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Abstract

We present a de�nition of cause and e�ect in terms of decision-theoretic primitives and

thereby provide a principled foundation for causal reasoning. Our de�nition departs from

the traditional view of causation in that causal assertions may vary with the set of decisions

available. We argue that this approach provides added clarity to the notion of cause. Also

in this paper, we examine the encoding of causal relationships in directed acyclic graphs.

We describe a special class of in
uence diagrams, those in canonical form, and show its

relationship to Pearl's representation of cause and e�ect. Finally, we show how canonical

form facilitates counterfactual reasoning.

1. Introduction

Knowledge of cause and e�ect is crucial for modeling the a�ects of actions. For example, if
we observe a statistical correlation between smoking and lung cancer, we can not conclude
from this observation alone that our chances of getting lung cancer will change if we stop
smoking. If, however, we also believe that smoking is a cause for lung cancer, then we can
conclude that our choice whether to continue or quit smoking will a�ect whether we get
lung cancer.

Work by arti�cial intelligence researchers, statisticians, and philosophers have empha-
sized the importance of identifying causal relationships for purposes of modeling the e�ects
of actions. For example, Simon (1977), Robins (1986), Spirtes et al. (1993), and Pearl (1993,
1995) have developed graphical models of cause and e�ect, and have demonstrated how these
models are important for reasoning about the e�ects of actions. In addition, Robins (1986),
Rubin (1978), Pearl and Verma (1991), and Spirtes et al. (1993) have developed approaches
that embrace causality for learning the e�ects of actions from data.

One useful framework for causal reasoning is that of Pearl (1993, 1995)|herein Pearl.
Using his framework, we construct a causal graph G. The nodes in G correspond to a set
of variables U that we wish to model. Each variable has a set of mutually exclusive and
collectively exhaustive values or instances. The arcs in G represent (informal) assertions of
cause|in particular, the parents of x 2 U are direct causes of x. Pearl gives these informal
assertions of cause an operational meaning by introducing a special class of actions on the
variables U and then describing the a�ects of these actions using the structure of the causal
graph. Speci�cally, he posits that, for every variable x 2 U , there exists another variable x̂,
which we call an atomic intervention on x. The variable x̂ has an instance set(x) for every
instance x of x, and an instance idle. The instance set(x) corresponds to an action that
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forces x to take on instance x and indirectly a�ects other variables through the change in
x. The instance idle corresponds to the action of doing nothing.1 Pearl then asserts that
the e�ects of atomic interventions on the variables in U are determined by the structural
equations

x = fx(Pa
G(x); x̂; �x)

for all x 2 U , where (1) PaG(x) are the parents of x in G|that is, the direct causes of x, (2)
the variables �x are exogenous and mutually independent random disturbances, and (3) the
function fx has the property that x = x when x̂ =set(x) regardless of the values of PaG(x)
and �x. Following Pearl, we call this framework for de�ning cause a structural-equation
model.

Another useful framework for causal reasoning, closely related to Pearl's, is that of
Spirtes et al. (1993)|herein SGS.

Despite these and other important advances in reasoning about cause and e�ect, founda-
tions for such approaches are lacking. In any framework for causal reasoning, it is important
to consider what concepts are primitive|that is, assumed to be self evident and used to
de�ne other concepts. As much as is possible, these primitives should have simple and uni-
versal meanings so that claims of causation can be empirically tested and causal inferences
can be trusted. Unfortunately, the primitives used by Pearl, SGS, and other researchers are
not ideal in this respect.

For example, SGS take cause itself to be a primitive. Given the controversies in statistics
and other disciplines concerning the meaning of cause, we believe that a better primitive
can be found. Pearl takes random disturbance, exogenous variable, and atomic intervention
as primitives. One problem with this approach is that we need an understanding of cause
and e�ect to identify an intervention as atomic. To illustrate the problem, suppose we
wish to model the causal relationship between the binary variables w and h representing
whether or not a person considers himself to be wealthy and happy, respectively. Further,
suppose we can give this person a large sum of stolen money along with the knowledge that
this money is stolen. Now we ask the question: Is this action an instance of an atomic
intervention for w? If this person does not care about how he becomes wealthy, then the
answer is \yes." If this person is more typical, however, then the answer is \no," because
this action would a�ect both w and h directly. Thus, we must �rst determine whether or
not the action is a direct cause of h to determine whether or not this action is an instance
of an atomic intervention.

In this paper, we provide a principled foundation for causal reasoning. In particular,
we explicate a set of primitives from decision theory, and use these primitives to de�ne
the concepts of cause and atomic intervention as well as those of random disturbance and
exogenous variable. These primitives are simple to understand and used uniformly across
many disciplines.

The basic idea behind our de�nition of cause is as follows. Following the paradigm of
decision theory, we focus on a person|the decision maker|who has one or more decisions to
make. For each variable that we wish to model in considering these decisions, we distinguish

1. We adopt a variant of Pearl's notation for the instances of an atomic intervention. In addition, whereas
Pearl calls the action set(x) an atomic intervention, we �nd it convenient to use this phrase to refer to
the entire variable x̂.
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the variable as being either a decision variable or chance variable. A decision variable is a
variable whose instances correspond to possible actions among which the person can choose.
A chance variable is any other variable. This framework is similar to Pearl's, where chance
variables correspond to the variables U and decision variables correspond to interventions.
The di�erences are that (1) we do not require there to be a decision variable for every
chance variable, and (2) decision variables need not be atomic interventions.

Now, for simplicity, suppose that we have a model consisting of only one decision variable
d and a set of chance variables U . Imagine that we choose one of the instances of d and
subsequently observe x 2 U . If we believe that x can be di�erent for di�erent choices, then,
by our de�nition, we say that d is a cause for x. For example, suppose decision variable
s represents the decision of whether or not to continue smoking and chance variable l

represents whether or not we get lung cancer. If we believe that we will get lung cancer if
we continue smoking and that we may not get lung cancer if we quit, then we can say that
s is a cause of l.

Our de�nition is related to the notion of a counterfactual: a hypothetical statement or
question that can not be veri�ed or answered through observation (Lewis, 1973; Holland,
1986). In our smoking example, we ask the question \Will deciding di�erently possibly
change our health outcome?" This question can not be answered by any observation, be-
cause we must either quit or continue to smoke; we can not do both. Using counterfactuals,
Rubin (1978) de�nes a notion of causal e�ect that is closely related to our de�nition of
cause.

The problem with most de�nitions of cause based on intervention is that they do not
allow chance variables to be the causes of other chance variables. Consider the variables g
and c representing a person's gender at birth and whether or not that person gets breast
cancer, respectively. Although g is a chance variable (we cannot choose our gender), we
often hear people say in natural discourse that g causes c. In general, we would like to
accommodate such assertions.

The de�nition of cause that we present does indeed permit chance variables to be causes.
There is, however, one catch. Namely, when we assert that a set of chance variables X is a
cause of chance variable y, we must also specify the decision or decisions that bring about
the possible changes in X and y. In our breast-cancer problem, we can assert that g causes
c, but we must explicate a decision that possibly leads to a change in gender and breast
cancer. For example, we can say that g causes c with respect to decision variable d, where
d represents the decision of whether or not to perform genetic surgery at conception.

