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Abstract
Bayesian techniques have been developed over many years in a range

of different fields, but have only recently been applied to the problem of
learning in neural networks. As well as providing a consistent framework
for statistical pattern recognition, the Bayesian approach offers a number
of practical advantages including a potential solution to the problem of
over-fitting. This chapter aims to provide an introductory overview of the
application of Bayesian methods to neural networks. It assumes the reader
is familiar with standard feed-forward network models and how to train
them using conventional techniques.

1 Introduction

Conventional approaches to network training are based on the minimization of an
error function, which itself might be derived from some underlying principle such
as maximum likelihood (see Ripley (1994, 1995) and also the chapter by Ripley
in this book). Such approaches can suffer from a number of deficiencies, for
example the problem of determining the appropriate level of model complexity.
More complex models (e.g. ones with more hidden units or with smaller values of
regularization parameters) give better fits to the training data, but if the model
is too complex it may give poor generalization (the phenomenon of over-fitting).
The usual approach is to set aside data to form a validation set and to optimize
the model complexity to give the best validation set performance.

The Bayesian viewpoint provides a general and consistent framework for sta-
tistical pattern recognition and data analysis. In the context of neural networks,
a Bayesian approach offers several important features including the following:

e The conventional approach to networks training, based on the minimization
of an error function, can be seen as a specific approximation to a full
Bayesian treatment.

e Similarly, the technique of regularization arises in a natural way in the
Bayesian framework.

e For regression problems, error bars, or confidence intervals, can be assigned
to the predictions generated by a network.



e For classification problems, the tendency of conventional approaches to
make overconfident predictions in regions of sparse data can be avoided.

e Bayesian methods allow the values of regularization coefficients to be se-
lected using only the training data, without the need to set data aside
in a validation set. Thus the Bayesian approach avoids the problem of
over-fitting which occurs in conventional approaches to network training.
Furthermore, it allows relatively large numbers of regularization coefficients
to be used, which would be computationally prohibitive if their values had
to be optimized using cross-validation.

e Similarly, the Bayesian approach allows different models (e.g. networks
with different numbers of hidden units, or different network types such as
multi-layer perceptrons and radial basis function networks) to be compared
using only the training data. More generally, it provides an objective and
principled framework for dealing with the issue of model complexity, and
avoids many of the problems which arise when using maximum likelihood.

In this chapter we give an introductory account of Bayesian methods and their
application to neural networks. The focus here is on underlying principles rather
than mathematical details. A more comprehensive introduction to the Bayesian
treatment of neural networks can be found in Chapter 10 of Bishop (1995).

1.1 Bayes’ Theorem

We are quite used to the idea of dealing with uncertainty in our everyday lives.
For example, we might believe that it 1s unlikely to rain tomorrow if the last few
days have been sunny. However, if we then discover that a cold front is about to
arrive, we might revise our views and decide that it is in fact quite likely to rain.
Here we are discussing subjective beliefs, and the way they are modified when
we obtain more information. We might seek to put such reasoning on a more
formal footing, and to quantify our uncertainty by encoding the degrees of belief
as real numbers. In a key paper, Cox (1946) showed that, provided we impose
some simple consistency requirements, then these numbers obey the rules of con-
ventional probability theory. In other words, if we use a value of 1 to denote
complete certainty that an event will occur, and 0 to denote complete certainty
that the event will not occur (with intermediate values representing correspond-
ing degrees of belief), then these real values behave exactly like conventional
probabilities.

