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ABSTRACT 

Most of the common techniques for estimating con- 
ditional probability densities are inappropriate for 
applications involving periodic variables. In this pa- 
per we introduce two novel techniques for tackling 
such problems, and investigate their performance 
using synthetic data. We then apply these tech- 
niques to the problem of extracting the distribution 
of wind vector directions from radar scatterometer 
data gathered by a remote-sensing satellite. 

1 INTRODUCTION 

Many applications of neural networks can be formu- 
lated in terms of a multi-variate non-linear mapping 
from an input vector x to a target vector t .  A con- 
ventional neural network approach, based on least 
squares for example, leads to a network mapping 
which approximates the regression (i.e. average) of 
t given x. For mappings which are multi-valued, 
however, this approach breaks down, since the av- 
erage of two solutions is not necessarily a valid so- 
lution. This problem can be resolved by modelling 
at more complete description of the relationship be- 
tween input and target, obtained by estimating the 
conditional probability density of t conditioned on 
x, written as p(t1x). Although techniques exist for 
modelling such densities when the target vectors lie 
in Euclidean space, they are not appropriate when 
the targets are periodic. Direction and (calendar) 
time are two quantities that are periodic and which 
occur frequently in applications. 

In this paper, we introduce two novel techniques 
for modelling conditional distributions for periodic 
variables, and investigate their performance using 
synthetic data. We then apply these techniques to 
the problem of determining the wind direction from 
radar scatterometer data gathered by the ERS-1 re- 
mote sensing satellite. The results are compared 
with a simple extension of a standard technique for 
periodic density estimation. 

2 DENSITY ESTIMATION FOR PERIODIC 
VARIABLES 

A commonly used technique for unconditional den- 
sity estimation is based on mixture models of the 

form 
m 

where CY; are called mixing coefficients, and the kernel 
functions q5i(t) are typically chosen to be Gaussians. 
In order to turn this into a model for conditional 
density estimation, we simply make the mixing coef- 
ficients and any parameters in the kernels into func- 
tions of the input vector x. This can be achieved by 
setting these parameters from the outputs of a neu- 
ral rietwork which takes x as input. This technique 
underlies the 'mixture of experts' model (Jacobs et  
al. (1)) and has also been considered by a number of 
other aiithors (White (2); Bishop (3); Lui (4)). 

In this section we extend this technique to pro- 
vide two distinct methods for modelling a conditional 
density p(8lx) off a periodic variable B. We also dis- 
cuss a third, conventional technique which will be 
used to provide a benchmark for comparative results. 

2.1 Transformation to an Extended Variable 
Domain 

The first technique which we consider involves 
a transformation from a Euclidean variable x E 
(--oo,a3) to the periodic variable B E [0,2n) of the 
form B = x mod 27~. This induces a transformation 
of densj ty functions p with domain R to functions j5 
with, domain [ 0 , 2 ~ )  as follows: 

CO 

~(e lx )  = E P ( e  + ~ 2 4 ~ )  (2) 
N = - m  

It is clear by construction that the function j5 is a den- 
sity function (since its integral is 1) and that it also 
satisfies the periodicity requirement j5(B + 2?rlx) = 

Various choices for the kernel functions making up 
the mixture p(t1x) are possible, but in this paper we 
shall restrict attention to functions which are Gaus- 
sian of the form 

P ( 8 l X ) .  

(b(tlx) = -- 1 exp { - Ilt - Pi(X)l12} (3) 
( 2 7 r ) C h a  ( x ) c  2Oj(X)2 

where it E Re. This formula assumes that the com- 
ponent,s of the output vector are statistically inde- 
pendent within each component of the destribution, 
and cain be described by a common variance u ~ ( x ) ~ .  
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This is not a serious restriction, since a mixture 
model with kernels as in equation (3) can approxi- 
mate any density function to arbitrary accuracy with 
suitable choice of parameters (see McLachlan and 
Basford (5)). In any case, the target variables we 
consider in this paper are one-dimensional. 

