesnik. “Abstractions and
implementations for architectural connections,” Proc. 3rd
Int. Conf. on Configurable Distributed Systems, May 1996.

