Multimedia Network File Servers:
Multi-channel Delay Sensitive Data Retrieval

D. James Gemmell
Jiawei Han
School of Computing Science
Simon Fraser University
Burnaby, B.C., CANADA, V5A 1S6
gemmell@cs.sfu.ca
han@cs.sfu.ca

ABSTRACT 

Delay sensitive media such as audio and video are becoming integrated in the standard user interface. In this paper we consider simultaneous multiple access, such as would be performed by a multimedia network file server. To simplify the discussion, we consider only audio retrieval. The extension to storage and other delay sensitive data types is straightforward.

This paper builds on the necessity of avoiding starvation of the consumer, and the assumption that certain sets of reads lead to a net increase in the number of samples buffered, to establish a theoretical framework for studying simultaneous multiple access. Our approach allows the possibility of splitting data into sorting sets for the purpose of reducing disk latencies, and gives an optimal algorithm for the reduction. It explicitly handles both contiguous and non-contiguous file layouts. Lower bounds on read amounts and buffer requirements are proved. Using the theoretical framework, designers can evaluate the approach that is best suited to their situation.
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autonumlgl  Introduction

Multimedia is rapidly becoming part of the computer user's environment. Text-only interfaces are giving way to graphical interfaces. Audio and video are now being supported on almost every major hardware platform. Of the various media types, delay sensitive media types such as audio or video are the most difficult to work with due to the real time requirements for their presentation. They also consume large amounts of storage space and bandwidth.

While it is true that delay sensitive media is being handled by today's systems, it is usually only in the context of a single user accessing a single file in a local context. In this paper we address the more difficult problem of simultaneous multiple file access, such as would be required of a network file server. In order to simplify the discussion and provide greater intuition to the reader we will discuss only audio retrieval (i.e., playback). Extending the concepts to other media types or storage (i.e., recording) is straightforward.

Our focus is on retrieval systems in which meeting real time deadlines is guaranteed in a deterministic way, rather than meeting deadlines with some given probability. In this paper we will present a theoretical framework for multiple simultaneous delay sensitive file retrieval. The framework has a wide scope; it captures the essence of previous work in the literature from a single perspective and enables the comparison of different approaches.

autonumlgl  Previous work

There has been a large volume of good literature regarding network support for delay sensitive media. However, most of it is speech-based and relies on the notion of 'talkspurts', that is, that in a conversation a one way channel is idle about 40% of the time. Such an approach of course only deals with guaranteed performance in a statistical sense. Examples of the statistical approach are found in [4,5,22, 25]. Deterministic guaranteed network performance has been approached by Ferrari and Verma [6], and by Anderson et al. [3].

Retrieval of audio from mass storage has, of course, received attention from the digital audio enthusiasts. The problem of retrieving multi-track digital audio is very similar to the problem of retrieving for many clients at a file server. However, little is to be gained from such publications because the approach is often ad-hoc and/or valuable details are kept secret to protect financial interests. Abbot, for example, looks at disk scheduling but does not give deterministic results [1]. Others describe systems but do not explain how real time deadlines are met [11,12,14,21].

A technical report by Anderson et. al. discusses deterministic delay sensitive data retrieval [2]. Their approach provides support for multiple simultaneous file retrieval, and explicitly handles non-real time traffic.

One approach to deterministic delay sensitive data retrieval involves "constrained block allocation", which limits the distance between successive blocks in a file in order to decrease seeking latencies.  Constrained block allocation has been studied by Yu and Sun [27], Wells and Tang [24], Vin and Rangan [23] and by Rangan et. al. [17,18,19].

In [9] Gemmell and Christodoulakis establish some fundamental principles for the retrieval and storage of delay sensitive data. Storage strategies are categorized and evaluated. A general solution to retrieval is given, and simpler solutions for common special cases are discussed. Multiple simultaneous file retrieval is also discussed, but several restrictive assumptions are made.

In this paper we will review the essentials of delay sensitive data retrieval, and provide a more general approach to multiple simultaneous file retrieval that encompasses the previous work cited above.  A central feature of our approach is the use of a sorting-set disk scheduling algorithm.  Concurrent to our work, Yu, Chen and Kandlur have developed their "grouped sweeping scheme" which is fundamentally equivalent to the sorting-set algorithm [26].

autonumlgl  Digital Audio Playback

A digital audio recording is generated by sampling an audio signal at fixed intervals [16]. The values obtained at these intervals, called samples, make up the digital audio record. Playback of a digital audio record is achieved by feeding the samples to a digital to analog (D/A) converter at the same rate at which the samples were taken. We refer to the act of retrieving the samples from mass storage as reading and the act of the samples being converted to analog as consumption. Various forms of compression can be fruitfully applied to digital audio records, but for simplicity we will assume that no compression is performed. All the results in this paper may be extended to include compression in a straightforward way.

The real time requirement for correct playback consists of having a sample inter-arrival time at the D/A converter corresponding to the original sampling frequency. The time between the request for playback and the initial sample being converted is not a hard real time deadline, although of course it is desirable to keep it as short as possible. For most mass storage systems it is not possible to perform retrieval sample by sample at the precise required rate, so samples will have to be buffered and then fed to the D/A converter from the buffer. The real time requirements will not be met if any time after playback begins, and before it completes, the buffer becomes empty (see figure 1). We will refer to this requirement as non-starvation. When starvation occurs, the D/A converter is not supplied with the correct sample at the correct time and audible pops, clicks, or pauses may be heard.




