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Stochastic sampling has proven to be an effective means of reducing many types of aliasing artifacts. However stochastic sampling requires many samples in order to produce images which appear free of noise, especially when used to antialias procedural textures or the shadowing effects of area light sources. We have developed a new algorithm that improves the signal to noise ratio of stochastically sampled image sequences. The algorithm predicts the motion of pixels in screen space, compensating out the effect of motion in the scene. Several frames of motion compensated pixel intensity information are averaged with a corresponding improvement in signal to noise ratio. The new algorithm is efficiently applied as a post process to previously rendered images. Computation time is low compared to the time required to render complex images - only 2 minutes per frame for a 320 by 243 pixel image on an SGI Indigo 2 workstation.



Introduction

Stochastic sampling [DIPPE, COOK86] has proven to be an effective means of reducing many types of aliasing artifacts. However, many samples are required in order to produce images which appear free of noise, especially for procedural textures with high spatial frequencies[PERLIN,PEACHEY] or the shadowing effects of area light sources. This paper describes a post processing algorithm to improve the signal to noise ratio of a previously rendered stochastically sampled animation sequence. The algorithm predicts the motion of pixels in screen space, effectively compensating out the effect of motion in the scene. By averaging pixel intensity information from several frames the signal to noise ratio can be improved without increasing the number samples taken in the scene. This algorithm can best be thought of as a “polishing” step applied after the initial rendering of an animation sequence. The algorithm will use whatever temporal coherence is present in the animation sequence to improve signal to noise ratio, sometimes substantially. 



The algorithm uses object transformation information from the animation script to perform motion prediction of illumination components. Not all illumination components can be easily computed from the object transformation information in an animation script. Incorrect motion prediction creates very visible and distracting artifacts, such as false motion and multiple images. For this reason the image intensity is separated into two types of components: those which travel in rigid body motion with objects, called rbm-predictable intensity components, and those which do not. Rbm-predictable intensity components can be easily predicted from the information in the animation script. The rbm-predictable fields are spatially and temporally filtered and contribute to an improvement to signal to noise ratio. Fields which are not rbm-predictable are left unfiltered.



This work is similar in spirit to that of  [SHINYA] although that work applied motion prediction techniques to images sampled on a regular lattice. The current algorithm can be applied to scenes with shadows and specular reflections, although with some restrictions on the relative motion of the eyepoint, lights, and objects in the scene. These restrictions and the types of illumination models which the algorithm can accommodate are discussed in section 2. Section 3 of the paper describes the motion prediction technique and the non-linear spatial and temporal filtering used in the motion predictor. Section 4 discusses the results of applying the algorithm to two image sequences. Section 5 presents conclusions and suggests future research directions.



Illumination model

The illumination model described below has been chosen as a representative one for illustrative purposes. This is the model used in the current implementation of the algorithm. The precise details of the illumination model are less important than the types of illumination effects encapsulated in the model. It includes the effects of:



local surface reflectance characteristics

shadowing effects due to occlusion of the light source

true specular reflectance

specular spot reflectance modeled with a microfacet distribution function



The pixel intensity at position p in frame i, � EMBED EQUATION  ��� , is the sum of a global ambient term � EMBED EQUATION  ���, where � EMBED EQUATION  ��� is the intrinsic reflectivity of surface p, a self luminous term � EMBED EQUATION  ���, a diffuse reflectance term



 � EMBED EQUATION  ���	(1)	



which includes the effect of shadowing of light L in the Ilsk term, where N is the normal to the surface, Lk is the vector to light k, Clk is the color of light k, and a specular reflectance term � EMBED EQUATION  ��� which can either be a true specular reflection determined by ray tracing, simulated by reflection mapping, or a specular spot determined from a microfacet distribution function and the Fresnel equation [COOK82]. The illumination equation for this simple illumination model is:

 

� EMBED EQUATION  ���	(2)



Rbm-predictability



The basic illumination model has four image fields which behave differently when objects and lights move in the scene: the intrinsic reflectance field, the shadow field, the true specular reflectance field, and the specular spot field.



Intrinsic surface reflectance, which includes self luminance and the base color of the object modified by coloration due to procedural texturing, is rbm-predictable when the surface reflectance of an object is not changing with time, or if the change in surface reflectance is an invertible function of time.

Shadows are rbm-predictable when the light, the object casting the shadow and the object the shadow is cast upon are in a rigid body relationship to one another over time.

True specular reflectance is rbm-predictable when the object or objects visible in the reflection and the surface from which the light is reflected are in a rigid body relationship with each other over time. If the object visible in the reflection is itself reflective then this condition applies recursively. 