Once our beliefs have been represented as probabilities they can be manipu-
lated using two simple rules. Consider a pair of random variables A and B each
of which can take on a number of discrete values. We denote by P(a,b) the joint
probability that A = a and B = b. Using the product rule this joint probability
can be expressed in the form

P(a,b) = P(bla)P(a) (0.1)

Here P(bla) denotes the conditional probability, in other words the probability
that B = b given that A = a. We can similarly consider a conditional probability
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of the form P(a|b). The quantity P(a) in (0.1) denotes the marginal probability,
in other words the probability that A = a irrespective of the value of B. The
second relation between probabilities that we need to consider is the sum rule
given by

> P(a,b) = P(a) (0.2)

where the sum is over all possible values of . From the product rule we obtain
the following relation
P(bla)P(a)

Plah) = =55

(0.3)
which is known as Bayes’ theorem. Using the sum rule, we see that the denomi-
nator in (0.3) is given by

P(b)=>_ P(bla)P(a) (0.4)

and plays the role of a normalizing factor, ensuring that the probabilities on the
left hand side of (0.3) sum to one. For continuous rather than discrete variables,
the probabilities are replaced by probability density functions, and summations
are replaced by integrations.

We can consider P(a) to be the prior probability of A = a before we observe
the value of B, and P(a|b) to be the corresponding posterior probability after
we have observed the value of B. Posterior probabilities play a central role in
pattern recognition, and Bayes’ theorem allows them to be re-expressed in terms
of quantities which may be more easily calculated.

As we shall see, we can treat the problem of learning in neural networks from
a Bayesian perspective simply by application of the above rules of probability.
This leads to a unique formalism which is principle simple to apply, and which
can lead to some very powerful results. We shall also see, however, that the
application of Bayesian inference to realistic problems presents many difficul-
ties which require careful analytical approximations or sophisticated numerical
approaches to resolve.

1.2 Model Comparison

As we have already indicated, a Bayesian approach allows the model complexity
issue to be tackled using only the training data. To gain some insight into how
this comes about, consider a hypothetical example of three different models, H1,
‘H> and Hs, which we suppose have steadily increasing flexibility, corresponding
for instance to a steadily increasing number of hidden units. Thus, each model
consists of a specification of the network architecture (number of units, type of
activation function, etc.) and is governed by a number of adaptive parameters.
By varying the values of these parameters, each model can represent a range of
input—output functions. The more complex models, with a greater number of
hidden units for instance, can represent a greater variety of such functions. We
can find the relative probabilities of the different models, given a data set D,
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Fia. 1. Schematic example of three models, H1, H2 and H3, which have succes-
sively greater complexity, showing the probability (known as the evidence) of
different data sets D given each model H;. We see that more complex models
can describe a greater range of data sets. Note, however, that the distribu-
tions are normalized. Thus, when a particular data set Dy i1s observed, the
model Hs has a greater evidence than either the simpler model H; or the
more complex model Hs.

using Bayes’ theorem in the form

p(D)

The quantity p(H;) represents a prior probability for model H;. If we have no
particular reason to prefer one model over another, then we would assign equal
priors to all of the models. Since the denominator p(D) does not depend on
the model, we see that different models can be compared by evaluating p(D|H;),
which is called the evidence for the model H; (MacKay, 1992a). This is illustrated
schematically in Figure 1, where we see that the evidence favours models which
are neither too simple nor too complex.

p(H:|D) = (0.5)

1.3 Marginalization

An important concept in Bayesian inference is that of marginalization, which
involves integrating out unwanted variables. Suppose we are discussing a model
with two variables w and ¢. Then the most complete description of these variables
is in terms of the joint distribution p(¢,w). If we are interested only in the
distribution of ¢ then we should integrate out w as follows:

pt) = / plt, w) dw
/ p(tw)p(w) duw (0.6)

Thus the predictive distribution for ¢ is obtained by averaging the conditional
distribution p(t|w) with a weighting factor given by the distribution p(w). We
shall encounter several examples of marginalization later in this chapter.
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2 Regression Problems

In this section we discuss the application of Bayesian methods to ‘regression’,
i.e. the prediction of the values of continuous output variables given the values
of some input variables. The application of Bayesian methods to classification
problems is described in MacKay (1992b). We consider a feed-forward network
model (for example a multi-layer perceptron) which maps an input vector x to
an output value® y, and which is governed by a vector w of adaptive parameters
(weights and biases). The observed dataset D consists of N input vectors x”
and corresponding targets t?, where n = 1,... N.