Figure 1: The real time requirements of audio playback.
A simple way to ensure that every sample is available to the D/A converter by its deadline is to pre-fetch all the samples into the buffer prior to playback. However, this would require a prohibitive amount of buffer space, and would also introduce a large pre-fetching delay before any audible results. The problem then becomes one of minimizing buffer requirements and pre-fetching delays. These optimization problems are dealt with in [9], where it is shown that they are in fact the one and the same; that minimizing one will minimize the other. A general method is presented for finding the optimal solution.

The above describes the real time requirements for playing back a single audio record. In the next section, we consider simultaneous playback of several audio records, such as would be required by a network file server.

autonumlgl  Multi-channel playback

We will use the term channel to designate the stream of data presented to a D/A converter. When there is more than one D/A converter in the system, we are faced with the problem of simultaneously meeting the real time requirements of multiple channels – multi-channel playback. As described for a single channel in the previous section, we must meet the requirement of non-starvation for each channel. Applying the general solution for a single channel from [9] would be unwieldy; all the read times are required to be known in advance. This would present difficulties as requests for new playback sessions may occur, and reads for the particular channels may interact in unknown ways. Some assumptions must be made about how reading will proceed in order to make the problem tractable.

In [9], all channels were assumed to be synchronized, with the same consumption rate. During playback, time was divided into fixed length reading periods, during which a fixed amount of data was read for each channel. A further assumption was that the data read for each channel in a reading period would take at least one reading period to consume. We refer to this as the buffer-conserving requirement – the operations in a reading period never lead to a net decrease in samples buffered for any channel.

In this paper we will drop the assumption that all channels are synchronized and have the same rate. We will assume that channels may have different rates, and that playback for some channels may be paused while playback for the others continues. While a channel is paused it will not consume any data, and hence may have no free buffer space for reads to continue. After it resumes playing it may be out of step with the other channels by having a near full buffer, while those of the other channels are near-empty. Therefore, the definition of reading periods must be relaxed so that the amount read for each channel is not fixed. Variable reading amounts may also be required when variable rate compression schemes are employed, or when different sampling rates have been used.

Our restrictive assumptions are then:

SYMBOL 183 \f "Symbol" \s 10 \h
Time during playback is divided into reading periods during which some amount (possibly zero) is read for each channel. The operations during a reading period are buffer conserving.

SYMBOL 183 \f "Symbol" \s 10 \h
The operations during a reading period are non-starving.

Non-starvation is actually real time requirement, while buffer conservation is simply an assumption. It is certainly possible to provide playback without all reading periods being buffer conserving. However, buffer conservation exploits the regularity of delay sensitive data playback, where real time deadlines occur at intervals continuously during the playback. It is sensible, then, to require reading to "keep up" continuously during the playback also. Also, as we shall see, the property of buffer conservation can be used to ensure non-starvation.

Buffer conservation and non-starvation both have ramifications in terms of buffer space requirements. To avoid starvation, there must be enough buffered to satisfy consumption between each read. Let SYMBOL 68 \f "Symbol"max be the maximum time difference between the completion of successive reads for a given channel. We will assume that data is not available until the read is complete.
 If the consumption rate of the channel is rc, then rcSYMBOL 68 \f "Symbol"max must be buffered to prevent starvation between reads.

Buffer-conservation also puts a lower bound on buffer space, but it is less strict than that of non-starvation. Let pmax be the maximum length of a reading period.  By definition, a read is done for each channel in each reading period, so maxSYMBOL 163 \f "Symbol"2pmax.  Also, it is impossible to guarantee a time difference between reads of less than a reading period so pmaxSYMBOL 163 \f "Symbol"Dmax (see figure 2). In order to be buffer conserving at least as much data must be read as is consumed.  rcpmax may be consumed, therefore it must also be read.

In addition to being necessary, the same amount of buffer space is sufficient. This can be demonstrated by the following simple algorithm. Let the buffer for each channel be of size rcmax. Prior to initiating consumption, rcpmax samples are pre-fetched into the buffer, and the user must wait for the reading period to complete. In each successive reading period, a read of at most rcpmax is attempted, but is truncated before causing buffer overflow. Starvation would imply that a reading period began with less than rcpmax buffered. However, each reading period is either buffer conserving, or else had a read truncated due to a full buffer. The first reading period began with rcpmax buffered, and a full buffer contains enough for a maximum delay, so starvation is impossible.  

autonumlgl  Handling non-contiguous files

We have stated above that variable sized reads are desirable for several reasons. If files are stored physically as contiguous units, this poses no problems. However, most file systems do not store files contiguously, but break them down into fixed sized clusters of contiguous physical blocks. With non-contiguous files, reads which do not correspond to just one cluster may incur extra seek latencies.

There are two possible ways of dealing with this problem. The extra seek time could simply be tolerated. Alternately, extra buffer space could be allocated, and cluster sizes fixed with this problem in mind.  For example, an algorithm that avoids seeks is as follows:

SYMBOL 183 \f "Symbol" \s 10 \h
Let rcmax be the maximum consumption rate the system will allow, and let pmax be the maximum reading period length. Set the cluster size to =rcmaxpmax. This ensures that for any channel a read of rcpmax will need to access at most two clusters.

SYMBOL 183 \f "Symbol" \s 10 \h
For each channel, let b=cSYMBOL 235 \f "Symbol"/rcpmax SYMBOL 251 \f "Symbol"-1. Allocate a buffer of size rcDmax + .