By including a decision context in assertions of cause, our de�nition departs from the
traditional view of causation. Nonetheless, this departure makes causal assertions more
precise. For example, consider another decision that will likely lead to a change in gender:
a decision o of whether or not to have a sex-change operation at birth. In this case, it may be
reasonable to assert that g is not a cause of c with respect to o. Thus, causal relationships
among chance variables may depend on the decisions available for intervention; and our
de�nition accommodates this dependence.

Our paper is organized into four parts. In part 1 (Sections 2 and 3), we develop our
de�nition of cause, using the decision-theoretic primitives of Savage (1954). In Section 2,
we introduce a simpler relation than cause, which we call limited unresponsiveness. In
Section 3, we de�ne cause in terms of limited unresponsiveness.
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In part 2 (Sections 4 through 7), we address the graphical representation of cause. In
Section 4, we review a directed-acyclic-graph (DAG) representation, known as an in
uence
diagram, which has been used for two decades by decision analysts to model the e�ects
of decisions (Howard and Matheson, 1981). We demonstrate the inadequacies of the in-

uence diagram as a representation of cause. In the following three sections, we develop
a special condition on the in
uence diagram, known as canonical form, that improves the
representation of cause.

In part 3 (Section 8), we use our de�nitions of cause, atomic intervention, and mapping
variable, along with canonical form to build a correspondence with (and thus a foundation
for) Pearl's causal framework.

In part 4 (Section 9), we demonstrate an important use of canonical form. Namely, we
show how to use in
uence diagrams in canonical form to do general counterfactual reasoning.

We present our framework in the traditional decision-analytic paradigm of a \one shot"
decision. In particular, we do not consider experimental studies, where variables are mea-
sured repeatedly. Nonetheless, one can easily extend our framework to such situations by
introducing the assumption of exchangeability (de Finetti, 1937). Bayesian methods for
learning models of cause that are based on this approach are discussed in Angrist et al.
(1995) and Heckerman (1995).

2. Unresponsiveness

In this section, we introduce the notion of limited unresponsiveness, a fundamental relation
that we use to de�ne cause. We de�ne limited unresponsiveness using primitives from
decision theory as explicated (for example) by Savage (1954).

We begin with a description of the primitives act, consequence, and possible state of the
world. Savage describes and illustrates these concepts as follows:

To say that a decision is to be made is to say that one or more acts is to
be chosen, or decided on. In deciding on an act, account must be taken of the
possible states of the world, and also of the consequences implicit in each act for
each possible state of the world. A consequence is anything that may happen to
the person.

Consider an example. Your wife has just broken �ve good eggs into a bowl
when you come in and volunteer to �nish making the omelet. A sixth egg, which
for some reason must either be used for the omelet or wasted altogether, lies
unbroken beside the bowl. You must decide what to do with this unbroken
egg. Perhaps it is not too great an oversimpli�cation to say that you must
decide among three acts only, namely, to break it into the bowl containing the
other �ve, to break it into a saucer for inspection, or to throw it away without
inspection. Depending on the state of the egg, each of these three acts will have
some consequence of concern to you, say that indicated by Table 1.

For purposes of our discussion, there are two points to emphasize from Savage's expo-
sition. First, it is important to distinguish between that which we can choose|namely,
acts|and that which we can not choose|namely, consequences. Second, once we choose
an act, the consequence that occurs is logically determined by the state of the world. That
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state of the act
world break into bowl break into saucer throw away

good egg six-egg omelet six-egg omelet and a �ve-egg omelet and one
saucer to wash good egg destroyed

bad egg no omelet and �ve good �ve-egg omelet and a �ve-egg omelet
eggs destroyed saucer to wash

Table 1: An example illustrating acts, possible states of the world, and consequences.
(Taken from Savage [1954].)

is, the consequence is a deterministic function of the act and the state of the world. Of
course, the consequence can be (and usually is) uncertain, and this uncertainty is captured
by uncertainty in the state of the world. The concepts of act, consequence, and state of
the world, together with the deterministic mapping from act and state of the world to
consequence are our only primitives.2

In the omelet story, the possible states of the world readily come to mind given the
description of the problem. Furthermore, we can observe the state of the world (i.e., the
condition of the egg). In many if not most situations, however, the state of the world is
unobservable. That is, the assertion \the state of the world is x" is a counterfactual. In
these situations, we can bring the possible states to mind by thinking about the acts and
consequences. For example, suppose we have a decision to continue smoking or quit, and
we model the consequences of getting cancer or not. These acts and consequences bring to
mind four possible states of the world, as shown in Table 2. These possible states have no
familiar names; and we simply label them with numbers. The actual state of the world is
not observable, because, if we decide to quit, then we won't know for sure what would have
happened had we continued, and vice versa.

The acts and consequences in this problem may actually bring to mind more than four|
even an in�nite number|of states of the world. For example, the state of the world may
correspond to degree of susceptibility of lung tissue to tar as measured by a biochemical
assay. Nonetheless, given the discrete acts and consequences that we have chosen to model
in the problem, the four states in Table 2 are su�ciently detailed. Savage recognizes this
issue of detail in his de�nition of state of the world: \a description of the world, leaving no
relevant aspect undescribed." In general, if we have a decision problem with c consequences
and a acts, then at most ca possible states of the world need be distinguished.3

The idea that the state of the world may not be observable can be traced to Neyman
(1923), who derived statistical methods for estimating the di�erences in yields of di�erent
crops planted on the same plot of land, in circumstances where only one crop was actually
planted on a plot. Rubin (1978) and Howard (1990) have formalized this idea.

2. Savage (1954) de�nes an act to be \a function attaching a consequence to each state of the world." In
contrast, we take act to be a primitive, as do many decision analysts (e.g., Howard, 1990).

3. When acts and consequences are continuous, the speci�cation of S is more complicated. In this paper,
we address only situations where acts and consequences are discrete.
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state of the act
world continue quit

1 cancer no cancer
2 no cancer no cancer
3 cancer cancer
4 no cancer cancer

Table 2: The four possible states of the world for a decision to continue or quit smoking.

In practice, it is often cumbersome if not impossible to reason about a monolithic set
of acts, possible states of the world, or consequences. Therefore, we typically describe each
of these items in terms of a set of variables that take on two or more values or instances.
We call a variable describing a set of consequences a chance variable. For example, in
the omelet story, we can describe the consequences in terms of three chance variables: (1)
number of eggs in the omelet?4 (o) having instances zero, �ve, and six, (2) number of
good eggs destroyed? (g) having instances zero, one, and �ve, and (3) saucer to wash? (s)
having instances no and yes. That is, every consequence corresponds to an assignment of
an instance to each chance variable.

We call a variable describing a set of acts a decision variable (or decision, for short).
For example, suppose we have a set of possible acts about how we are going to dress for
work. In this case, we can describe the acts in terms of the decision variables shirt (plain
or striped), pants (jeans or corduroy), and shoes (tennis shoes or loafers). In this
example and in general, every act corresponds to a choice of an instance for each decision
variable.

The description of possible states of the world in terms of component variables is a bit
more complicated, and is not needed for our explication of unresponsiveness and limited
unresponsiveness. We defer discussion of this issue to Section 6.