2.1 Distribution of Weights

We begin by finding the distribution function p(w|D) of the weight vector w
once we have observed the dataset D). Note that this description of our state of
knowledge of the weights, in terms of a probability distribution, is in contrast to
the conventional approach in which the weights in a trained network take specific
values. We shall see shortly that this conventional description corresponds to a
particular approximation to the Bayesian description.

We can find the posterior distribution of weights through the use of Bayes’
theorem in the form

p(Dw)p(w)

p(D)

The conditional distribution of the data p(D|w) can be regarded as a function of
w in which case it is called the likelthood. We shall encounter a specific example
shortly. The conventional approach to network training involves seeking a single
weight vector w* which maximizes the likelihood function.

The picture of learning provided by the Bayesian formalism is as follows.
We start with some prior distribution over the weights given by p(w). Since
we generally have little idea at this stage of what the weight values should be,
the prior might express some rather general properties such as smoothness of the
network function, but will otherwise leave the weight values fairly unconstrained.
The prior will therefore typically be a rather broad distribution, as indicated
schematically in Figure 2. Once we have observed the data, this prior distribution
can be converted to a posterior distribution using Bayes’ theorem in the form
(0.1). This posterior distribution will be more compact, as indicated in Figure 2,
expressing the fact that we have learned something about the extent to which
different weight values are consistent with the observed data.

In order to evaluate the posterior distribution we need to provide expressions
for the prior distribution p(w) and for the likelihood function p(D|w). One of
the simplest choices for the prior is to assume that it is a zero-mean Gaussian
function of the weights, of the form

p(w|D) = (0.1)

pw) = s exp (<G wlf) (02)

1The extension to multiple output variables is straightforward.
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F1Gg. 2. Schematic plot of the prior distribution of weights p(w) and the pos-
terior distribution p(w|D) which arise in the Bayesian inference of network
parameters. The most probable weight vector wyp corresponds to the max-
imum of the posterior distribution. In practice the posterior distribution will
typically have a complex structure with many local maxima.

in which the normalization factor Zy («) is given by

T (o) = (2—”) i (0.3)

«

where W represents the total number of weight parameters. Since inverse vari-
ance « of the Gaussian controls the distribution of other parameters (weights
and biases), it is called a hyperparameter. For the moment we shall assume that
an appropriate value for « is known, and we shall return to the problem of how
to determine « in Section 2.3. In practice, more complicated priors are often
used, which may contain multiple hyperparameters.

Next we turn to the choice of likelihood function. This can be written down
once we have specified a model for the distribution of target values for a given
input vector. Again we consider a very simple example, namely a Gaussian with
mean given by the output y(x; w) of the network, and variance governed by a
parameter 57! so that

pitsew = (2) e (Lratew) - 07) (0.4

Again we will assume for the moment that the value of 3 is known. For the
data set DD we assume that the patterns are drawn independently from this
distribution, and hence that the probabilities are multiplicative, so that

p(Dlw) = J[»"1x" w)
= e (—gz{yw;w)—t”}Z) 0.5)
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where the normalization factor Zp(f) is given by

Zp(8) = (%”)N/Z (0.6)

Our main interest in using neural networks is to predict the values of the
output variable for new values of the input variables. From the discussion of
Section 1.3, we see that such predictions should be made by integrating over the
weight variables, so that

p(tlx, D) = / p(t]x, w)p(w|D) dw (0.7)

If the posterior distribution p(w|D) is sharply peaked about a maximum wyp,
as indicated schematically in Figure 2, then we can approximate the integral on
the right hand side of (0.7) by p(¢|x, wnmp). This corresponds to a conventional
approach in which predictions are made with the weight vector set to a specific
value. To make use of this in practice we need to determine the most probable
weight vector wyp. Instead of finding a maximum of the posterior probability,
it is usually more convenient to seek instead a minimum of the negative loga-
rithm of the probability which is generally called an error function (these two
procedures are equivalent since the negative logarithm is a monotonic function).
For the particular prior distribution (0.2) and likelihood function (0.5) we see
that, neglecting additive constant terms, the negative log probability is given by

B o
E(w) = 2 3 (e w) = 7} + 2w (0.8)

Up to an overall multiplicative factor, this is just the usual sum-of-squares error
function with a ‘weight decay’ regularization term.

