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Another important result is about the choice of the preassigned 
length m.  As a rule of thumb, choose the value of m at least J + 1 
more than the given k value. This will give satisfactory results in 
most cases. 

IV. CONCLUSION 

It is clear that this method of discrete convolution can be employed 
more effectively and efficiently if the values of ni,  k ,  and J are chosen 
with utmost care. The best position to place the center point k is the 
middle point of the preassigned length of the incoming series. This 
choice of k will much improve the performance of the algorithm. 
This very important point is not emphasized in the paper by Porsani 
and Ulrych [l]. 
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[2]. We would like to select the limited set of observations that will 
yield the best possible reconstruction of x ,  using the known mapping 
from the original signal to the observations being considered to make 
the selection. This problem is equivalent to choosing rows for A 
that correspond to the best set of observations y. Once the best 
combination of observations is determined, the available resources 
can be devoted to acquiring only those observations. 

Although aspects of this problem have been addressed for specific 
applications [3]-[7], we have not found the problem as a whole 
addressed for the general category of signal reconstruction. A related 
problem has been addressed in the statistics literature on optimal 
experiment design [8]. However, the goals and constraints of signal 
reconstruction differ somewhat from that of experiment design. In 
experiment design, one is typically concemed with obtaining good 
predictions rather than good regression parameters. Furthermore, 
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We pose observation selection as a problem of candidate selection. 
We consider a candidate set of observations { Y , ~  : k = 1,. . . , Ai}, 
where M > m .  The problem then is to find a combination of m out of 
M observations by minimizing an appropriate criterion based on the 
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Absfract- In some signal reconstruction problems, the Observation 
equations can be used as a priori information for selecting the best com- 
bination of observations before acquiring them. In this correspondence, 
we define a selection criterion and propose efficient methods for optimiz- 
ing the criterion with respect to the combination of observations. Our 
examples illustrate the value of optimized sampling using the proposed 
methods. 

I. INTRODUCTION 

Signal reconstruction uses measurements in one domain to estimate 
parameters or distributions in another domain. A common approach 
to the signal reconstruction problem is to model the observed signal 
y as a linear transformation of .I' observed in the presence of additive 
noise; that is 

y = Ax + I /  (1) 

where 71 is additive noise and d E C7'1x71 ( 7 n  2 n )  is full rank. For 
this problem, the goal is to reconstruct a good estimate of s given 
the observed signal y. 

In many applications, the relationship between the observation y t  
and the original signal s-the ith row of .4-is known a priori. 
However, the number of observations of the elements of y that can 
be made is often limited since collecting the observations may be 
expensive, time-consuming, or even dangerous for some applications. 
This limitation exists in computed tomography, magnetic resonance 
imaging (MRI) ,  and magnetic resonance spectroscopic imaging [ 11, 
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rows of A corresponding to the candidatk observations. This general 
formulation of the problem allows us to address many applications 
of observation selection. To solve this problem, we must first define 
an appropriate criterion in terms of the candidate matrix A. Then 
we must identify an efficient means for optimizing the criterion with 
respect to the choice of observations. 

11. OPTIMALITY CRITERION 

If we let At = (24HA)-1AH, then the least-squares estimate of 
x is given by 

S L ,  = A t y  
= .4t,1.r + At f ,  

= .I' + A t , /  . (2) 

Thus, we would like to choose A so that .TL, is in some sense a 
reliable estimate of x. That is, we want to reduce the uncertainty 
in the solution introduced by At,,. The sense in which the solution 
uncertainty is reduced is controlled by the criterion we adopt for the 
minimization problem. If we adopt a minimum 2-norm criterion on 
the reconstructed signal, we must minimize 

llz - .rLSll2 = 11.r - (s + ~ ~ u ) l l ~  

= Il.'ltu112 (3) 

for an appropriate choice of A. However, since we do not know 7 1 ,  we 
must settle for some other measure upon which to base our choice. 
Therefore, we assume that U is zero-mean unit variance white noise 
and take the expected value of (3). (Note that correlated noise with 
correlation matrix R,, can be handled by premultiplying A by the 
whitening operator RLu4 and then proceeding with R,?A in place 
of A.) The minimization criterion then becomes 

1 

E { 1 I At 7I 1 1' } = E { U A ( AH A ) - 1 ( .-IH A ) - 1 .-IH (I } 
= trace A ( A - ( A -I 