As a matter of notation, we use D to denote the set of decisions that describe the acts for
a decision problem, and lower-case letters (e.g., d; e; f) to denote individual decisions in the
set D. Also, we use U to denote the set of chance variables that describe the consequences,
and lower-case letters (e.g., x; y; z) to denote individual chance variables in U . In addition,
we use the variable S to denote the state of the world (the instances of S correspond to
the possible states of the world).5 Thus, any given decision problem|or domain, as we
sometimes call it|is described by the variables U , D, and S.6

With this introduction, we can discuss the concept of limited unresponsiveness. To
illustrate this concept, consider the following decision problem adapted from Angrist et al.
(1995). Suppose we are a physician who has to decide whether to recommend for or against
a particular treatment. Given our recommendation, our patient may or may not actually

4. To emphasize the distinction between chance and decision variables, we put a question mark at the end
of the names of chance variables.

5. We use an uppercase \S" to denote this single variable, because later we decompose S into a set of
variables.

6. Sometimes, for simplicity, we leave S implicit in the speci�cation of a decision problem.
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r (recommendation)
S (state of the world) take don't take

t (taken?) c (cured?) t (taken?) c (cured?)

1: complier, helped yes yes no no
2: complier, hurt yes no no yes
3: complier, always cured yes yes no yes
4: complier, never cured yes no no no
5: de�er, helped no no yes yes
6: de�er, hurt no yes yes no
7: de�er, always cured no yes yes yes
8: de�er, never cured no no yes no
9: always taker, cured yes yes yes yes
10: always taker, not cured yes no yes no
11: never taker, not cured no no no no
12: never taker, cured no yes no yes
13: (impossible) yes yes yes no
14: (impossible) yes no yes yes
15: (impossible) no no no yes
16: (impossible) no yes no no

Table 3: A decision problem about recommending a medical treatment.

accept the treatment, and may or may not be cured as a result. Here, we use a single
decision variable recommendation (r) to represent our acts (i.e., D = frg), and two chance
variables taken? (t) and cured? (c) to represent whether or not the patient actually accepts
the treatment and whether or not the patient is cured, respectively (i.e., U = ft; cg).

The possible states of the world for this problem are shown in Table 3. For example,
consider the �rst row in the table. Here, the patient will accept the treatment if and only if
we recommend it, and will be cured if and only if he takes the treatment. We describe this
state by saying that the patient is a complier and is helped by the treatment. We discuss
the description of these states in more detail in Section 6.

As is indicated in the table, suppose that we believe the last four states of the world are
impossible (i.e., have a probability of zero). These last four states share the property that
t takes on the same instance for both acts, whereas c does not. Thus, this decision problem
satis�es the following property: in all of the states of the world that are possible, if t is the
same for the two acts, then c is also the same. We say that c is unresponsive to r in states
limited by t.

In general, suppose we have a decision problem described by variables U , D, and S.
Let X be a subset of U , and Y be a subset of U [ D. We say that X is unresponsive
to D in states limited by Y if we believe that, for all possible states of the world, if Y
assumes the same instance for any two acts then X must also assume the same instance
for those acts. We describe the notion of limited unresponsiveness in earlier work in terms
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of a conditional �xed set (Heckerman and Shachter, 1994). Angrist et al. (1995) discuss an
instance of limited unresponsiveness, which they call the exclusion restriction.

To be more formal, let X [S;D] be the instance that X assumes (with certainty) given
the state of the world S and the act D. For example, in the omelet story, if S is the state of
the world where the egg is good, and D is the act throw away, then o[S;D] (the number
of eggs in the omelet) assumes the instance �ve. Then, we have the following de�nition.

De�nition 1 (Limited (Un)responsiveness) Given a decision problem described by
chance variables U , decision variables D, and state of the world S, and variable sets X � U
and Y � D[U , X is said to be unresponsive toD in states limited by Y , denoted X 6 -Y D,
if we believe that

8 S 2 S; D1 2 D; D2 2 D : Y [S;D1] = Y [S;D2] =) X [S;D1] = X [S;D2]

X is said to be responsive to D in states limited by Y , denoted X  -Y D, if it is not the
case that X is unresponsive to D in states limited by Y|that is, if we believe that

9 S 2 S; D1 2 D; D2 2 D s:t: Y [S;D1] = Y [S;D2] and X [S;D1] 6= X [S;D2]

When X is (un)responsive to D in states limited by Y = ;, we simply say that X is
(un)responsive to D. The notion of unresponsiveness is signi�cantly simpler than that of
limited unresponsiveness. That is, when Y = ;, the equalities on the left-hand-side of the
implications in De�nition 1 are trivially satis�ed. Thus, X is unresponsive toD if we believe
that, in each possible state of the world, X assumes the same instance for all acts; and X is
responsive to D if there is some possible state of the world where X di�ers for two di�erent
acts.

As examples of responsive variables, consider the omelet story. Let S denote the state
where the egg is good, andD1 and D2 denote the acts break into bowl and throw away,
respectively. Then, for the variable o (number of eggs in omelet?), we have o[S;D1] =six and
o[S;D2] =�ve. Consequently, o is responsive to D.7 In a similar manner, we can conclude
that g (number of good eggs destroyed?), and s (saucer to wash?) are each responsive to D.

Note that if a chance variable x is responsive to D, then|to some degree|it is under
the control of the decision maker. Consequently, the decision maker can not observe x prior
to choosing an act for D. For example, in the omelet story, we can not observe any of the
responsive variables o, g, or s before choosing an act.8

As an example of an unresponsive variable, suppose we include S (the state of the world)
as a variable in U . (E.g., in the omelet story, we can take U to be fS; o; g; sg.) By Savage's
de�nition of S, it must be unresponsive to D. Note that including S in U creates no new
states of the world.

As we have discussed, the notions of unresponsiveness and limited unresponsiveness are
closely related to concepts in counterfactual reasoning. When we determine whether or not

7. Technically, we should say that fog is responsive to D. For simplicity, however, we usually drop set
notation for singletons.

8. To be more precise, the variable o represents the number of eggs in the omelet after we choose an act
for D. This variable should not be confused with another variable{say o0|corresponding to the number
of eggs in the omelet before we choose D. Whereas o is responsive to D and cannot be observed before
choosing an act, o0 is unresponsive to D and can be observed before choosing D.
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a chance variable x is unresponsive to decisions D, we essentially answer the query \Will the
outcome of x be the same no matter how we choose D?" Furthermore, when we determine
whether or not x is unresponsive to D in states limited by Y , we answer the query \If Y
will not change as a result of our choice for D, will the outcome of x be the same?" One
of the fundamental assumptions of our work presented here is that these counterfactual
queries are easily answered. In our experience, we have found that decision makers are
indeed comfortable answering such restricted counterfactual queries.

The concepts of responsiveness and probabilistic independence are related, as illustrated
by the following theorem.

Theorem 1 If a set of chance variables X is unresponsive to a set of decision variables D,
then X is probabilistically independent of D.

Proof: By de�nition of unresponsiveness, X assumes the same instance for all acts in any
possible state of the world. Consequently, we can learn about X by observing S, but not
by observing D. 2

Nonetheless, the two concepts are not identical. In particular, the converse of Theorem 1
does not hold. For example, let us consider the simple decision of whether to bet heads or
tails on the outcome of a coin 
ip. Assume that the coin is fair (i.e., the probabilities of
heads and tails are both 1/2) and that the person who 
ips the coin does not know our
bet. Here, the possible outcomes of the coin toss correspond to the possible states of the
world. Further, let decision variable b denote our bet, and chance variable w describe the
possible consequences that we win or not. In this situation, w is responsive to b, because for
both possible states of the world, w will be di�erent for the di�erent bets. Nonetheless, the
probability of w is 1/2, whether we bet heads or tails. That is, w and b are probabilistically
independent.