2.2 Error Bars

As we have indicated, the Bayesian approach should take account not just of the
most probable weight vector, but of the complete posterior distribution of weight
vectors. In practice, the required integration over w is analytically intractable,
and so we either need to use numerical techniques, as discussed in Section 4,
or to make approximations. Here we consider an approach based on assuming
that the posterior can be represented as a Gaussian centred on wyp (MacKay,
1992d). This will allow us to predict not only the most probable value of the
output vector, but also to assign error bars to this prediction.

We can make a Gaussian approximation to the posterior distribution by rep-
resenting the error function E(w) in (0.8) by a Taylor expansion around wyp
and keeping terms up to second order, so that

E(W) = E(WMP)—I— %(W—WMP)TA(W—WMP) (09)

where A 1s called the Hessian matrix and consists of the second derivatives of



the error function with respect to the weights. Note that the first derivative term
is absent from (0.9) since we are expanding around a local minimum of E(w).
The Hessian matrix can be evaluated using an extension of the back-propagation
procedure (Bishop, 1992).

Some partial justification for this approximation comes from the result of
Walker (1969), which says that, under very general circumstances, a posterior
distribution will tend to a Gaussian in the limit where the number of data points
goes to infinity. For very large data sets we might then expect the Gaussian ap-
proximation to be a good one. However, the primary motivation for the Gaussian
approximation is that it greatly simplifies the analysis.

Even with this Gaussian approximation we still cannot evaluate (0.7) analyt-
ically. We therefore assume that the posterior distribution is relatively narrow
and hence that the network function does not vary too much over the region
of significant probability density. This allows us to approximate the network
function y(x;w) by its linear expansion around wyp

y(x; w) = y(x; wup) + gTAw (0.10)

where Aw = w — wyp and
2= VulYlwur (0.11)

The integration in (0.7) now becomes Gaussian and can be evaluated analytically
with the result

p(tlx, D) = Wexp (—%) (0.12)

where we have restored the normalization factor explicitly. This distribution has

a mean given by ymp = y(x; wmp ), and a variance given by
ol = 1 +gtAlg (0.13)

g

The first term in (0.13) arises from the intrinsic noise on the data, and is
governed by the parameter 5. The second term arises from the uncertainty in
the weights, and would go to zero in the limit of an infinite data set. We can
use (0.13) to assign error bars to network predictions, as illustrated for a toy
problem in Figure 3. It can be seen from Figure 3 that the error bars are larger
in regions where there is little data (Williams et al., 1995), as we might expect.

2.3 Hyperparameters

So far we have assumed that the hyperparameters o and 3 are known?. In

practice we will generally have little idea of what values these parameters should
take. The treatment of hyperparameters is not trivial since a straightforward
maximum likelihood approach would give over-fitted models which have poor

?Note that we will refer to 5 as a hyperparameter since, although it does not control the
distribution of other parameters in the way that o does, it can be treated by similar techniques.
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Fia. 3. A simple example of the application of Bayesian methods to a ‘regres-
sion’ problem. Here 30 data points have been generated by sampling the
function A(z) = 0.5+ 0.4sin(27z), and the network consists of a multi-layer
perceptron with four hidden units having ‘tanh’ activation functions, and
one linear output unit. The solid curve shows the network function with the
weight vector set to wyp corresponding to the maximum of the posterior
distribution, and the dashed curves represent the £20; error bars calculated

using (0.13).

generalization. For example, the best fit to the data is obtained with a very
small value of « allowing the network function to give over-fitted solutions.