SYMBOL 183 \f "Symbol" \s 10 \h
Pre-fetch  before allowing consumption to begin on a channel.

SYMBOL 183 \f "Symbol" \s 10 \h
For each channel in each reading period, attempt to read  from the file. If there is enough free buffer space to do so, perform the read. If there is not enough free buffer space, read nothing.

In the above algorithm, the value of  is chosen so that it evenly divides the cluster size. In each reading period, either the amount  is read, or else nothing is read. Therefore, no reads cross a cluster boundary and require an extra seek. When there is not enough buffer space to read , then there must be at least rcmax buffered already, so it is safe not to read without fear of starvation.

Note that by attempting to read  each period, rather than rcpmaxwe will increase the values of pmax and max. However, the extra seeks are avoided, which will decrease the values. Observe also that in actual implementation a value of  must correspond to an integral number of physical blocks, so some further increase in its size may be necessary. This is also true of previously stated algorithms which read arbitrary amounts. All reads and buffer sizes must be rounded up to correspond to physical block sizes for actual implementation.

autonumlgl  Minimum Read and Buffer Requirements

For contiguous files, we know that rcmax is sufficient buffer space, and at most rcpmax needs to be read in a single reading period.  We have shown an algorithm that meets real time deadlines given non-contiguous files.  We now prove lower bounds for reading and buffer space, given that only one seek is permitted for each channel in a single reading period.  The proofs use an adversary argument.  That is, meeting the real time deadlines is considered a game in which the algorithm supplying the data is the player and the adversary controls the amount consumed, disk latencies etc. The game is as follows:

SYMBOL 183 \f "Symbol" \s 10 \h
The algorithm chooses an initial amount to read.  The game  then begins, proceeding in rounds.

In each round:

SYMBOL 183 \f "Symbol" \s 10 \h
The algorithm chooses some amount to read.

SYMBOL 183 \f "Symbol" \s 10 \h
The adversary then chooses an amount to consume.

SYMBOL 183 \f "Symbol" \s 10 \h
The adversary chooses when to allow read to happen: either immediately, or after max-pmax time (This corresponds to when the read is performed due to disk scheduling in the sorting set).  Consumption begins immediately.

The following rules apply:

SYMBOL 183 \f "Symbol" \s 10 \h
The adversary can consume at most rcpmax in a round, and hence rcmax between reads (by allowing one read to occur immediately, then in the next round delaying the read for rcmax-rcpmax).

SYMBOL 183 \f "Symbol" \s 10 \h
The player can only incur a single seek in each round.  That is, a read must be from a single cluster.  Therefore the player's read is bounded by the amount remaining in the current cluster.

SYMBOL 183 \f "Symbol" \s 10 \h
The adversary wins if starvation occurs.

Claim 1: 
An algorithm must have buffer space of at least rc(max+pmax)-1 to prevent losing the game.

Proof:
Assume the contrary, that the algorithm only has rc(max+pmax) - 2 buffer space.

From the rules of the game, we derive the following lemmas:

Lemma 1:
The game will be lost if there is ever less than rcmax-rcpmax buffered at the start of a round.

Proof:
If there is ever less than rcmax-rcpmax buffered at the start of a round, then the adversary can delay the next read by max-pmax, and then consume all the buffered data.

Lemma 2:
If rcmax-x is buffered at the start of a round, then the algorithm must read at least x or else the game will be lost.

Proof:
Suppose rcmax-x is buffered at the start of a round, and the algorithm reads less than x. Then the adversary can cause a delay between that read and the next of max, and consume rcmax. Because less than x was read, there will not be enough data in the buffer to prevent starvation during this time.

Lemma 3:
The size of a cluster must be at least rcpmax.
Proof:
Suppose the cluster size is less than rcpmax.  Let the adversary consume rcpmax in each round.  Since the algorithm can perform at most one seek in a round, the most it can read is an entire cluster.  Therefore in every round it must read less than is consumed, which must result in starvation and loss of the game.

Lemma 4:
The adversary can arrange to reach a point where at the beginning of a round there is rcmax - 1 buffered, and rcpmax+h remains in the current cluster, where 0SYMBOL 163 \f "Symbol"h<rcpmax.

Proof:
By lemma 2, we know that the amount buffered at the start of a round, plus the amount read, must be at least rcmax.  At most it will be rc(max+pmax)-2 (the maximum buffer space).  The adversary can read any amount from 0 to rcpmax.  Therefore, it can always read the required amount to reduce the buffered data to rcmax - 1 for the next round.  It can then repeat this operation, keeping the buffered data at rcmax - 1 for each successive round.  Note that in each round, the algorithm must read at least 1 (by lemma 2), and can read at most rcpmax-1 (otherwise the buffer would overflow).
Now suppose that the adversary does use the above strategy, and the amount remaining in the buffer is never rcpmax+h, with 0SYMBOL 163 \f "Symbol"h<rcpmax.  Lemma 3 tells us that the cluster size is at least rcpmax, so at the very least it must go from 2rcpmax to rcpmax-1 in a single round to accomplish this.  However, this implies a read of at least rcpmax+1, and we have seen that the adversary will limit the reads in each round to at most rcpmax-1.  Therefore the amount remaining in a cluster must reach a point of rcpmax+h, with 0SYMBOL 163 \f "Symbol"h<rcpmax.