Limited unresponsiveness and conditional independence are less closely related than are
their unquali�ed counterparts. Namely, limited unresponsiveness does not imply conditional
independence. For example, in the medical-treatment story, c (cured?) is unresponsive to r
(recommendation) in states limited by t (taken?), but it is reasonable for us to believe that
c and r are not independent given t, perhaps because there is some factor that|partially
or completely|determines how a person reacts to both recommendations and treatment.

We can derive several interesting properties of limited unresponsiveness from its de�ni-
tion.

1. X 6 -Y D () 8x 2 X; x 6 -Y D

2. X 6 -W D() X [W 6 -W D

3. X 6 -D D

4. X 6 -Y D =) X 6 -Y [Z D

5. X 6 -Y [Z D and Y 6 -Z D =) X 6 -Z D

6. X  -Z D and W 6 -Z D =) X  -W[Z D
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where D is the set of decision variables in the domain, X and W are arbitrary sets of chance
variables in U , and Y and Z are arbitrary sets of variables in U [D.

The proofs of these properties are straightforward. For example, consider property 5.
Given X 6 -Y [Z D, we have

8 S 2 S; D1 2 D; D2 2 D : Y [S;D1] = Y [S;D2] and Z[S;D1] = Z[S;D2]

=) X [S;D1] = X [S;D2]

Given Y 6 -Z D, we have

8 S 2 S; D1 2 D; D2 2 D : Z[S;D1] = Z[S;D2] =) Y [S;D1] = Y [S;D2]

Consequently, we obtain

8 S 2 S; D1 2 D; D2 2 D : Z[S;D1] = Z[S;D2] =) X [S;D1] = X [S;D2]

That is, X 6 -Z D.
Other properties follow from these. For example, it is true trivially that ; 6 -Y D.

Consequently, by Property 2, we know that Y 6 -Y D. As another example, a special case
of Property 4 is that whenever X is unresponsive to D, then X will be unresponsive to D
in states limited by any Z. Also, Properties 4 and 5 imply that limited unresponsiveness is
transitive: X 6 -Y D and Y 6 -Z D imply X 6 -Z D.

In closing this section, we note that the de�nition of limited unresponsiveness can be
generalized in several ways. In one generalization, we can de�ne what it means forX � U to
be unresponsive toD in states of the world limited by Y , a set of instances of Y . Namely, we
say that X is unresponsive to D in states limited by Y if, for all possible states of the world
S, and for any two actsD1 andD2, Y [S;D1] = Y [S;D2] 2 Y implies X [S;D1] = X [S;D2].

In a second generalization, we can de�ne what it means for a set of chance variables to
be unresponsive to a subset of all of the decisions. In particular, given a domain described
by U and D, we say that X � U is unresponsive to D0 � D in states limited by Y if
X 6 -Y [(DnD0) D.

3. De�nition of Cause

Given the notion of limited unresponsiveness, we can formalize our de�nition of cause.

De�nition 2 (Causes with Respect to Decisions) Given a decision problem described
by U and D, and a variable x 2 U , the variables C � D [ U n fxg are said to be causes for
x with respect to D if C is a minimal set of variables such that x 6 -C D.

In our framework, decision variables can not be caused, because they are under the
control of the decision maker. Consequently, we de�ne causes for chance variables only.
Also, as we have discussed, our de�nition is an extension of existing intervention-based
de�nitions of cause (e.g., Rubin [1978]) in that we allow causes to include chance variables.
In addition, our de�nition of cause departs from traditional usage of the term in that cause-
e�ect assertions may vary with the set of decisions available. We discuss the advantages of
this departure shortly.
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As an example of our de�nition, consider the decision to continue or quit smoking,
described by the decision variable s (smoke) and the chance variable l (lung cancer?). If we
believe that s and l are probabilistically dependent, then, by Theorem 1, it must be that
l  - s. Furthermore, by Property 3, we know that l 6 -s s. Consequently, by De�nition 2,
we have that s is a cause of l with respect to s.

As another example, consider the medical-treatment story. We have that c (cured?)
is responsive to r (recommendation), because (among other reasons) in the �rst row in
Table 3, the patient is cured if and only if we recommend the treatment. Furthermore, as
we discussed in the previous section, c is unresponsive to r in states limited by t (taken?).
Consequently, we have that t is a cause of c with respect to r.

The advantage of de�ning cause relative to decisions is made clear by our breast-cancer
example given in the introduction. Let g and c denote the chance variables gender? and
breast cancer?, respectively. Now, imagine two decisions available to alter gender: o, a
decision to have a sex-change operation at birth, and d, a decision to change chromosomes
at conception by microsurgery. It is possible for someone to believe that c 6 - o and yet
c  - d and c 6 -g d. That is, it is possible for someone to believe that gender is a cause of
breast cancer with respect to the chromosome change but not with respect to the sex-change
operation. In this situation, it does not make sense to make the unquali�ed statement
\gender is a cause of breast cancer." In general, our decision-based de�nition provides
added clarity.

Several consequences of De�nition 2 are worth mentioning. First, although cause is
irre
exive by de�nition, it is not always asymmetric. For example, in our story about the
coin toss, consider another variable m that represents whether or not the outcome of the
coin toss matches our bet b. In the story as we have told it, m is a deterministic function of
w (win?), and vice versa. Consequently, we have w 6 -m b and m 6 -w b; and so m is a cause
of w and w is cause of m with respect to b. Note that any hint of uncertainty destroys this
symmetry. For example, if there is a possibility that the person tossing the coin will cheat
(so that we may lose even if we match), then we can conclude that m is a cause of w, but
not vice versa. This symmetry would also be destroyed if we had a decision controlling w
to which m is unresponsive.

Second, cause is transitive for single variables. In particular, if x is a cause for y and y
is a cause for z with respect to D, then z  -D and (by the transitivity of unresponsiveness)
z 6 -x D. Consequently, x is a cause for z with respect to D. Note that transitivity does not
necessarily hold for causes containing sets of variables, because the minimality condition in
De�nition 2 may not be satis�ed.

Third, C = ; is a set of causes for x with respect to D if and only if x is unresponsive
to D.

Fourth, we have the following theorem, which follows from De�nition 2 and several of
the properties of limited unresponsiveness given in Section 2.

Theorem 2 Given any x 2 U , if C is a set of causes for x with respect to D, and w 2 C\U ,
then w must be responsive to D.

Proof: For any chance variable w 2 C, let C0 = C n fwg. By the minimality condition in
our de�nition, we have

x -C0 D (1)
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Suppose that w 6 - D. Then, by Property 4, we have

w 6 -C0 D (2)

Applying Equations 1 and 2 to Property 6, we have that x  -C D, which contradicts that
C is a set of causes for x with respect to D. 2

To illustrate the use of this theorem, let us extend the medical-treatment example by
imagining that there is some gene that a�ects how a person reacts to both our recommen-
dation and to therapy. In this situation, it is reasonable for us to assert that the variable g
(genotype?) is unresponsive to r. Thus, by Theorem 2, g can not be among the causes for
any variable.

This consequence of our de�nition may seem unappealing. Intuitively, we would like to
be able to say that (in some sense) g is a cause of c. Indeed, our de�nition does not preclude
the ability to make such assertions. Namely, there is no reason to require that the decisions
D be implementable in practice or at all. If we want to think about whether or not the
patient's genotype is a cause for his cure, then we can imagine an action that can alter
one's genetic makeup|for example, retroviral therapy (v). In this case, it is reasonable to
conclude that fr; gg is a cause for t with respect to the decisions fr; vg. Nonetheless, as
we have discussed, we must be clear about the action(s) that alter genotype to make this
statement of cause precise.