As we have discussed already, the correct Bayesian treatment for parameters
such as o and 3, whose values are unknown, i1s to integrate them out of any
predictions. For example, the posterior distribution of network weights is given

by
p(wlD) = / / p(w, @, 61D) dod
/ / p(wla, 8, D)p(a, B1D) dar df (0.14)

Note that we have extended our notation to include dependencies on « and 3
explicitly in the various probability densities.

In general the integrations required by (0.14) will be analytically intractable.
Two practical analytically-based approaches to the treatment of hyperparame-
ters have been discussed in the literature. The first of these is called the evidence
approzimation (MacKay, 1992a; MacKay, 1992d), and is based on techniques de-
veloped by Gull (1988, 1989) and Skilling (1991). Tt is computationally equiva-
lent to the type IT mazimum likelihood (ML-IT) method of conventional statistics
(Berger, 1985).

Let us suppose that the posterior probability distribution p(«, 3| D) for the
hyperparameters in (0.14) is sharply peaked around their most probable values
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amp and Gyp. Then (0.14) can be written

p(w|D) =~ p(wlamp, fup, D) //p(a,BID) dadf (0.15)
= p(wlamp, fup, D). (0.16)

This says that we should find the values of the hyperparameters which maximize
the posterior probability, and then perform the remaining calculations with the
hyperparameters set to these values.

In order to find app and Syp, we need to evaluated the posterior distribution
of o and 3. This is given by

p(Dle, B)pla, B)

p(aaﬁu)): p(D)

(0.17)
which requires a choice for the prior p(e, ). Since this represents a prior over
the hyperparameters, it is sometimes called a hyperprior. We see that the dis-
tribution of weight parameters, for example, is governed by a hyperparameter «
which itself is described by a distribution. Schemes such as this are called hierar-
chical models and can be extended to any number of levels. If we have no 1dea of
what would be suitable values for « and 3, then we should choose a prior which
in some sense gives equal weight to all possible values. Such priors are called
non-informative and are discussed at length in Berger (1985). Since the denom-
inator in (0.17) is independent of o and 3, we see that the maximum-posterior
values for these hyperparameters are found by maximizing the likelihood term
p(D|e, §). This term is called the evidence for o and 3.

If we make the dependences on « and [ explicit, then we can write the
evidence 1n the form

p(Dla.B) = /p(Dlw,a,ﬁ)p(Wla,ﬁ)dw (0.18)
_ /p(D|w,ﬁ)p(w|a)dw (0.19)

where we have made use of the fact that the prior 1s independent of 5 and the
likelihood function is independent of . Using the exponential forms (0.2) and
(0.5) for the prior and likelihood distributions, together with (0.8), we can write
this in the form

1 1

pDl0, ) = oz [ e (< E(w) dw (0.20)
If we now make use of the Taylor expansion (0.9) the integration over w becomes
a Gaussian integral and can be evaluated analytically. We omit the details
here. The resultant expression can then be maximized with respect to « and
4. This gives expressions for app and fyp in terms of the eigenvalues of the
Hessian matrix A. Thus, the problem of finding the most probable values for
the hyperparameters requires little additional calculation beyond that needed to
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Fia. 4. This shows a plot of the log evidence for o versus Ina, corresponding
to the example of Figure 3. The noise parameter [ has been set to its true
value. We see that small values of o as well as large values are less probable
than some intermediate value.

evaluate the error bars. Figure 4 shows a plot of the log evidence versus « for
the toy problem used in Figure 3.