Now we invoke lemma 4, and assume that there is rcmax - 1 buffered, and rcpmax+h remains in the current cluster, where 0SYMBOL 163 \f "Symbol" h<rcpmax.  If the next read is of an amount less than h, then let the adversary also consume h, and we again have the same amount buffered, and a new, smaller, h.  At some point, the algorithm must read more than h (certainly when h=0). Let the amount it reads be h+z, with z>0.

	Round
	Amount buffered at start of round
	Amount remaining in cluster at start of round
	Amount read by algorithm
	Amount consumed by adversary

	0
	b0=rcmax - 1
	k0=rcpmax+h
	0=h+z
	c0=h

	1
	b1=b0+0-c0

=rcmax - 1+z
	k1=k0-0

=rcpmax-z
	r1
	c1=rcpmax

	2
	b2=b1+1-c1

=rcmax -1+z+1-rcpmax
	k2=k1-1
=rcpmax-z-r1
	r2SYMBOL 163 \f "Symbol"k2
	c2=rcpmax

	3
	b3=b2+r2-c2
=rcmax -1+z+1-2rcpmax+2

SYMBOL 163 \f "Symbol"rcmax -1-rcpmax
	
	
	


Table 1: How the adversary wins.

Some additional notation is now necessary.  Let the round in which this read of h+z occurs be numbered 0, the next 1, etc.  Let the amount buffered at the start of round i be bi, the amount read by the algorithm  i, the amount consumed by the adversary ci, and the amount of data remaining in the cluster ki.

Once the algorithm reads h+z, let the adversary consume z.  In the next round, round 1, let the adversary consume rcpmax.  In round 2, let the algorithm also consume rcpmax.

Table 1 shows the values of bi, ki, i, and ci, in rounds 0 through 3.  In any round, if bi+i>rc(max+pmax) - 2, then the adversary could simply consume 0, and allow the buffer to overflow.  Therefore 

	bi+iSYMBOL 163 \f "Symbol" rc(Dmax+pmax) - 2.
	(1)


Applying this to round 1 we obtain 

	rcDmax - 1+z+1 SYMBOL 163 \f "Symbol" rc(max+pmax) - 2, 
	(2)


or 

	rcpmax - z - 1 SYMBOL 179 \f "Symbol" 1.  
	(3)


Comparing this with k2, we see that k2SYMBOL 179 \f "Symbol"1.  This means that the algorithm cannot complete reading the cluster before round 2.  The earliest it could complete reading the cluster would be in round 2 with k2=r2.  Even with k2=r2, we obtain b3=rcmax -1-rcpmax, which by lemma 1 must lead to the algorithm losing the game.

SYMBOL 110 \f "Wingdings"
Intuitively, the proof is using the fact that with rcmax -1 buffered, the algorithm must read some amount, but this amount must be less than rcpmax to avoid buffer overflow.  This allows the adversary to force the algorithm into a position with less than rcpmax remaining in the cluster.  An appropriate choice for consumption amount by the adversary then makes sure that there is enough room in the buffer for all but one of the samples remaining in the cluster.  The adversary consumes rcpmax during each of the next two rounds, while the algorithm must take both rounds just to finish off reading the cluster - an amount less than rcpmax.  This is enough to force the algorithm into a losing position.

Claim 2:
Suppose the cluster size is .  Then any algorithm must be able to read at least =/rcpmaxSYMBOL 251 \f "Symbol"-1 in each round to prevent losing the game.

Proof:
Suppose that the algorithm must read less than  in each round.  Let n=/rcpmaxSYMBOL 251 \f "Symbol".  Because the algorithm reads less than  in each round, it will take at least n+1 rounds for the algorithm to read each cluster.  During each of these rounds the adversary can consume rcpmax, for a total of (n+1)rcpmax.  By the definition of n, we have <(n+1)rcpmax.  Therefore, more is consumed than read during the reading of each cluster, which must lead to starvation, and losing the game.

SYMBOL 110 \f "Wingdings"
Claim 3:
Using a buffer of size rc(max+pmax)-1, and with reads of at most =/rcpmaxSYMBOL 251 \f "Symbol"-1 in each round is sufficient to guarantee that the algorithm will not lose the game.  (Note: The cluster size must be at least SYMBOL 179 \f "Symbol"rcpmax, by lemma 3).
Proof:
Let the algorithm implement a greedy algorithm, that is, it always reads as much as possible in each round.  The amount it reads is limited by one of three factors:

(i)
It can read at most .

(ii)
It cannot perform a read that may lead to a buffer overflow

(iii)
It cannot read more than what is remaining in the cluster.

Suppose that the algorithm fails.  Failure means starvation.  We have shown above that if there is ever less than rcmax-rcpmax buffered at the start of a round that the adversary can bring on starvation (lemma 1).  Furthermore, this condition must occur sometime prior to starvation (it is in fact satisfied by starvation).  

Consider, then, the first round which ends with less than rcmax-rcpmax buffered.  During this round there must have been a net decrease in buffer space, or else the previous round would be the first with less than rcmax-rcpmax buffered.  By a net decrease, we mean that more was consumed than read. Note that SYMBOL 179 \f "Symbol"rcpmax, and the adversary can read at most rcpmax, so in this round it is clear that reading was not limited by factor (i).

Suppose instead that reading was limited by factor (ii).  This means that if the adversary consumed 0, we would have a full buffer.  Under this condition if the adversary consumes its maximum, rcpmax, then the round ends with rcpmax less than a full buffer of data, that is, rcmax-1.  Clearly this is not less than rcmax-rcpmax, so it is impossible that reading was limited by factor (iii).