Finally, we can generalize our de�nition of what it means for a set of variables to cause
x to a de�nition of what it means for a set of instances to cause x. Namely, we say that
C, a set of instances of C, is a cause for x =2 C with respect to D if C is a minimal set of
variables such that x is unresponsive to D in states limited by C. That is, C is a cause for
x with respect to D if we replace our de�nition of cause with the weaker requirement that
x be unresponsive to D in states limited by C.

4. In
uence Diagrams

In this and the following three sections, we examine the graphical representation of cause
within our framework. This study is useful in its own right, and also will help to relate our
framework with Pearl's structural equation model. We begin, in this section, with a review
of the in
uence-diagram representation.

An in
uence diagram is (1) a acyclic directed graph G containing decision and chance
nodes corresponding to decision and chance variables, and information and relevance arcs,
representing what is known at the time of a decision and probabilistic dependence, respec-
tively, (2) a set of probability distributions associated with each chance node, and optionally
(3) a utility node and a corresponding set of utilities (Howard and Matheson, 1981).

An information arc is one that points to a decision node. An information arc from chance
or decision node a to decision node d indicates that variable a will be known when decision
d is made. (We shall use the same notation to refer to a variable and its corresponding
node in the diagram.) A relevance arc is one that points to a chance node. The absence of
a possible relevance arc represents conditional independence. To identify relevance arcs, we
start with an ordering of the variables in U = (x1; : : : ; xn). Then, for each variable xi in
order, we ask the decision maker to identify a set PaG(xi) � fx1; : : : ; xi�1; Dg that renders
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xi and fx1; : : : ; xi�1; Dg conditionally independent. That is,

p(xijx1; : : : ; xi�1; D; �) = p(xijPa
G(xi); �) (3)

where p(X jY; �) denotes the probability distribution of X given Y for a decision maker with
background information �. For every variable z in PaG(xi), we place a relevance arc from
z to xi in graph G of the in
uence diagram. That is, the nodes PaG(xi) are the parents of
xi in G.

Associated with each chance node xi in an in
uence diagram are the probability distri-
butions p(xijPa

G(xi); �). From the chain rule of probability, we know that

p(x1; : : : ; xnjD; �) =
nY

i=1

p(xijx1; : : : ; xi�1; D; �) (4)

Combining Equations 3 and 4, we see that any in
uence diagram for U [ D uniquely
determines a joint probability distribution for U given D. That is,

p(x1; : : : ; xnjD; �) =
nY

i=1

p(xijPa
G(xi); �) (5)

In
uence diagrams may also contain special chance nodes. A deterministic node cor-
responds to variable that is a deterministic function of its parents. A utility node encodes
preferences of the decision maker. Finally, an in
uence diagram is unambiguous when its
decision nodes are totally ordered|that is, when there is a directed path in the in
uence
diagram that traverses all decisions. This total order corresponds to the order in which
decisions are made.

In this paper, we concern ourselves neither with the ordering of decision nodes nor the
observation of chance variables before making decisions. Therefore, we are not concerned
with information arcs. Likewise, although our new concepts apply to models that include
utility nodes, we can illustrate these concepts with models containing only chance, deter-
ministic, and decision variables.

Figure 1a contains an in
uence diagram for the omelet story. As is illustrated in the
�gure, we use ovals, double ovals, and squares to represent chance, deterministic, and
decision nodes, respectively. Among the possible relevance arcs in the in
uence diagram,
several are missing. For example, there is no arc fromD to S, representing the independence
of D and S (which follows from the assertion that S is unresponsive to D). Figures 1b and
1c contain in
uence diagrams for the medical-treatment example. The chance variable g

(genotype?) is explicitly modeled in Figure 1c.
The ordinary in
uence diagram was designed to be a representation of conditional in-

dependence. Furthermore, as we have discussed, the concepts of conditional independence
and limited unresponsiveness are only loosely related. Consequently, the in
uence diagram
is an inadequate representation of causal dependence, at least by our de�nition of cause.

In particular, an in
uence diagram may contain an arc from node x to node y, even
though x is not among a set of causes for y. For example, the in
uence diagram of Figure 1b
has an arcs from r and t to c due to the dependencies in the domain. Nonetheless, we have
established that the singleton ftg is a cause for c with respect to r.
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cured?
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t
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g

genotype?

(a) (b) (c)

Figure 1: In
uence diagrams for (a) the omelet story, and (b,c) the medical-treatment ex-
ample.

Furthermore, an in
uence diagram may contain no arc from x to y, even though x is a
cause of y. For example, consider the coin example, illustrated by the in
uence diagram in
Figure 2a. If we believe that the coin is fair, and if we do not bother to model the variable
c explicitly (as shown in Figure 2b), then we need not place an arc from d to w, because
the probability of winning will be 1=2, regardless of our choice d. Nonetheless, b is a cause
for w with respect to b, by our de�nition.

Despite these limitations, the in
uence diagram is adequate for purposes of making de-
cisions under uncertainty. In the introduction, we argued that causal information is needed
for predicting the e�ects of actions. Thus, the question arises: \Why do we need anything
more than the in
uence diagram as a representation of the e�ects of actions?" We give
an answer to this question in Section 9, where we discuss counterfactual reasoning. There,
we show that the ordinary in
uence diagram is inadequate for purposes of counterfactual
reasoning unless it is in canonical form|a form that accurately re
ects cause.

5. Direct and Atomic Interventions

In order to de�ne canonical form, we need the concept of a mapping variable. Likewise, in
order to de�ne a mapping variable, we need the concept of atomic intervention. We also
need the concept of atomic intervention to explicate Pearl's structural-equation model. In
this section, we de�ne atomic intervention along with a more general concept called direct
intervention.

Roughly speaking, we say that a set of decisions I is a direct intervention on a set of
chance variables X if the e�ects of I on all chance variables are mediated only through
the e�ects of I on X . SGS, who take cause to be a primitive, provide a formal de�nition
of direct intervention (which they call a direct manipulation) that is consistent with our
notion. We �nd it simpler to de�ne direct intervention in terms of limited unresponsiveness.
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(b)
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Figure 2: In
uence diagrams for betting on a coin 
ip.

De�nition 3 (Direct Intervention) Given a domain described by U and D, a set of
decisions I � D is said to be a direct intervention on X � U with respect to D if (1) for
all x 2 X, x - I, and (2) for all y 2 U , y 6 -X I.

For example, in the medical-treatment story, r is a direct intervention on t, because
t  - r and c 6 -t r. As another example, suppose the physician has an additional decision
p of whether or not to pay the patient to take the treatment. It is reasonable to expect
that t  - p. Furthermore, if the amount of payment is small, it is reasonable that c 6 -t p.
Consequently, p quali�es as a direct intervention on t. Nonetheless, if the amount of payment
is su�ciently large, the patient may use that money to improve his health care. Thus,
c -t p; and p does not satisfy the condition 2 for a direct intervention on t.

Given the notion of direct intervention, we can de�ne atomic intervention.