For suitable choices of the hyperprior, it is possible to perform the integra-
tions in (0.14) analytically (Buntine and Weigend, 1991; Wolpert, 1993; MacKay,
1994b; Williams, 1995). Since integration is formally the correct procedure, we
might expect that this would be superior to the evidence approximation discussed
above. However, MacKay (1994b) has argued that in practice the evidence ap-
proximation will often be expected to give superior results. The reason that this
could in principle be the case, even though formally we should integrate over
the hyperparameters, is that in practice with exact integration the remainder
of the Bayesian analysis cannot be carried through without introducing further
approximations, and these subsequent approximations can lead to greater in-
accuracies than the evidence approach. Typically, these approximations would
involve finding the maximum posterior weight vector wyp by a standard non-
linear optimization algorithm, and then fitting a Gaussian approximation around
this value (Buntine and Weigend, 1991). Clearly the integration approach is ca-
pable of finding a true value for wyp, and so the value found within the evidence
approximation must be in error (to the extent that the two approaches differ).
However, MacKay (1994b) has argued that the Gaussian approximation found
by the evidence approach finds a better representation for most of the volume of
the posterior probability distribution.

3 Model Comparison Revisited

As discussed in Section 1.2, the Bayesian approach automatically penalizes highly
complex models and so is able to pick out an optimal model without resorting to
the use of independent data as in methods such as cross-validation. Models can
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be compared using the evidence (the probability of the observed data set under
the given model), which can be evaluated by using

p(D[H;) = / / p(Dla, 8, Ho)plar, BIH:) dov d. (0.1)

The quantity p(D|e, 3, H;) is just the evidence for & and 4 which we considered
earlier (with the dependence on the model again made explicit). The integration
in (0.1) can be performed by making a Gaussian approximation for p(D|e, 5, H;)
as a function of « and § around their most probable values. This leads to an
expression for the model evidence which involves the determinant of the Hessian
matrix.

In practice the accurate evaluation of the evidence can prove to be very
difficult. One of the reasons for this is that the determinant of the Hessian is
given by the product of the eigenvalues and so i1s very sensitive to errors in the
small eigenvalues. This was not the case for the evaluation app and fyp since
these depend on the sum of the eigenvalues.

Since the Bayesian approach to model comparison incorporates a mechanism
for penalizing over-complex models, we might expect that the model with the
largest evidence would give the best results on unseen data, in other words that
it would have the best generalization properties. MacKay (1992d) and Thodberg
(1993) both report observing empirical (anti) correlation between model evidence
and generalization error. However, this correlation is far from perfect. Although
we expect some correlation between a model having high evidence and the model
generalizing well, the evidence is not measuring the same thing as generalization
performance. In particular, we can identify several distinctions between these
quantities:

e The test error is measured on a finite data set and so is a noisy quantity.

e The evidence provides a quantitative measure of the relative probabilities
of different models. Although one particular model may have the highest
probability, there may be other models for which the probability is still
significant. Thus the model with the highest evidence will not necessarily
give the best performance. We shall return to this point shortly when we
discuss committees of networks.

e If we had two different models which happened to give rise to the same
most-probable interpolant, then they would necessarily have the same gen-
eralization performance, but the more complex model would have have a
smaller evidence. Thus, for two models which make the same predictions,
the Bayesian approach favours the simpler model.

e The generalization error, in the form considered above, is measured using
a network with weights set to the maximum of the posterior distribution.
The evidence, however, takes account of the complete posterior distribution
around the most probable value.

e The Bayesian analysis implicitly assumes that the set of models under
consideration contains the ‘truth’ as a particular case. If all of the models
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are poorly matched to the problem then the relative evidences of different
models may be misleading. MacKay (1992d) argues that a poor correlation
between evidence and generalization error can be used to infer the presence
of limitations in the models.

An additional reason why the correlation between evidence and test error may
be poor is that there will be inaccuracies in evaluating the evidence. These
arise from the use of a Gaussian approximation to the posterior distribution,
and are particularly important if the Hessian matrix has one or more very small
eigenvalues, as discussed above.