= trace ( A ~  A I-' A( A -' 
= trace ( A ~ - - I ) - '  

= Il.-I+ll'F (4) 
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where ( 1 .  ( I F  represents the Frobenius norm (F-nom). (Note that this 
criterion is proportional to the expected value of (3) regardless of the 
variance of 7 1 . )  

where n, is the deleted row. We can simplify this expression once 
we take the trace 

trace(AHAi)-' = t r a ~ e ( ~ 4 ~ ~ - l  

' ( ( AH A ) - n ; ) ( ( A H  A )  - n ; ) H  
1 

+'trace 
111. OPTIMIZATION STRATEGY 1 - n z ( A f f A ) -  n ,  

Unfortunately, a simple definition of the minimization criterion 
is not sufficient to solve the problem. We know of no method 
for optimizing this criterion without considering either explicitly or 
implicitly all possible combinations of rows. Thus, we must also 
deal with a combinatoric problem if all possible combinations of ni 
of M rows are evaluated. For example, suppose that we want to 
choose the best 10 of 30 rows. In this case, we must evaluate the 
criterion for over 30 000 OOO combinations if exhaustive search is 
used! Clearly, exhaustive search is impractical even for problems 
of moderate size. Rather than using exhaustive search, we consider 
two methods used in pattern recognition for large-scale feature 
selection: sequential backward selection (SBS) [9] and branch-and- 
bound (B&B) [lo]. The B&B algorithm is optimal and more efficient 
than exhaustive search, but it is significantly more complex than the 
SBS algorithm. Even though the SBS algorithm is suboptimal, in 
general it still performs quite well, as we will demonstrate in Section 
IV, and may be the preferred algorithm for applications involving a 
large number of rows. 

At each row elimination step, the term trace ( A H A ) - '  on the right- 
hand side of (6) is a common term in the criterion for all i. Therefore, 
we can simply compare the term that is a function of the row that 
is left out 

The row yielding the lowest value for this term should be eliminated. 
That is, we eliminate the row for which the expected value increases 
the least in its absence. 

The primary drawback to this approach as stated is that it requires 
A .  Sequential Backward Selection 

time from the candidate set until ni rows remain. First, we form an 
A matrix from *'I rows' Then' we determine the 'Ow 

that when deleted from A has the least adverse affect on the signal 
reconstruction performance (i.e., best value of the criterion). Once the 
worst row has been eliminated, we follow the same procedure with 
a new .4 containing A t -  1 candidate rows. We continue the process 
until we are left with an A matrix containing ni rows as desired. 
These rows represent the choice of observations to be made. 

guaranteed to find the combination that minimizes the criterion, 
since the algorithm has no ability to backtrack; that is, once an 
observation (row) is removed from the set, it cannot be added at a 
later stage. This early commitment to delete an observation overlooks 
many combinations of observations that might perform better than 
the selected set. However, the fact that SBS does not backtrack 
significantly prunes the search space, and the algorithm generally 
provides near-optimal results. 

In addition to the pruning of the search space, the SBS approach 
facilitates a sequential update of the criterion without having to 
compute it explicitly for each combination of rows [ 1 11. This provides 
a significant computational savings. If A is a sparse matrix, which is 
often the case in signal reconstruction applications, it may be possible 
to reduce the computation and storage requirements even more. 

For the expected value criterion in (4), we need to evaluate 
trace ( A H A - ' .  This requires that the inverse matrix or an eigen- 
decomposition be available. Since we are sequentially eliminating 
one row at a time, we can compute a single inverse for A with all At 
rows and then use the Sherman-Morrison matrix inversion formula 
to update the inverse of A H A  [ l  11. The update formula for the new 
inverse matrix (.iH,i)-' is as foIlows: 

computation and storage of the initial inverse matrix ( A H A ) - ' .  
Subsequent inverses can be computed efficiently using the matrix 

matrix at the current step. In many applications, =1 has a sparse matrix 
representation. Unfortunately, sparsity is generally destroyed by the 
inversion process. Therefore, if A is very large, ( A ~ A ) - ~  may be too 
large to compute and represent in computer memory. This problem 
can be circumvented, since only the vector quantity ( AHA)-'a," 
is actually needed to compare rows. This quantity can be computed 
by solving the linear system A H d 7 +  = U," for vz. If A is sparse, 
we can solve the linear system efficiently by an iterative method 