De�nition 4 (Atomic Intervention) Given a domain described by U and D, a decision
x̂ 2 D is said to be an atomic intervention on x 2 U with respect to D if (1) fx̂g is a direct
intervention on fxg with respect to D, and (2) x̂ has precisely the instances (a) idle, which
corresponds to the instance of doing nothing to x, and (b) set(x) for every instance x of x,
where x = x whenever x̂ =set(x).

As we discussed in the introduction, Pearl takes the concept of atomic intervention
to be primitive. Whether or not a decision is a direct (or atomic) intervention, however,
depends on the underlying causal relationships in the domain. In the medical-treatment
story, suppose the physician has a decision k of whether or not to administer the treatment
(a drug) without the patient's knowledge. If we believe that the treatment is truly e�ective
and has no placebo e�ect, then we can assert that k is a direct intervention on t. If,
however, we believe that the treatment has only a placebo e�ect, then k will not be a direct
intervention on t, because k will also directly a�ect c. Thus, the notions of direct and
atomic intervention require de�nitions, lest the meaning of cause would be hidden in these
primitives.

We note that, when there are bi-directional causal relationships among variables in U ,
it is not always possible for every chance variable to have its own atomic intervention. For
example, consider an adiabatic system consisting of a cylindrical chamber with a moveable
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instance of t(r) r =take r =don't take

1: complier t =yes t =no
2: de�er t =no t =yes
3: always taker t =yes t =yes
4: never taker t =no t =no

Table 4: The mapping variable t(r).

top, in which we model the variables pressure? (p) and volume? (v).9 If we allow the
top of the chamber to move freely, then placing various weights on the top of the chamber
constitutes an atomic intervention on p; and we have that p is a cause of v with respect to
p̂. In contrast, �xing the top of the chamber at particular locations constitutes an atomic
intervention on v; and we have that v is a cause of p with respect to v̂. By the laws of
physics, however, both decisions p̂ and v̂ can not be available simultaneously.

6. Mapping Variables

To understand the concept of a mapping variable, let us reexamine Savage's basic formula-
tion of a decision problem. Recall that the chance variables U are a deterministic function
of the decision variables D and the state of the world S. In e�ect, each possible state of the
world de�nes a mapping from the decisions D to the chance variables U . Thus, S represents
all possible mappings from D to U . We can characterize S as a mapping variable for U as
a function of D, and use the suggestive notation U(D) to denote this mapping variable.

In general, given a domain described by U , D, and S, a set of decision variables Y � D,
and a set of chance variables X � U , the mapping variable X(Y ) is a variable that represents
the possible mappings from Y to X .

As an example, consider the medical-treatment story. The mapping variable t(r) rep-
resents the possible mappings from the decision variable r (recommendation) to the chance
variable t (taken?). In this example, the instances of t(r), shown in Table 4, have a natural
interpretation. In particular, the instance where the patient accepts treatment if and only if
we recommend it represents a patient who complies with our recommendation; the instance
where the patient accepts treatment if and only if we recommend against it represents a
patient who de�es our recommendation; and so on.

The notion of a mapping variable is discussed in Heckerman and Shachter (1994), and
in Balke and Pearl (1994) under the name \response function." A related counterfactual
variable is described by Neyman (1923), Rubin (1978), and Howard (1990). They discuss
what we would denote X(Y = Y): the variable X if we choose instance Y for Y .

An important property concerning mapping variables is that, given variables X; Y; and
X(Y ), we can always write X as a deterministic function of Y and X(Y ). For example, t is
a deterministic function of r and t(r); and U is a deterministic function of D and U(D) � S.

9. This example is not appropriate technically, as it uses continuous variables. Nonetheless, this example
illustrates our point.
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In the discussions that follow, it is useful to extend the de�nition of a mapping variable to
include chance variables as arguments. For example, in the medical-treatment story, it seems
reasonable to de�ne the mapping variable c(t) with instances helped, hurt, always cured,
and never cured. Together, the mapping variables t(r) and c(t) describe the possible states
of the world U(D) � S. (E.g., t(r) =complier and c(t) =helped corresponds to state 1 in
Table 3.) As we shall see, this decomposition of U(D) facilitates the graphical representation
of causal relationships.

Unfortunately, de�ning mapping variables with chance-variable arguments is not always
possible. In the medical-treatment domain, when the patient is an always taker (states 10
and 11 in Table 3), t=yes regardless of r. Consequently, we can not tell whether c(t) is
helped or always cured|that is, c(t) is not uniquely identi�ed. Because Savage's decision-
theoretic framework requires that the state of the world and the act uniquely determine the
instance of c(t) (a consequence), the instance of c(t) is not well de�ned. Nonetheless, c(t) is
well de�ned whenever D includes an atomic intervention on t (t̂), guaranteeing that t will
take on all instances (as t̂ varies) in every state of the world.

In general, we have the following de�nition of mapping variable.

De�nition 5 (Mapping Variable) Given a domain described by U and D, chance vari-
ables X, and variables Y such that, for every y 2 Y \U , there exists an atomic intervention
ŷ 2 D,10 the mapping variable X(Y ) is the chance variable that represents all possible
mappings from Y to X.

There are several important points to be made about mapping variables as we have now
de�ned them. First, as in the more speci�c case, X is always a deterministic function of Y
and X(Y ).

Second, additional probability assessments typically are required when introducing a
mapping variable into a probabilistic model. For example, two independent assessments
are needed to quantify the relationship between r and t in the medical-treatment story;
whereas three independent assessments are required for the node t(r). In general, many
additional assessments are required. If X has c instances and Y has a instances, then
X(Y ) has as many as ca instances. In real-world domains, however, reasonable assertions
of independence decrease the number of required assessments. In some cases, no additional
assessments are necessary (see, e.g., Heckerman et al., 1994).

Third, we have the following theorem, which follows immediately from the de�nitions
of limited unresponsiveness and mapping variable. In this and subsequent theorems that
mention mapping variables, we assume that atomic interventions required for the proper
de�nition of the mapping variables are included in D.

Theorem 3 (Mapping Variable) Given a decision problem described by U and D, vari-
ables X � U , and Y � U [D, X 6 -Y D if and only if X(Y ) 6 - D.

For example, in the medical treatment domain that includes the atomic intervention t̂,
we have c 6 -t fr; t̂g and c(t) 6 - fr; t̂g. Roughly speaking, Theorem 3 says that X is
unresponsive to D in states limited by Y if and only if the way X depends on Y does not
depend on D. This equivalence provides us with an alternative set of conditions for cause.

10. Recall from Section 5 that it is not always possible to have atomic interventions for every y 2 Y .
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Corollary 4 (Causes with Respect to Decisions) Given a decision problem described
by U and D, and a chance variable x 2 U , the variables C � D [ U n fxg are causes for x
with respect to D if only if C is a minimal set of variables such that x(C) 6 - D.

When C are causes for x with respect to D, we call x(C) a causal mapping variable with
respect to D. Thus, we have the following consequence of Theorem 3.

Corollary 5 (Causal Mapping Variable) If x(C) is a causal mapping variable for x
with respect to D, then x(C) is unresponsive to D.

7. Canonical Form In
uence Diagrams

We can now de�ne what it means for an in
uence diagram to be in canonical form.

De�nition 6 (Canonical Form) An in
uence diagram for a decision problem described
by U and D is said to be in canonical form if (1) all chance nodes that are responsive to D
are descendants of one or more decision nodes and (2) all chance nodes that are descendants
of one or more decision nodes are deterministic nodes.