Further insight into the issue of model complexity in the Bayesian framework
has been provided by Neal (1994) who has argued that, provided the complete
Bayesian analysis is performed without approximation, there is no need to limit
the complexity of a model even when there is relatively little training data avail-
able. Many real-world applications of neural networks (for example the recogni-
tion of handwritten characters) involve a multitude of complications and we do
not expect them to be accurately solved by a simple network having a few hid-
den units. Neal (1994) was therefore led to consider the behaviour of priors over
weights in the limit as the number of hidden units tends to infinity. He showed
that, provided the parameters governing the priors are scaled appropriately with
the number of units, the resulting prior distributions over network functions are
well behaved in this limit. Such priors could in principle permit the use of very
large networks. In practice, however, we may wish to limit the complexity in
order to ensure that Gaussian assumptions are valid, or that Monte Carlo tech-
niques (discussed in Section 4) can produce acceptable answers in reasonable
computational time.

In our discussions of regression problems in Section 2, we approximated the
posterior distribution of weights by a single Gaussian centred on a maximum
of the distribution. In practice, we know that the posterior distribution will be
multi-modal and that there will often be many local maxima (corresponding to
local minima of the error function). To take account of this we can consider
an approximation consisting of a Gaussian centred on each of the local maxima
found by our optimization algorithm. The posterior distribution of the weights
can be represented as

p(w|D) = Zp(mi,WID)

Zp(w|mi, D)P(m;|D) (0.2)

where m; denotes one of the local maxima. This distribution is used to determine
other quantities by integration over the whole of weight space. For instance, the
mean network output is given by

¥y = /y(x;w)p(w|D)dw
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S~ PmiID) | ulox wiptseln, D) dw

> Plmi D) (03)

where I'; denotes the region of weight space surrounding the ith local maximum,
and ¥; is the corresponding network prediction averaged over this region. Thus
we see that the overall prediction is given by a linear combination of the pre-
dictions of each of the local solutions separately. Such combinations of multiple
trained networks are known as committees. In practice, the coefficients are dif-
ficult to evaluate accurately (since they correspond to model evidences) and so
the committee coefficients may be simply set equal to 1/L where L is the total
number of minima, or may be chosen using cross-validation.

4 Monte Carlo Methods

In the conventional (maximum likelihood) approach to network training, the
bulk of the computational effort is concerned with optimization, in order to find
the minimum of an error function. By contrast, in the Bayesian approach, the
central operations require integration over multi-dimensional spaces. For exam-
ple, the evaluation of the distribution of network outputs involves an integral
over weight space given by (0.7). Similarly, the evaluation of the evidence for
the hyperparameters also involves an integral over weight space given by (0.19).
So far in this chapter, we have concentrated on the use of a Gaussian approxima-
tion for the posterior distribution of the weights, which allows these integrals to
be performed analytically. This also allows the problem of integration to be re-
placed again with one of optimization (needed to find the mean of the Gaussian).
If we wish to avoid the Gaussian approximation then we might seek numerical
techniques for evaluating the required integrals directly.

Many standard numerical integration techniques, which can be used success-
fully for integrations over a small number of variables, are totally unsuitable for
integrals of the kind we are considering, which involve integration over spaces of
hundreds or thousands of weight parameters. For instance, if we try to sample
weight space on some regular grid then, since the number of grid points grows
exponentially with the dimensionality, the computational effort would be pro-
hibitive. We resort instead to various forms of random sampling of points in
weight space. Such methods are called Monte Carlo techniques.

The integrals we wish to evaluate take the form

1= /F(w)p(w|D) dw (0.1)

where p(w|D) represents posterior distribution of the weights, and F'(w) is some
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integrand. The basic idea is to approximate (0.1) with the finite sum

L

I~ 23 Fw) (0.2)

i=1

where {w; } represents a sample of weight vectors generated from the distribution
p(w|D).