The density function p(xlx) is modelled using 
a combination of a neural network and a mixture 
model as described above. In this paper we use a 
standard multi-layer perceptron with a single hidden 
layer of sigmoidal units and an output layer of linear 
units. In order to ensure that the mixture model in 
equation (1) is a density function, it is necessary that 
the mixing coefficients ai(x) satisfy the constraints 

These constraints are satisfied by choosing the ai(x) 
to be related to a group of the network outputs by 
a ‘softmax’ function (1). The centres pi of the ker- 
nel functions are represented directly by the network 
outputs; this was motivated by the corresponding 
choice of an uninformative Bayesian prior, assuming 
that the relevant network outputs had uniform prob- 
ability distributions (1). The standard deviations 
CT~(X) of the kernel functions represent scale parame- 
ters and so it is convenient to represent them in terms 
of the exponentials of the corresponding network out- 
puts. This ensures that a;(x) > 0 and discourages 
ai(x) from tending to  0. It also corresponds to an 
uninformative prior in the Bayesian framework. 

The error function E which is used is given by the 
negative logarithm of the likelihood function for the 
data with respect to  the density function given by the 
network/mixture model combination. Derivatives of 
E with respect to the network weights can be com- 
puted using the rules of calculus (see (3)). These 
derivatives can then be used with standard optimi- 
sation procedures to find a minimum of the error 
function (which is a maximum likelihood solution). 
The results presented in this paper were obtained us- 
ing a conjugate gradient algorithm. The maximum 
likelihood solution will be biased, but in our work 
the number of data points is large, so the bias will 
be small. The use of an exponential relationship be- 
tween the kernel standard deviation and the network 
output also helps in this regard. 

In a practical implementation, it. is necessary to 
restrict the value of N in the summation. We have 
taken the summation over 7 complete periods of 27r 
spanning the range (-7a, 77r). Since the component 
Gaussians have exponentially decaying tails, this rep- 
resents a good approximation, provided that care is 
taken in initializing the network weights so that the 
initial kernels have their centres close to  0. 

2.2 

The second novel approach is also based on a mix- 
ture of kernel functions, but in this case the ker- 
nels themselves are periodic, thereby ensuring that 
the overall conditional density function is periodic. 
The particular form of kernel function which we use 
can be motivated by considering a velocity vector 
v in two-dimensional Euclidean space for which the 
probability distribution p(v) is a symmetric Gaus- 
sian. By using the transformation v, = llvll COSO, 
vy = IIvsinOll, we can show that the conditional dis- 
tribution of the direction B given the vector magni- 
tude llvll is given by 

Mixtures  of Circular  Norma l  Densi t ies  

1 exp{m cos(# - 01)) (6) 
p ( * )  = 5z&T) 

which is known as a circular normal or von Mises 
distribution (Mardia (6)). The normalization coeffi- 
cient is expressed in terms of the zeroth order modi- 
fied Bessel function of the first kind, Io(m),  and the 
parameter m (which depends on llvll in this deriva- 
tion) is analogous to the inverse variance parameter 
in a conventional normal distribution. The parame- 
ter 81 corresponds to the peak of the density func- 
tion. 

With this choice of kernel function, we again use 
a neural network to determine the parameters Q;(x), 
e,(.) and mi(x) in a mixture model to generate a 
periodic conditional density function. The network 
weights are determined by minimizing the negative 
log likelihood of the training data. Because Io(m)  is 
asymptotically an exponential function of m, some 
care must be taken in the implementation of the den- 
sity function and its derivatives to avoid overflow in 
the results of intermediate calculations. 