An immediate consequence of this de�nition is that any chance node that is not a descendant
of decision node must be unresponsive to D.

We can construct an in
uence diagram in canonical form for a given problem by including
in the in
uence diagram a causal mapping variable for every variable that is responsive to
the decisions. In doing so, we can make every responsive variable a deterministic function of
its mapping variable and the corresponding set of causes. For example, consider the medical-
treatment story as depicted in the in
uence diagram of Figure 3a. The variables t and c

are responsive to r, but their corresponding nodes are not deterministic. Consequently, this
in
uence diagram is not in canonical form. To construct a canonical form in
uence diagram,
we introduce the mapping variables t(r) and c(r), as shown in Figure 3b. The responsive
variables are now deterministic; and the mapping variables are unresponsive to the decision.
This example illustrates an important point: Mapping variables may be probabilistically
dependent. We return to this issue in Section 8.

In general, we can construct an in
uence diagram in canonical form for any decision
problem characterized by U and D as follows.

Algorithm 1 (Canonical Form)

1. Add a node to the diagram corresponding to each variable in U [D

2. Order the variables x1; : : : ; xn in U so that the variables unresponsive to D come �rst
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Figure 3: (a) An in
uence diagram for the medical-treatment story. (b) A corresponding
in
uence diagram in canonical form.

3. For each variable xi 2 U that is responsive to D,

(a) Add a causal-mapping-variable chance node xi(Ci) to the diagram,
where Ci � D [ fx1; : : : ; xi�1g

(b) Make xi a deterministic node with parents Ci and xi(Ci)

4. Assess independencies among the variables that are unresponsive to D11

This algorithm is well de�ned, because it is always possible to �nd a set Ci satisfying the
condition in step 3a. In particular, xi 6 -D D by Property 3. Consequently, even when D
contains no atomic intervention, we can always create a causal mapping variable for every
responsive variable in U .

Also, the structure of any in
uence diagram constructed using Algorithm 1 will be valid.
Namely, by Corollary 5, all causal mapping variables added in step 3 are unresponsive
to D. Thus, suppose we identify the relevance arcs and deterministic nodes according
to Equation 3 by using a variable ordering where the nodes in D are followed by the
unresponsive nodes (including the causal mapping variables), which are in turn followed by
the responsive nodes in the order speci�ed at step 2. Then, (1) we would add no arcs from
D to the unresponsive nodes by Theorem 1 (and the algorithm adds none); (2) we would
add arcs among the unresponsive nodes as described in step 4; and (3) for every responsive
variable xi, we would make xi a deterministic node (as described in step 3b) by de�nition
of a mapping variable.

In addition, the structure that results from Algorithm 1 will be in canonical form. In
particular, because there are no arcs from D to the unresponsive nodes, only responsive
variables can be descendants of D. Also, by Theorem 2, we know that every responsive
node is a descendant of D, and (by construction) a deterministic node.

11. Because mapping variables are random variables, the assessment of dependencies among the unresponsive
variables is, in principle, no di�erent than that for assessing dependencies among ordinary random
variables. Nonetheless, the counterfactual nature of the variables can be confusing. Howard (1990)
describes a method of probability assessment that addresses this concern.

423



Heckerman & Shachter

r

t

c

g

(a)

t

(b)

r

t

c

t(r, t )

c(t)

g

t

Figure 4: (a) Another in
uence diagram for the medical-treatment story. (b) A correspond-
ing in
uence diagram in canonical form.

Furthermore, by construction, every responsive variable xi 2 U has one set of causes
explicitly encoded in the diagram (Ci).

To illustrate the algorithm, consider the medical-treatment story as depicted by the
in
uence diagram in Figure 4a, where the variable g (genotype?) is represented explicitly,
and where c 6 -t fr; t̂g and g 6 - fr; t̂g. To construct an in
uence diagram in canonical
form for this problem, we �rst add the variables fr; t̂; g; t; cg to the diagram and choose
the ordering (g; t; c). Both t and c are responsive to D = fr; t̂g, and have causes fr; t̂g
and t, respectively. Consequently, we add causal mapping variables t(r; t̂) and c(t) to the
new diagram, and make t a deterministic function of r, t̂, and t(r; t̂) and c a deterministic
function of t and c(t). Finally, we assess the dependencies among the unresponsive variables
fg; t(r; t̂); c(t)g, adding arcs from g to t(r; t̂) and c(t) under the assumption that the causal
mapping variables are conditionally independent given g. The resulting canonical form
in
uence diagram is shown in Figure 4b.

Canonical form is a generalization of Howard Canonical Form, which was developed
by Howard (1990) to facilitate the computation of value of information.12 Before making
important decisions, decision analysts investigate how useful it is to gather additional in-
formation. This investigation is typically done by computing the extra value the decision
maker would obtain by observing earlier one or more chance variables in the domain. If the
decision maker does not expect to observe chance variable x prior to making decision d, the
value of information about x is the extra value he would obtain if he were able to observe
chance variable x just before making decision d. The value of information is never negative,
and it serves as a bound on the value of any experiment: it would never be worthwhile
to spend more than the value of information about x to obtain any (possibly imperfect)
observation about x just before making decision d.

Given an ordinary in
uence diagram, we can not compute the value of information about
variables responsive to D, because such variables can not be observed before decisions D
are made. In contrast, we can always compute the value of information about mapping

12. In
uence diagrams in HCF do not allow mapping variables whose arguments contain chance variables.
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variables corresponding to responsive variables in a canonical form in
uence diagram, be-
cause such variables are unresponsive toD by de�nition. For example, consider the decision
to continue or quit smoking described by decision variable s (smoke) and chance variables
l (lung cancer?) and l(s). Although we cannot compute the value of information about l
because it is responsive to D, we can compute the value of information about l(s).

At �rst glance, it may seem pointless to determine the value of information about a
variable that cannot be observed (such as l(s)). Nonetheless, we can often learn something
about a mapping variable. For example, imagine a test that measures the susceptibility of
someone's lung tissue to lung cancer in the presence of tobacco smoke. Learning the result
of such a test may well update our probability distribution over l(s). By computing the
value of information of l(s), we obtain an upper bound on the most we would be willing to
pay to undergo such a test.

8. Pearl's Causal Framework

We can now demonstrate the relationship between Pearl's causal framework and ours. As
mentioned, Pearl's framework is similar to that of SGS (see the background notes in SGS
for a discussion). Thus, many of the remarks in the section apply to SGS's model for cause
as well. A notable exception is that SGS formally de�ne direct intervention.

The following theorem outlines the relationship.

Theorem 6 Given chance variables U , suppose the set of decision variables D contains a
unique atomic intervention x̂ for every x 2 U and no other decisions. Given graph G, a
directed acyclic graph with nodes corresponding to the variables in U , suppose that, for all
x 2 U , PaG(x) [ fx̂g are causes for x with respect to D.13 Then, the relationships among
the variables in U [D can be expressed by the set of simultaneous equations

x = fx(Pa
G(x); x̂; x(PaG(x); x̂))

for all x 2 U , where fx is a deterministic function such that x = x if x̂ =set(x).

Proof: The theorem follows by applying Algorithm 1 using an ordering over U consistent
with the graph G. 2

Thus, we see that Pearl's structural-equation model is a specialization of canonical form
when we identify (1) Pearl's domain variables with our chance variables U , (2) Pearl's atomic
interventions with our atomic interventions D, (3) Pearl's causal graph with our graph G,
and (4) Pearl's random disturbance �x with our causal mapping variable x(PaG(x); x̂).