The only remaining possibility is that reading was limited by factor (iii), that is, the amount remaining in the cluster.  Note that an amount of 0 is equivalent to being at the next cluster.  However, the next cluster must contain at least , which would mean condition (i) holds.  We have already shown this is not possible, so it must be the case that the amount remaining in the cluster is at least one.  The net decrease in the round is therefore, at most, rcpmax-1 (maximum consumption by the adversary less a read of one).

We have shown that the round which leads to buffer space satisfying the condition of lemma 1 must be one which reads the last portion of some cluster.  Consider now all the rounds which perform reads from this cluster.  Suppose there are m such rounds.  As before, let us denote the amount buffered at the start of round i as bi, the amount read by the algorithm i, the amount consumed by the adversary ci, and the amount of data remaining in the cluster ki.  

For all but the last round, reading must be limited by conditions (i) or (ii), that is either by  or by the amount of free buffer space.  The amount of free buffer space must be at least what was consumed in the previous round.  Furthermore, the amount consumed in the previous round is at most rcpmax, which is never greater than b.  Therefore, a greedy algorithm will always read at least as much as was consumed in the previous round.  That is,

	
rk+1 - ck SYMBOL 179 \f "Symbol" 0 
	(4)


for k<m-1. For any k<m, the final buffer space may be derived as

	


	(5)


Applying (4) yields

	bm+1 SYMBOL 179 \f "Symbol"  bk + rk - cm-1 - cm + rm.
	(6)


In round k if condition (ii) holds then 

	bk+rk = rc(Dmax+pmax)-1.
	(7)


Substituting this in (6) yields

	bm+1 SYMBOL 179 \f "Symbol"  rc(Dmax+pmax)-1 - cm-1 - cm + rm
	(8)


We know that each ci SYMBOL 163 \f "Symbol" rcpmax, and rmSYMBOL 179 \f "Symbol"1, so

	bm+1 SYMBOL 179 \f "Symbol"  rc(max+pmax)-1 - rcpmax - rcpmax + 1 
= rc(max+pmax)
	(9)


which contradicts our assumption that bm+1<rcmax-rcpmax.  Therefore condition (ii) cannot limit reading in any round prior to round m.  We already know that condition (iii) only applies to round m.  Therefore condition (i) applies to all previous rounds, that is, rk= for k<m.  is defined to evenly divide a cluster.  Therefore, if each previous round reads , there must be a multiple of  remaining in the cluster for the last read.  We know the last read is at least one, so it must in fact be But if the last read is of b then condition (i) holds to the last round, which we have already shown to be impossible.

Therefore, it is impossible for the greedy algorithm to fail.
SYMBOL 110 \f "Wingdings"
The above proof shows that the greedy algorithm can achieve the lower bounds for buffer space and for reading amount. The algorithm presented in the previous section obtains the lower bound for reading, but may require more buffer space.  The amount of extra space that it will require corresponds to rounding up to a value that evenly divides a cluster.  The lower bound on buffer space is rcmax+rcpmax - 1.  If rcpmax does not evenly divide a cluster, then the algorithm will round up to the nearest value that does, , and use rcmax+ instead.  This may mean rounding up from 0.4 of a cluster to 0.5 of a cluster, or, in the worst case from 0.51 of a cluster to a whole cluster.  How significant this increase is depends on the particular application. While the algorithm of the previous section may require this additional buffer space, it always reads the same amount, when it does read.  This makes its implementation extremely simple, especially in the area of buffer management.  While the greedy algorithm is not complex in conventional terms, handling variable read amounts is complex enough to cause some concern where very tight deadlines are required.  For example, the scheduling of reads and admission of any non real time read requests may be sandwiched in between sorting sets, with the requirement to take negligible time to execute.  The system designer must consider the trade off of complexity (time) and buffer space in selecting between a greedy algorithm or the simple algorithm of the previous section.

We have shown, then, that non-contiguous file layouts come at the cost of additional seeks, or different retrieval algorithms. In the next section we consider how to minimize the impact of the seeks that cannot be avoided.

autonumlgl  Reducing seeks in reading periods

Because most mass storage systems utilize disks, it may be desirable to perform some sorting of the blocks to be read in a reading period in order to reduce disk latencies. Reducing latencies may lead to a shorter reading period, with smaller buffer requirements. For this purpose, channels may be assigned to a sorting set. We define each sorting set to be a set of n channels {c1, c2, ... cn}. Let the sorting sets be S1, S2,... Ss. The sets are always executed in fixed sequence, i.e. S1, S2, S3... However, within each set the reads may be ordered to reduce overall seek latency. At one extreme, there is only one sorting set and the optimization for seek time is performed over all the files. At the other extreme each set consists of only one file, and the order of reads in each reading period remains fixed with no seek optimization being done.

The use of sorting sets affects buffer requirements in an interesting way, due to the requirement of non-starvation. Consider the two extremes mentioned above. When there is only one sorting set, it is possible that the read(s) for a channel may be performed first in one reading period, and last in the next. Therefore the time between the reads is roughly the length of two reading periods. When there is a set for each channel (fixed ordering) the time between the reads is at most one reading period. Thus, the amount that must be read and buffered in the first case corresponds to two periods, but only one in the second case. This does not mean, however, that fixed ordering is always superior. With fixed ordering the reading period may be longer since no optimization for seek latencies can be performed.