The specular spot component is rbm-predictable when the object, the light illuminating it, and the eye position are in a rigid body relationship with each other over time.



For rbm-predictable illumination components the algorithm can achieve fairly substantial improvements in signal to noise ratio. For non rbm-predictable illumination components there is no improvement in signal to noise ratio.

Motion prediction and filtering



The motion predictor tracks the screen space location of points on an object as the object and the eyepoint move. Each object in the scene has an associated transformation matrix, Aoi , which transforms object o from model space to screen space in frame i. During the initial rendering of the image the matrix transformation number of the object visible in each pixel is stored - each object has a unique transformation number. If more than one object is visible in the pixel, for example in the case of transparent objects, then it would be possible to store multiple transformation numbers along with the relative contributions of each object to the total pixel intensity. However, the current implementation of the algorithm stores only the transformation number of the frontmost object visible in the pixel.



The frame j screen space location of pixel pi in frame i is found by



� EMBED EQUATION  ���		(3)



� EMBED MSDraw  ���



Figure 1: window of three predictor frames





The algorithm maintains a sliding window of n predictor frames centered about the current frame. For each pixel p in the current frame the algorithm uses motion prediction to find the predicted positions of corresponding pixels in each predictor frame. Predicted pixel RGB values are computed using non-linear spatial interpolation based on the predicted pixel positions. The set of predicted pixel intensities results in a one dimensional temporal signal at most n pixels long containing RGB predicted values of all those pixels which correspond to p. The one dimensional temporal signal is filtered and the resulting value retained as the new value of p.



The predicted pixel intensity, Ipi, in frame i is given by spatial interpolation using a separable piecewise cubic interpolation kernel [PARKER]



� EMBED EQUATION  ���		(4)



The constant a is a user selectable parameter. For a < 0 H is positive in the region 0..1 and negative in the region 1..2. More negative values of a create larger negative side lobes in the region 1..2 and generally increase the high frequency peaking characteristic of the filter. A value of -.75 for a gives good high frequency rejection and reasonable response in the passband. This was the value of a used to generate all the pictures in the paper.



The interpolated pixel intensity is:



� EMBED EQUATION  ���	(5)



where Mj is the matrix storing the pixel intensities for frame j. The sum is computed separately for each of the red, green, and blue components of the image. The delta function� EMBED EQUATION  ��� is zero if the transformation number for pixel pi is different from the transformation number for any of the pj involved in the summation and one otherwise. Without this delta function subtle motion prediction artifacts are introduced into the image. Figure 2 shows an example. In the figure the circle is moving diagonally toward the lower left corner. In frame i+1 the object has moved away from pixel pi . But in frame i the dark circle is inside the interpolation kernel and changes the color of the predicted pixel intensity. By requiring object number matching on all pixels in the interpolation kernel this type of motion artifact is eliminated.



� EMBED MSDraw  ���



Figure 2: motion artifact induced by linear spatial filtering



The shadow field can be both spatially and temporally filtered since this field has primarily low spatial frequency components. A non-linear spatial filter is applied to maintain sharp shadow edge transitions. The non-linear filter averages the intensities of the neighbors of the current pixel. A neighbor is added to the average only if its transformation number matches that of the current pixel and if the ratio of the current pixel intensity to the neighbor intensity is less than a fixed threshold.

Spatial filter transformation



The screen space projection of objects changes with time. The spatial interpolation filter applied to predictor frames must be warped appropriately to compensate for this effect. If it is not warped then two effects occur: high frequency aliasing artifacts will be introduced into the noise reduced image and low frequency components can be amplified, reducing the sharpness of the image. 



The true projection of the spatial filter kernel from the current frame to the other n�-1 frames in the prediction window is a complex non-linear function of screen space position. This is too computationally expensive to model precisely. Instead the filter kernel warping is modeled as a locally linear two dimensional transformation; the translational component of the transformation is handled independently of the change in shape of the filter.





� EMBED MSDraw  ���



Figure 3: pixel projection





The locally linear screen space transformation from a predictor frame to the current frame is approximated by finding the relationship between  two pixel length vectors, s1 and s2, in the current frame, and their corresponding transformed vectors, p1 and p2, in the predictor frame:



� EMBED Equation.2  ���	(6)



� EMBED Equation.2  ���	(7)



All the pixels inside the parallelogram formed by p1 and p2 are transformed into the coordinate frame defined by s1 and s2, weighted by the spatial interpolation kernel and summed. This procedure essentially eliminates any high frequencies which might cause aliasing artifacts.