This correspondence permits several clari�cations of Pearl's framework. First, we have a
precise de�nition of atomic intervention. Unlike Pearl's model, where the concept of atomic
intervention is primitive, our framework provides a way to verify that interventions are
indeed atomic.

Second, we see what it means for the random disturbances to be exogenous. Namely,
these random variables are unresponsive to the decisions D.

13. It is not di�cult to show that this condition is consistent with the condition that, for all x 2 U , x̂ is an
atomic intervention on x.
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Third, we have a precise de�nition of random disturbance in terms of causal mapping
variable. Consequently, we have a means for assessing the joint probability distribution of
these variables, and|in particular|a means for assessing independencies among these vari-
ables. In fact, whereas Pearl requires that random disturbances be marginally independent,
our de�nition imposes no such requirement.

Theorem 6 shows that any structural-equation model can be encoded as an in
uence
diagram in canonical form. The converse is also true|that is, any in
uence diagram in
canonical form can be encoded as a structural-equation model. This result may seem sur-
prising, because in Pearl's model every domain variable must have an atomic intervention,
all decision variables must be atomic interventions, and random disturbances must be inde-
pendent. Given an in
uence diagram in canonical form, however, we can encode its chance
and decision variables in a structural equation model. Speci�cally, a chance variable x can
be encoded as the variable pair fx; x̂g where x̂ is instantiated to idle, and a decision variable
d can be encoded as the variable pair fd; d̂g where the act idle is forbidden. In addition, as
noted by Pearl, we can remove dependencies among mapping variables (at least in practice)
by introducing hidden common causes.14

Nonetheless, because hidden common causes sometimes need to be introduced, Pearl's
structural-equation model can be a less e�cient representation than canonical form. For
example, to represent the relationships in Figure 4b, we would use a structual-equation
model with disturbance variables corresponding to g(ĝ), t(r; g; t̂), and c(t; g; ĉ). Assuming
r; g; t and c are binary variables, the disturbance variables have 2, 16, and 16 instances,
respectively.15 Assuming the disturbance variables are independent, the joint probability
distribution of these variables contain 31 probabilities. In contrast, both mapping variables
in Figure 4b have only four instances. Consequently, the joint probability distribution over
the unresponsive variables in the canonical-form representation contain only 13 probabili-
ties.

We note that Balke and Pearl (1994) relax the assumption that mapping variables are
independent. Nonetheless, their generalization of the structural-equation model, which
they call a functional model, is still less e�cient than canonical form. The ine�ciency
comes from the fact that canonical form encodes a joint probability distribution among all
unresponsive variables (possibly including both domain and mapping variables), whereas
a functional model encodes a joint probability distribution among mapping variables only.
For example, the canonical-form in
uence diagram in Figure 4b encodes the assertion that
t(r; t̂) and c(t) are independent given g. This assertion can not be encoded in the Balke-
Pearl representation. When we represent the relationships in Figure 4b using a functional
model, we can include the variable g, in which case we obtain the 31-probability model
described in the previous paragraph. Alternatively, we can exclude variable g from the
model, and encode the dependency between the mapping variables t(r; t̂) and c(t; ĉ) with

14. The assumption that the mapping variables are independent has the convenient consequence that the
graph G can be interpreted as a Bayesian network in the traditional sense. That is, if variables X and
Y are d-separated by Z in G, then X and Y are conditionally independent given Z according to the
structural-equation model corresponding to G. (See Pearl, 1988, for a de�nition of d-separation.) SGS
(p. 54) refer to this association as the causal Markov condition.

15. Note that the mapping variable x(Y; x̂) has the same number of instances as does the mapping variable
x(Y ).
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an arc between these two variables. The resulting Balke-Pearl model has 15 probabilities
in contrast to the 13 required by canonical form.

9. Counterfactual Reasoning

As we have noted, the ordinary in
uence diagram is adequate for making decisions under
uncertainty, but is inadequate for counterfactual reasoning. In this section, we examine this
form of reasoning and suggest how it can be facilitated by in
uence diagrams in canonical
form.

Given a domain described by U and D with X; Y; Z � U , counterfactual reasoning
addresses questions of the form: If we choose D = D1 and observe X = X, what is the
probability that Y = Y if we choose D = D2 and observe Z = Z? For example, in the
medical-treatment domain, we may wish to know: If we recommend the treatment and the
patient takes the drug and is cured, what is the probability that the patient will be cured
if we recommend against the treatment? Such reasoning is often important in the real-
world|for example, in legal argument (Ginsberg, 1986; Balke and Pearl, 1994; Goldszmidt
and Darwiche, 1994; Heckerman et al., 1994).

We can answer such queries using in
uence diagrams in canonical form. To illustrate this
approach, consider the medical-treatment question in the previous paragraph. To answer
this query, we begin with the in
uence diagram in canonical form shown in Figure 4b.
Then, we duplicate all decision variables and all chance variables that are responsive to the
decisions, as shown in Figure 5. The original variables represent the act r =take, t̂=idle and
its consequences. The duplicate variables (denoted with primes) represent the act r0 =don't
take, t̂=idle and its consequences. There is no need to duplicate the unresponsive variables
(including the causal mapping variables) because, by de�nition, they can not be a�ected
by the decisions.16 Next, we copy the deterministic function associated with each original
variable to its primed counterpart. Then, we instantiate the decision and chance variables
as described in the query (r =take, t̂=idle, t =taken, c =cured, r0 =don't take, and
t̂0=idle). Finally, we use a standard Bayesian-network inference method to compute the
probability of the variable(s) of interest (c0 in our example).

The canonical form in
uence diagram is a natural representation for counterfactual
reasoning for two reasons. One, the deterministic relationships between a responsive chance
variable and its parents remains the same for any choice of D. Two, the instances assumed
by unresponsive variables are unaltered by the decisions. The ordinary in
uence diagram
o�ers neither of these guarantees.

Our approach, described in Heckerman and Shachter (1994), is similar to that of Balke
and Pearl (1994). The main di�erence between the two approaches is that Balke and Pearl
use their functional model as the base representation, making their approach less e�cient
than ours. Goldszmidt and Darwiche (1994) describe a graphical language for modeling
the evolution of real-world systems over time. Although their approach does not explicitly
address counterfactual reasoning, it can be adapted to so do, yielding an alternative to our
approach.

16. In general, we need duplicate only (1) those decision variables that change in the query and (2) those
chance variables that are responsive to the decisions that change.
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Figure 5: The use of canonical form to compute a counterfactual query. Shaded variables
are instantiated.

10. Conclusions

We have presented a de�nition of cause and e�ect in terms of the decision-theoretic primi-
tives of act, state of the world, and consequence determined by act and state of the world,
and have shown how this de�nition provides a foundation for causal reasoning. Our de�ni-
tion departs from the traditional view of causation in that our causal assertions are made
relative to a set of decisions. Consequently, as we have argued, our de�nition allows for a
more precise speci�cation of causal relationships.

In addition, we have shown how our de�nition provides a basis for the graphical rep-
resentation of cause. We have described a special class of in
uence diagrams, those in
canonical form, and have shown that it is equally expressive and more e�cient than Pearl's
structural-equation model. Finally, we have shown how in
uence diagrams in canonical
form, unlike ordinary in
uence diagrams, can be used for counterfactual reasoning.
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