' - - a ~ z ' ~  """' 

B .  Branch-and-Bound 
The B&B algorithm is an optimal search method in which all 

possible subsets of k out of N rows of the matrix A are implicitly 
inspected without exhaustive search. The algorithm has its roots in 
integer programming problems [ 121 and was applied to the feature 
selection problem in pattern recognition by Narendra and Fukunaga 
[lo] . For the observation selection problem, the B&B algorithm 
can be used to efficiently organize the search process so that the 
enumeration of many candidate rows of the A matrix can be avoided 
without undermining the optimality of the observation selection 
process. The algorithm is a top down search, starting with the 
complete set of possible rows as the top node. The successive levels 
below the top node are branched to by removing one of the rows from 
the complete set for each level in depth. Each level is represented by 
-Y, where i is the number of remaining rows (see Fig. 1). The number 
of sets at any level in the tree is determined by a uniqueness rule, 
which ensures that every possible candidate subset is only enumerated 
once [13]. (The figure does not necessarily show all possible nodes 
for each level.) 

For the B&B algorithm to be optimal, the evaluation criterion must 
be monotonic. The monotonicity property requires that for nested sets 
of rows, - Y l , S 2 ,  ..., S k .  the criterion functional J satisfy 

The idea behind SBS is to sequentially eliminate one row at a update in (5);  however, one must still Store the inverse 

The SBS approach is in the that it is such as conjugate gradients, The criterion can then be as 

(A"A)-' z ('4HA)-l 

' ( . . I W A ) - ' n r a , ( A H A ) - '  
1 

+ 1 - n , ( A H A -  a, 
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Fig. 1. Example search tree for branch and bound. 

Suppose that some branches of a solution tree have already been 
explored to the final depth of search and that the criterion function 
for the current best set of rows -Yd equals J*, that is 

J ( S d )  = J *  . 

Now, consider a node at the Z t t '  level (2 > d) of an unexplored section 
of the tree where the value of the criterion functional is greater than 
the threshold J* , i.e. 

J ( S , )  > J*  . 
Due to the monotonicity property, it is not necessary to evaluate the 
sets of rows corresponding to the subtree branching from this node, 
since all these sets will be inferior to the current best set. In Fig. 1, if 
A is such a node at the Ith level, then six candidate sets do not need 
to be evaluated. This pruning results in considerable savings because 
only a fraction of all sets needs to be evaluated. 

Since the B&B algorithm is only applicable if the criterion that is 
used is monotonic, we explore this issue first for the expected value 
criterion. 

Theorem 1 : The criterion trace (AH A )-' increases monotonically 
as rows are eliminated from A. 

Proof: From (6), we only need to show that 

for all i .  The existence and symmetry of (AHA)- '  imply that it is 
positive definite. Thus, we know that n L ( A H z 4 ) - ' ( A H A ) - ' n F  > 0. 
It remains only to show that c c l ( A H d ) - ' n F  5 1. We use a singular 
value decomposition of A. Let A = E l r H .  Then, n ,  = u , Y l r H ,  
where t i z  is the ith row of I' and 7 i t J  is the ijth element of I'. Note 
that U H I '  = 17Hlr = I. It follows that 

o z  ( AHA)- 'nf i  = U ,  SIrH ( L ~ C H V H l ' X L r H  ) - ' ITH 
= U , y S H C ) - ' Y f f U ;  
= Y;='(U,J 
5 Cy:' ) I / , ,  12 

= 1. (9) 

(If the equality in (9) holds, then the inverse of the matrix does not 
exist with row i removed.) 

This argument can be used as each row is eliminated to show that 
the criterion always increases. 

IV. EXPERIMENTS 

To demonstrate the potential of observation selection in an actual 
application, we generated a simple simulation example. This example 
is analogous to 2-D and 3-D reconstruction in magnetic resonance 
spectroscopic imaging (MRSI), where region of support information 

is available from a proton density scout image [I], [2 ] .  We considered 
a 28-point 1-D signal. A region of support given by points (0, . . ., 7, 
8, 9, 20, . . ., 24) was assumed to be known apriori. In MRI, such a 
region of support may be derived from the known characteristics of 
the object being imaged. MRI data acquisition involves acquiring 
samples in the spatial frequency domain. The original A matrix 
therefore represents a transformation of the signal from the spatial 
domain to the frequency domain; that is, each row of A corresponds 
to a Fourier transform of the signal evaluated at a particular frequency 
location. We assumed noise with unit variance at each frequency- 
domain sample. 