Under certain conditions the transformation from the predictor frame to the current frame is such that only low spatial frequency information is present in the transformed and filtered signal. If the interpolated pixel intensities from several of the predictor frames in the temporal filter window have primarily low frequency information  have the relative power of low spatial frequency energy to high spatial frequency energy will increase and causes the image to lose sharpness. Predictor pixels which have primarily low frequency information are detected by examining the singular values of � EMBED Equation.2  ���. The singular value decomposition  [STRANG] of a matrix A is:



� EMBED Equation.2  ���		(8)



where � EMBED Equation.2  ���are orthonormal matrices containing the eigenvectors of � EMBED Equation.2  ���and � EMBED Equation.2  ���respectively. The matrix � EMBED Equation.2  ���is diagonal with the singular values along the diagonal. The singular values of A are the square roots of the eigenvalues of � EMBED Equation.2  ���. The singular values control how space is warped. Since � EMBED Equation.2  ���are orthonormal multiplication by them does not change the length of a vector. Scaling is due solely to the singular values. Large singular values correspond to filter kernel projections which are very small along some axis in the predictor frame. Predictor pixels with singular values greater than a threshold are eliminated from the temporal summation.



We can find the singular values of � EMBED Equation.2  ���by computing the square root of the eigenvalues of 



� EMBED Equation.2  ���		(9)



If we write B as:



� EMBED Equation.2  ���		(10)



and then solve the quadratic characteristic equation



� EMBED Equation.2  ���		(11)



� EMBED Equation.2  ���	(12)



for the two eigenvalues of this system



� EMBED Equation.2  ���	(13)



we get the singular values:



� EMBED Equation.2  ���		(14)





Predictor pixels which have low frequency information will have at least one singular value whose absolute value is  greater than 1. The frequency content of the predictor pixel will be proportional to the reciprocal of the singular value. The threshold for eliminating pixels from consideration for prediction can be set at a level which maintains good image sharpness but doesn’t eliminate too many predictor pixels. Maximum singular values of 1.2 to 1.4 have been found experimentally to yield images of very good sharpness and to eliminate no more than 10% to 15% of the predictor pixels in the image sequences tested although this will clearly be image dependent to some extent.



Results

All timings were performed on an SGI Indigo2 Extreme workstation. The motion prediction algorithm was applied as a post process to two motion sequences. These sequences were computed at a very low sampling rate to make the effect of the noise reduction quite obvious even after reproduction at small size. Each frame in the image sequence was 320 by 243 pixels resolution. For the original rendering the procedural texture was sampled at one sample/pixel. There are 11 spherical light sources in the scene. For every pixel each light source was sampled with 2 rays for a total of  22 light source samples per pixel. Each of the image frames took two minutes to compute. In both sequences the threshold for the non-linear spatial filter applied to the shadow illumination components was 2.0. The singular value threshold for the spatial filter transformation was 1.3. A 9 frame temporal filter window was used for all images.



In the first image sequence the floor has a procedural wood texture to illustrate the improvement in SNR in the procedurally textured parts of the image. A 30 frame sequence of animation was processed. The tenth frame of that sequence is shown in Plate 1 alongside the original noisy frame.



Because the procedural wood texture masks the noise in the diffuse shadows of the image another image sequence was computed with the floor a uniform gray. Plate 2 shows the result of applying the new algorithm to this sequence, again for the tenth frame.



Plate 4 shows an adaptively antialiased version of the image in Plate 2 alongside the motion compensated frame. The adaptively antialiased frame took 20 minutes to compute. The motion prediction noise reduction took 2 minutes per frame. Adding this to the 2 minutes taken to render the original frames gives a total of 4 minutes per frame. The motion predicted frame is of nearly the same quality as the adaptively antialiased frame even though the frames the motion prediction was applied to have a very poor SNR.

Conclusion

The new motion compensated noise reduction algorithm has several attractive characteristics. As a post process the extra computation required for the motion prediction is small compared to the time required to directly render an image with a comparable signal to noise ratio. The computation required for algorithm is fixed by screen resolution, not by the geometric complexity of the scene.



It would be interesting to incorporate the motion prediction algorithm directly into an existing renderer rather than applying it as a post process. By its nature motion prediction noise reduction can only exploit as much temporal coherence as exists in the scene. Some illumination components are not always rbm-predictable as discussed in section 2. If the algorithm is incorporated directly into a renderer then the renderer can adaptively supersample in those areas where there is low temporal coherence, or where rbm-predictability does not hold.



Another interesting extension to this research would be to implement the new algorithm in hardware or on a programmable digital signal processor. The algorithm spends the majority of its time doing matrix vector multiplications and two dimensional convolution for every pixel in the image. Both of these operations can be efficiently implemented in hardware or on a programmable digital signal processor.
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