We must therefore face the task of generating a sample of vectors w repre-
sentative of the distribution p(w|D), which in general will not be easy. To do it
effectively, we must search through weight space to find regions where p(w|D) is
reasonably large. This can be done by considering a sequence of vectors, where
each successive vector depends on the previous vector as well as having a random
component. Such techniques are called Markov chain Monte Carlo methods, and
are reviewed in Neal (1993). The simplest example is a random walk in which at
successive steps we have

Wnew = Wold + € (03)

where € is some small random vector, chosen for instance from a spherical Gaus-
sian distribution having a small variance parameter. Note that successive vectors
generated in this way will no longer be independent. As a result of this depen-
dence, the number of vectors needed to achieve a given accuracy in approximating
an integral using (0.2) may be much larger than if the vectors had been inde-
pendent. We can arrange for the distribution of weight vectors to correspond
to p(w|D) by making use of the Metropolis algorithm (Metropolis et al., 1953),
which was developed to study the statistical mechanics of physical systems. The
idea is to make candidate steps of the form (0.3), but to reject a proportion
of the steps which lead to a reduction in the value of p(w|D). This must be
done with great care, however, in order to ensure that resulting sample of weight
vectors represents the required distribution. In the Metropolis algorithm this is
achieved by using the following criterion:

if p(Wnew|D) > p(Weia|D)  accept
P(Wnew|D) - (0.4)
p(weia| D)

In the case of the Bayesian integrals needed for neural networks, however, this

if  p(Wnew|D) < p(Woia|D) accept with probability

approach can still prove to be deficient due to the strong correlations in the
posterior distribution, as illustrated in Figure 5.

This problem can be tackled by taking account of information concerning
the gradient of p(w|D) and using this to choose search directions which favour
regions of high posterior probability. For neural networks, the gradient informa-
tion is easily obtained using standard back-propagation (recall that — In p(w|D)
is an error function). Great care must be taken to ensure that the gradient in-
formation is used in such a way that the distribution of weight vectors which is
generated corresponds to the required distribution. A procedure for achieving
this, known as hybrid Monte Carlo, was developed by Duane et al. (1987), and
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Fia. 5. When the standard Metropolis algorithm is applied to the evaluation of
integrals in the Bayesian treatment of neural networks, a large proportion of
the candidate steps are rejected due to the high correlations in the posterior
distribution. Starting from the point weg, almost all potential steps (shown
by the arrows) will lead to a decrease in p(w|D). This problem becomes more
severe in spaces of higher dimensionality.

was applied to the Bayesian treatment of neural networks by Neal (1992, 1994).

By using the hybrid Monte Carlo algorithm it is possible to generate a suit-
able sample of weight vectors w; for practical applications of neural networks
in reasonable computational time. For a given test input vector x, the corre-
sponding network predictions y(x; w;) represent a sample from the distribution
p(y|x, D). This allows the uncertainties on the network outputs, associated with
a new input vector, to be assessed. Hyperparameters can be integrated over at
the same time as the weights, using the technique of Gibbs sampling.

The estimation of the model evidence, however, remains a difficult prob-
lem. Another significant problem with Monte Carlo methods is the difficulty in
defining a suitable termination criterion. Despite these drawbacks, Monte Carlo
techniques offer a promising approach to Bayesian inference in the context of
neural networks.

5 Additional Topics

There are many aspects of Bayesian methods which we have not had space to
discuss at length here. For example, Bayesian methods allow choices to be made
about where in input space new data should be collected in order that it be the
most informative (MacKay, 1992¢). Such use of the model itself to guide the
collection of data during training is known as active learning. Also, the relative
importance of different inputs can be determined using the Bayesian technique
of automatic relevance determination (MacKay, 1994a, 1995; Neal, 1994), based
on the use of a separate hyperparameters for each input. If a particular hyper-
parameter acquires a large value, this indicates that the corresponding input is
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irrelevant and can be eliminated. For examples of the application of Bayesian

methods to real problems see (MacKay, 1995) and (Thodberg, 1993).
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