The region of support given implies that there are 15 free variables, 
corresponding to the 15 unknown values in the region of support. 
Ideally, then, we should be able to solve for these values by taking 
only 15 frequency-domain samples. We investigated the effect of 
equally spaced sampling versus SBS and B&B sampling. Equally 
spaced sampling refers to sampling in equal intervals in the frequency 
domain over the continuous frequency range ( - $, +], where T is 
the sample spacing in the spatial domain. (Note that this describes the 
entire frequency range, assuming that the original signal is sampled 
without aliasing.) Sampling the frequency domain with equal spacing 
is a simple heuristic approach that has intuitive appeal. Fig. 2 shows 
mean squared error (MSE) as the number of equally spaced samples 
is decreased from a high of 28 samples to 15 samples. (The solid 
line shows MSE for equally spaced samples.) MSE grows slowly 
at first. However, at 24 equally spaced samples, the matrix A H A  
becomes singular and the criterion cannot be computed. (The abrupt 
end of the solid line reflects this fact.) To see why this happens, 

- n  - 
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note that the (k,Z) entries of the N x 15 matrix A in this case 
are given by e x p ( - j 2 7 r k n ( l ) / N )  for k = [ O . .  . . , X - 11 and 
n ( l )  = [0, . . . ,9,20,.  . . ,241. It is easy to see that at least two of 
the 15 columns of the matrix will always be identical when N 5 24, 
while the rest are orthogonal. Consider, for example, the 24 x 15 
case. The first and the fifteenth columns will both be all 1’s. Thus, 
A ~ A  is singular. 

To demonstrate the power of the SBS algorithm, we chose samples 
from a set of 28 equally spaced candidate samples. The plot (dotted 
line) shows MSE as the number of optimized samples is decreased. 
Note that for the proposed technique, MSE increases slowly and 
predictably as the number of optimally selected samples decreases. 

We also optimized the selection criterion using B&B. B&B found 
a combination of samples yielding an MSE of 1.9073, as opposed 
to 2.0421 for SBS. This illustrates the suboptimality of the SBS 
algorithm. However, the price paid for the optimal solution was 
substantial. Whereas the SBS solution required about 1s on a Sun 
SPARC 10, the B&B solution required several days! Whether B&B 
is worth this computational effort in a particular application depends 
on the cost of acquiring each sample as well as the number of 
observations to be considered. 

v. CONCLUSIONS 

The experiments illustrate two points. 1) Choosing the observations 
using a matrix-based optimality criterion rather than by a simple 
heuristic method, such as equally spaced sampling in some domain, 
may improve the noise sensitivity of the reconstruction dramatically, 
and 2) the SBS algorithm works quite well. SBS yielded an MSE 
that was only 7% higher than optimal and with a computational cost 
orders of magnitude less than B&B. While the example presented is 
only a single anecdotal case, it illustrates that observation selection 
may in some circumstances improve the results considerably. 

Criterion-based observation selection has the potential to improve 
signal reconstructions significantly beyond simple heuristic selection 
schemes. We have shown that the MSE criterion increases monoton- 
ically as samples are eliminated, thus allowing the use of B&B to 
find the optimal combination. However, the speed and performance 
of the suboptimal SBS scheme relative to B&B makes it an attractive 
altemative for large-scale observation selection problems. 
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Correction to “Iterative Filtering 
for Multiple Frequency Estimation” 

Ta-Hsin Li and Benjamin Kedem 

In [ l ] ,  due to an error in the graph generating code, the curves in 
Fig. 2(b) are incorrect. The correct Fig. 2(b) is shown. 
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Fig. 2. Least-squares mapping + ~ . ; ( f )  in the case of two sinusoids. The 
data length is n = 100 for each of the 10 realizations plotted, and the SNR 
is 0 dB per sinusoid. (h) = 1 for closely spaced frequencies with f l  = 
0.485 and fz = 0.495. 
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