Figure 2: Worst case delay between reads for a channel in S2.
To be more precise, let the maximum time to execute the reads of a sorting set Sj, including seek latencies and all other overhead, be T(Sj). For a particular channel, c, the worst case (largest) SYMBOL 68 \f "Symbol"max will occur if all the reads for c are performed first in S in one reading period, then last in the next (see figure 2). The time between the reads will therefore be the time remaining in Sj after c is completed (which in the worst case is all the other channels in Sj to be read), plus the time for all the other sorting sets, plus the time for all of Sj (in the second reading period). That is, 

	


	(10)


We have now established that SYMBOL 68 \f "Symbol"max is related to the lower bound on buffer space, and derived a general formula for SYMBOL 68 \f "Symbol"max given the function T(). In order to specify T(), we must consider disk latencies. The next section explains how disk latencies may be predicted and minimized.

autonumlgl  Minimizing disk latencies

In retrieving data from a disk, there are four factors which contribute to the time taken:

(i)
Seek latencies, that is, the time required to position the read head over the track containing the desired data.

(ii)
Rotational latencies, that is, the time it takes for the start of the data to rotate underneath the head so that the transfer can begin.

(iii)
The transfer rate of the drive, that is, the rate at which data is transferred from the drive once the head is in position over the data.

(iv)
The time during a read required to cross track or cylinder boundaries (if the block of data being read does cross such a boundary).

The transfer rate is fixed for a particular drive. However, it is possible to improve transfer rates by using a disk array, i.e. multiple disks transferring data in parallel  [10].  This yields a large logical drive composed of several drives in parallel. 

Delays arising from crossing track or cylinder boundaries may be avoided by careful placement of data during storage.  As long as no block of data straddles the boundary of a track or cylinder such delays will not arise.  If it is impossible to avoid such situations, a worst case delay time may be added to the latency estimate.  We will assume in this paper that data has been stored so as to avoid these delays.  For a discussion of delay sensitive data placement, see [9].

Spencer Ng [15] has studied strategies for reducing rotational delays, such as storing multiple copies of data on a track and using multiple actuators.  His strategies reduce the worst case rotational delay, and may be used in conjunction with our methods.  However, they are not applicable to most off-the-shelf hardware. Abbot [1] has done some work with calculated rotation times, but provides improvements in latency only with a given probability; no guarantees for improved latency are given.  It is possible to eliminate rotational latencies when blocks occupy entire tracks of data.  In this case reading can begin as soon as the head arrives over the track without any rotational latency, as all the data on the track is desired.  Many drive controllers now support buffer management so that this is performed transparently.  Because track sizes can be quite large, we will assume in this paper that rotational latencies may be incurred, and, furthermore, that they may take on any value between zero and some maximum.

Some drives vary the rotational speed and/or the transfer rate, depending on which track the head is over.  This allows greater storage densities and/or increased transfers rates.  For simplicity we will use only a single value for rotational delay and transfer rate for a drive (for the drives which vary these parameters, the worst case values may be used).  The possible exploitation of variable rotational latencies and transfer rates is a good area for future research.

To reduce seek latencies, it is common to schedule disk requests so that head movement is minimized.  Algorithms to accomplish this scheduling have been studied extensively, and include the SCAN and N-SCAN algorithms [7,20].  The SCAN algorithm sweeps the disk head back and forth across all cylinders, servicing requests as the head comes over the desired block of data. The N-SCAN algorithm guarantees service to the first N requests before servicing any new requests.  For each group of N requests, N-SCAN considers the request which is nearest the inside track and the request which is nearest the outside track.  It will select from these two the one which is closer to the current position and begin moving toward it.  After it has serviced all requests in that direction, it will reverse direction to service any remaining requests.

A sorting set may require reads on the innermost and outermost tracks of the disk.  If a maximum (inside to outside) seek consists of Smax tracks, then any disk scheduling algorithm may be required to move the disk head by as much as Smax tracks in a sorting set.  Applying the N-SCAN algorithm to sorting sets, the worst case delay would be encountered when the disk head is left in the middle track of the drive at the end of one sorting set, and in the next sorting set must visit both the innermost and outermost tracks.  This would mean the head would move over 1.5Smax tracks (see figure 3).  Applying the SCAN algorithm, the head would only move over Smax tracks, as a sweep would be done for each sorting set.  However, an extra seek may be required to move the disk head to the edge of the disk after the last request in the sorting set has been performed.  Therefore, the choice between SCAN and N-SCAN is a trade-off between total seek distance and the number of seeks.




Figure 3: Worst case for the N-SCAN algorithm in a reading period.
We now modify the N-SCAN algorithm as follows.  First, consider the two blocks to be read in the next sorting set which are closest to each extreme edge of the disk. At the end of the current sorting set we will perform a seek to whichever of these is closest. We will call this the pre-seek.  Note that normally disk seeks are accomplished via read commands, which implicitly require the disk head to be moved.  However, the pre-seek must be an explicit seek command.  The read cannot be issued until the next sorting set begins and buffer space is guaranteed to be free.  The modified algorithm is shown in table 3. We will refer to this algorithm as the pre-seeking sweep algorithm, as it causes the disk head to move in a sweeping motion back and forth across the disk (but not necessarily end-to-end, as in the SCAN algorithm).  Figure 4 shows the how the pre-seeking sweep algorithm operates.  The pre-seeking sweep algorithm is also discussed in [8].