2.3 Soft His tograms 

For the purposes of comparison, we also consider a 
simple extension of a conventional technique for con- 
ditional density estimation which can be applied di- 
rectly to the problem of periodic variables. This in- 
volves a density model consisting of a fixed set of pe- 
riodic kernel functions (given in this case by circular 
normal functions as in equation (6)), where the mix- 
ing proportions alone are determined by the outputs 
of‘ a neural network and the centres Bo and variances 
m are fixed. We selected a uniform distribution of 
centres, and m equal for each kernel and sufficiently 
large to allow some degree of overlap, so that the net- 
work outputs determine the mixing coefficients only. 
The value for m was chosen to be 0.6 times the inter- 
centre distance. Of course, it could be made a pa- 
rameter for optimization, but there was insufficient 
time to do this for the present paper. This approach 
is a ‘soft’ version of modelling the histogram of the 
target variable (i.e. banding the range and putting 
the actual values into frequency bins). 
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1 

2 

Clearly a major drawback of fixed kernel meth- 
ods is that the number of kernels must grow expo- 
nentially with the dimensionality of the input space. 
However, for a single output variable, which occurs 
most commonly in applications, they can be regarded 
as practical techniques. 

Units Error I Error 
2 13 1109.4 I 1128.7 
6 7 1101 AA"".- 

2 1 1131 
2 3 1113.9 1132.9 
6 8 1109.5 1133.9 
10 6 1120.4 1136.5 

1 14 1777.0 I i8n8.3 1 

3 APPLICATION TO SYNTHETIC DATA 

In order to  test and compare the methods introduced 
in section 2, we first consider a simple problem in- 
volving synthetic data, for which the true underlying 
distribution function is known. This data set is in- 
tended to  mimic the central properties of the real 
data to  be discussed in the next section. It is gener- 
ated from a mixture of two triangular distributions 
where the centres and widths are taken to be lin- 
ear functions of a single input variable z with fixed 
mixing coefficients 0.6 and 0.4. Any values which 
fall outside (-a, T) are mapped back into this range 
by shifting in multiples of 2a t o  give a distribution 
which is periodic in the output variable B .  

01 0 2  0.3 0 4  O S  0.6 0.7 0 8  09  1 

Figure 1: Scatter plot of the synthetic training data. 

Three independent datasets (for training, valida- 
tion and testing) were generated from this distribu- 
tion, each containing 1000 data points. For each 
technique, training runs were carried out with the 
number of hidden units and kernels in the mixture 
model varied systematically to  determine good val- 
ues for them. 'Early stopping" was used to reduce 
the effects of overfitting during training. Table 1 
gives a summary of the best results obtained with 
each of the three methods. 

A number of conclusions can be drawn from this 
series of experiments. As we might expect, the two 
adaptive mixture models achieved better results than 
those obtained with the fixed kernel functions. While 
the performance of the mixture models was poor 

'The technique used was to to adjust the network param- 
eters based on the error on the training set, and to monitor 
the error on the validation set. The final network was the one 
with the lowest validation. error. 

36 3 1  118, FF I 36 I 7 1  1184.6 I 1223.5 

Table 1: Results on synthetic data 
Method 1: Transformation to  an extended variable 
domain 
Method 2: Mixture of adaptive circular normal func- 
tions 
Method 3: Mixture of fixed kernel functions 

when the number of kernel functions was too small 
( 2 . e .  less than two in this case), the performance 
did not seriously degrade when the number of cen- 
tres was greater than necessary. This is probably 
because, if there are more kernel functions than are 
needed to model the data, the network can either 
switlch off redundant kernels by setting the corre- 
sponding mixing coefficients to small values or it can 
combine kernels by giving them similar centres and 
variances. 

Oine problem that was noted in training the mix- 
ture models was that they were more likely to  get 
stuclk in local optima when the number of kernel 
functions was small. For example, with two circular 
normal kernels, six of the twelve training runs (with 
different numbers of hidden units) finished with a 
value for E in the region of 1450. By contrast, with 
10 clentres, just one of the twelve runs finished with 
E in that range. Thus it is important with this tech- 
nique to use several starting positions for the weights; 
therle was insufficient time to do this for the present 
paper. 

Figure 2: Distribution obtained from a mixture of 
adaptive circular normals with 3 hidden units and 2 
centres. The input value z is 0.5. 

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on July 8, 2009 at 08:22 from IEEE Xplore.  Restrictions apply.