	The Pre-Seeking Sweep Algorithm

	SYMBOL 183 \f "Symbol" \s 10 \h
In each sorting set, sort the blocks to be read according to location.

SYMBOL 183 \f "Symbol" \s 10 \h
Prior to the first sorting set, seek to the head of its list.

SYMBOL 183 \f "Symbol" \s 10 \h
During each sorting set, a seek will already have been previously executed to either the head or the tail of the list.  Perform the reads in the list, either in sorted order or in reverse sorted order; in sorted order if the seek was to the head, in reverse sorted order if the seek was to the tail.

SYMBOL 183 \f "Symbol" \s 10 \h
After the last read in a sorting set, consider the sorted list of reads for the next.  Initiate a seek (the "pre-seek") to either the head or tail of the list; whichever is closer to the current head position.




Table 2: The pre-seeking sweep algorithm



Figure 4: Disk head movement for the pre-seeking sweep algorithm
From the point of view of a conventional system the pre-seek is not very significant. It does change the order of reads, but not in a manner which would alter the performance of the N-SCAN algorithm.  If a sorting set requires a full sweep of the disk to service its requests, and the pre-seek moves the head to the middle of the disk, we would again have a total distance of 1.5Smax tracks, only now with an extra seek, so the performance for a given sorting set would appear to be worse.

However, the fact that the pre-seek is an explicit seek rather than an implicit seek resulting from read means that it does not necessarily belong to a particular sorting set.  It may be assigned to the current sorting set, or the next sorting set.  The time it takes may actually be divided between the two sorting sets.  By careful allocation of the pre-seek's time the pre-seeking algorithm can achieve optimal performance, i.e. a single sweep with one seek for each service request in the worst case.  To prove this, we assume that seeking time depends only on the number of seeks and the total distance the head moves (a later section on seek time estimates shows this is in fact the case).

Claim 
4:
The pre-seeking sweep algorithm is optimal.

Proof:
Consider sorting set i, which initiates the pre-seek, and sorting set i+ 1, which follows it.  We allocate the time for the pre-seek as follows.  The time for initiating the pre-seek is allocated to sorting set i.  Thus, a sorting set with j blocks is allocated the time for j seek initiations: none for the first block, one for each of the rest, and one for the pre-seek.  The time resulting from the distance of the pre-seek is divided.  Sorting set i is allocated as much of this distance as it can take without its total distance allocation exceeding a single sweep of the disk (Smax tracks).  The remainder is allocated to sorting set i+1.

Without loss of generality, assume that in sorting set i the disk head moves to the right.  Suppose the pre-seek is also to the right (see figure 5 (i)).  As the head has not changed direction, the total movement including the pre-seek cannot be more than a single sweep of the disk.  Therefore, in this case, we can assign all the time for the pre-seek to sorting set i.  Suppose now that the pre-seek is to the left.  We then consider two possibilities for the following sorting set:

1.
The head moves to the left in sorting set i+1 (see figure 5 (ii)).  In this case the pre-seek is in the same direction as all the head movement in sorting set i+1.  Therefore the pre-seek and seeks in sorting set i+1 do not exceed a single sweep of the disk.  Thus, the distance of the pre-seek can be allocated to sorting set i+1.

2.
The head moves to the right in sorting set i+1 (see figure 5 (iii)).  In this case the head pre-seeks to the left, then sweeps to the right.  This can only happen when the furthest request to the left is nearer to the current position than the furthest request to the right.  At most, the furthest request to the right is at the edge of the disk.  Therefore, the length of the pre-seek (which is to the furthest point left) is less than to the right edge of the disk.  The distance portion of the pre-seek can therefore be included in sorting set i, because at worst it would be as much as moving to the right edge, and as the head was already moving to the right this corresponds to a single sweep of the disk.




Figure 5: Cases for optimality proof.
Thus, each sorting set is allocated time to initiate a seek for each request, and to travel over at most one sweep of the disk.  This is the lower bound for any algorithm, therefore the pre-seeking sweep algorithm is optimal.  Our assignment of time relies on seek time being a result of only the number of seeks and the distance.  This is established in the next section which provides an estimate of seek times.
SYMBOL 110 \f "Wingdings"
The pre-seeking sweep algorithm is an adaptation of the N-SCAN algorithm.  As such, it is not particularly novel as a disk scheduling algorithm.  However, in the context of delay sensitive retrieval  it is significant, because the pre-seek allows flexibility in its time assignment.  Furthermore, we have demonstrated that an optimal algorithm does exist - a fact which is not intuitively obvious.  The technique of pre-seeking bears a superficial similarity to anticipatory disk arm movement suggested by King [13].  However, King's anticipatory seeks are performed only when the next request is not known, in contrast with the pre-seek, which is to the next request.  Additionally, the pre-seek is not simply performed to the next request according to the SCAN or N-SCAN algorithms.  Instead it is to either the innermost or outermost request for the next sorting set.  As this does not change the distance which the disk head must travel it is an insignificant alteration according to conventional measurements, while to the delay sensitive retrieval problem it is pivotal in achieving optimal performance.

autonumlgl  Estimating seek times

We have shown how to calculate block size requirements and reading period length, and how to minimize the seek delays to keep them reasonable.  However, to make use of our formulas describing buffer requirements and reading period length we need to be able to deduce what the time delays will actually be.  In this section, we consider the seek time.  In the literature, seek times are approximated by a linear function of the number of tracks the head moves over [7,20]. The approximation simply uses the minimum seek and maximum seek to define a linear seek time function.  Given the minimum (track-to-track) seek time, Tmin, the maximum seek time, Tmax, the number of tracks to seek, s, and the number of tracks corresponding to a maximum seek, Smax, the seek time may be approximated by
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for a non-zero seek (see figure 6).