180 

The graph in figure 2 shows the match between 
the best adaptive circular normal network and the 
true generating distribution of the synthetic data at 
the input value x = 0.5. The graph in figure 3 shows 
the same information in a polar plot. 

Other things being equal, we prefer the method us- 
ing adaptive circular normal kernel functions, since 
there is a natural interpretation of the kernels in 
terms of the periodic target variable. A comparison 
of this technique with the soft histogram approach 
on real data is contained in the next section 

Figure 3: Polar plot of the distribution obtained from 
a mixture of adaptive circular normals with 3 hidden 
units and 2 centres. The input value 2 is 0.5. 

4 APPLICATION TO RADAR SCATTEROM- 
ETER DATA 

One of the original motivations for developing the 
techniques described in this paper was to provide an 
effective, principled approach to the analysis of radar 
scatterometer data from satellites such as the Euro- 
pean Remote Sensing satellite ERS-1. The ERS-1 
satellite is equipped with three C-band radar an- 
tennae which measure the total backscattered power 
(written as CO) along three directions relative to the 
satellite track, as shown in Figure 4. When the 
satellite passes over the ocean, the strengths of the 
backscattered signals are related to the surface rip- 
ples of the water (on a scale of a few centimetres) 
which in turn are determined by the low level winds. 

nals represents an inverse problem which is typically 
multi-valued. Although determining the wind speed 
is relatively straightforward, the data gives rise to 
‘aliases’ for the wind direction. For example, a wind 
direction of 8 will give rise to similar radar signals 
to a wind direction of 8 + T ,  and there may be fur- 
ther aliases at other angles. A conventional neural 
network approach to  this problem, based on a least 
squares estimate of the direction, would predict di- 
rections which were given by conditional averages. 
Since the average of several valid wind directions is 

Extraction of the wind vector from the radar sig- 

satellite 

500 km 

Figure 4: Schematic illustration of the ERS-1 satel- 
lite showing the footprints of the three radar scat- 
terometers. 

not itself a valid solution, such an approach would 
clearly fail. In this paper we show how to extract 
the complete distribution of wind directions (condi- 
tioned on the three CO values and incidence angle) 
and hence avoid such problems. 

A large dataset of ERS-1 measurements, spanning 
a wide range of meteorological conditions, has been 
assembled by the European Space Agency in collabo- 
ration with the UK Meteorological Office. Labelling 
of the dataset was performed using wind vectors from 
the Met Office Numerical Weather Prediction model. 
These values were interpolated from the inherently 
coarse-grained model to regions coincident with the 
scatterometer cells. This was the best estimate of the 
wind vectors that was available in sufficient quanti- 
ties for developing a neural network solution. I t  is 
suitable for predicting a background wind direction, 
but may be less appropriate in regions where there 
are smaller scale features, such as frontal zones and 
other areas of high gradients in wind speed or direc- 
tion. 

The data that was selected for the experiments re- 
ported in this paper was collected from low pressure 
(cyclonic) and high pressure (anti-cyclonic) circula- 
tions. These conditions, rather than cases that were 
homogeneous or with a simple gradient in speed or 
direction, were chosen to  provide a more challenging 
task to test the modelling techniques. Ten windfields 
from each of the two categories were used: each wind- 
field contains 19 x 19 = 361 cells each of which rep- 
resents an area of approximately 50 x 50km’. This 
gives a total of 7220 patterns, although the data for 
some of the cells was missing. When the data was 
split into three subsets, each contained 1963 pat- 
terns. 

’Given that the total footprint width is 500 km, this implies 
that the cells overlap to some extent 
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Method Centres 

1 2 

We then trained both fixed and adaptive circular 
normal networks to model this data. The inputs used 
were the three values of CO for the aft-beam, mid- 
beam and fore-beam, and the sine of the incidence 
angle of the mid-beam, since this angle strongly influ- 
ences the reflected signal received by the scatterom- 
eter. The CO inputs were scaled to have zero mean 
and unit variance, while the fourth input value was 
passed to the network unchanged. The target value 
was expressed as an angle clockwise from the satel- 
lite’s forward path and converted to radians. Again, 
a conjugate gradient algorithm and ‘early stopping’ 
were used to train the networks. 

Table 2 gives a summary of the preliminary results 
obtained with each of the three methods. As ex- 
pected, the fact that this is a more complex domain 
than the synthetic problem meant that there were 
more difficulties with local optima. In fact, over 75% 
of the training runs ended with the network trapped 
in a local minimum of the error surface. 

Hidden Validation Test 
Units Error Error 

20 2627.7 2689.5 
1 
1 

4 15 2581.7 2641.4 
8 12 2499.5 2718.0 

t 2  I 36 I 24 I 2692.6 I 2784.5 I 
Table 2: Results on satellite data 
Method 1: Mixture of adaptive circular normal func- 
tions 
Method 2: Mixture of fixed kernel functions 

Table 2 shows that, although an adaptive-centre 
model with eight centres has the lowest error on the 
validation data, fewer centres are actually required 
to model the conditional density function well. This 
is also demonstrated by figure 5 which shows the con- 
ditional distribution of wind directions given by this 
network at a typical data point from the test set, 
and which is clearly bi-modal. This figure also shows 
how the peak of the density at the ‘alias’ direction is 
broader than that in the true direction at this data 
point. 

This figure should be compared with figure 6 which 
shows the density at the same point given by the 
fixed kernel model; this distribution has four peaks. 
This is probably due to a sub-optimal choice of the 
variance parameter m; if this had been larger, it may 
have been possible to model the bi-modal distribu- 
tion more accurately. Figure 7 shows the two dis- 
tributions on the same polar plot, which also clearly 
shows the different alignments of the two distribu- 
tions. 

We conclude that the adaptive circular normal ap- 
proach gives better results than the fixed kernel ap- 
proach to this problem. At the test data point dis- 
played, aliasing was found only at an angle of T, and 
this is true more generally. 

Figure 5: Plot of the distribution obtained from a 
mixture of adaptive circular normals with 12 hidden 
units and 8 centres at a test data point. 

Figure 6: Plot of the distribution obtained from a 
mixture of fixed circular normals with 24 hidden 
units and 36 centres at a test data point. 

An a,dvantage of the density modelling approach 
is that it enables a better understanding of the di- 
rection ambiguities to be formed. In addition, it 
provides the most complete information for the next 
stage oif processing, which is to ‘de-alias’ the wind di- 
rections by combining local information to determine 
the most probable overall wind field. 

5 D~SCUSSION 

In this paper we have introduced a new class of net- 
works which can model conditional probability den- 
sities for periodic variables. We have illustrated the 
use of these networks in a simple problem involv- 
ing synthetic data, and on radar scatterometer data. 
In both cases the networks outperformed the sim- 
pler fixed kernel approach to density modelling. A 
conventional network approach, involving the min- 
imization of a sum-of-squares error function would 
havle plerformed poorly on these problems since the 
required mapping is multi-valued. 

One aspect of our approach that is more com- 
plex than conventional techniques is the problem of 
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Figure 7: Polar plot of the distribution obtained from 
a mixture of 36 fixed kernels and a mixture of adap- 
tive circular normals with 12 hidden units and 8 cen- 
tres. 

model order selection. The incorporation of a mix- 
ture model means that there are two structural pa- 
rameters to select: the number of hidden units in the 
network and the number of kernels in the mixture 
model. Changing the number of kernels also changes 
the number of parameters in the mixture model, and 
hence the number of output units required in the 
network. Thus both structural parameters affect the 
number of adjustable parameters in the network. In 
this paper we used the simple approach of early stop- 
ping during training to  limit the effective number 
of degrees of freedom in the network together with 
a systematic varying of the structural parameters. 
We found that the use of a greater number of kernel 
functions than was necessary did not degrade perfor- 
mance significantly. However, the number of experi- 
ments to  determine good values for these parameters 
was large, and in our future research we intend to 
investigate techniques for the automation of model 
order selection. 
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