Figure 6: Seek latency vs length of seek

A more accurate estimate of seeks has been presented by Gray et. al. [10].  For seeks of less than 20% of the disk surface it uses a square root function rather than a linear function to estimate seek times.  This reflects the fact that for short seeks the disk head its always accelerating or decelerating.  Under this model the seek latency is estimated as
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where k1,k2, and k3 are drive dependent.  Figure 7 shows the linear model and the square root model compared with the observed seek latencies of a particular disk drive.




Figure 7: Seek time vs length of seek for Control Data WREN III 94161, actual and estimated.

The pre-seeking sweep algorithm is optimal for the linear model or the square root model.  However, we will continue to use the linear estimate for two reasons.  First, the linear estimate is not that bad - by adding an error term, , of about 5 msec it actually becomes rather conservative (in order to simplify the equations we will refrain from using the error term until we come to the case studies).  Second, and more important, minimum and maximum seek times are commonly published values, so the linear estimate can be made from drive specifications.  The square root estimate, on the other hand, requires an additional measurement of the seek time for a 20% seek, which can only be derived by experiment.  Thus, the linear estimate is much more useful for drive evaluation.

Consider, then, reading a set of blocks. Suppose that j blocks are read. If the i'th seek is over di tracks then the total latency will be:
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	(13)


This simplifies to
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	(14)


From this we observe that it is not the individual seek length that is important in reducing seek time, but only the number of seeks and the sum of the seek lengths, that is, the total seek distance.  This was our assumption  in the optimality proof for the pre-seeking sweep algorithm.  A reading period utilizing the pre-seeking  sweep algorithm may move the head by as much as Smax, so the delay due to seeking may be as much as
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which reduces to
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Note that the second to last term has Smax– 1 in the denominator.  As Smax is usually on the order of 1000, this term has negligible effect unless j values are large (on the order of 100).

autonumlgl  Case study

In the previous sections we constructed a theoretical perspective on multi-channel delay sensitive data retrieval. In this section we give examples of how the results may be used to evaluate system design choices.

We have seen that reading can be split into sorting sets for the purpose of reducing seek latencies. Since the pre-seeking sweep algorithm is optimal, we will assume that it is used for this purpose within the sorting sets. We will consider examples each playing back 16 channels.  In order to keep our examples short, we will assume all the channels have the same consumption rate, rc. The first example will have only one sorting set, the second 4 sorting sets of 4 channels each, and the last 16 sorting sets, that is, fixed order. We will see how the choice of handling non-contiguous files affects the results of each. To compare the methods, we fix all the values except rc and observe the values of the consumption rate and buffer space required.

From our study of the pre-seeking sweep algorithm, we are now prepared to define T(S), which is the time to perform the reads on a sorting set S. Suppose that the method given in section 2.1 is employed to ensure that only one seek is required for each channel. Then |S| seeks must be performed. We know from equation 11 that the seek latencies may be at most
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For each seek we allow our estimate to be inaccurate by as much as =5 msec.  In addition, each seek may have rotation delay, which we will denote tr. Finally, it will take some time to read the data. We will assume that no track or cylinder boundaries are crossed, and calculate the time to be proportional to the transfer rate of the disk drive, denoted rt. We can then calculate T(S) as 
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Having T(S) allows us to then calculate max. Recall that the buffer space required is rcmax+. Because we are not fixing rc we must calculate it as
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The reading period length, pmax, we calculate as

	

.
	(21)


For the case where seeks are tolerated, we will assume that a cluster size has been chosen so that at most two seeks are required per read. The calculations are the same as above, with the exception that twice as many seeks are required, and the buffer space is rcmax. The variable  in this case represents rcpmax, the maximum amount read in each reading period.

For all examples we will use the drive performance characteristics of the Seagate WREN 6 ST2383N (see table 3). The maximum supportable consumption rate (per channel) is shown in table 4 and the buffer space required (per channel) in table 5. The length of the reading period is shown in table 6.  Figure 8 combines tables 4 and 5 to show the buffer space required to support a particular consumption rate.  Figure 9 combines tables 4 and 6 to show the reading period length for a particular consumption rate.  Note that the reading period length is important, as a user may have to wait through a reading period before playback can begin. 

	Seagate WREN 6 ST2383N
	
	

	tmin
	Track to track seek
	5 msec

	tmax
	Maximum seek
	28 msec

	tr
	Rotational delay
	17 msec

	rt
	Transfer rate
	2 MB/sec

	dmax
	Maximum seek distance
	1260 tracks


Table 3: WREN 6 ST2383N Performance

	
	=4 kb
	=10 kb
	=20 kb
	=50 kb

	1 set
1 seek
	8.2
	18.7
	32.7
	59.1

	4 sets
1 seek
	7.2
	16.6
	29.4
	54.6

	16 sets
1 seek
	4.8
	11.4
	20.9
	42.0

	1 set
2 seeks
	4.4
	10.4
	19.2
	39.1

	4 sets
2 seeks
	4.0
	9.7
	18.0
	37.1

	16 sets
2 seeks
	3.2
	7.6
	14.4
	30.1


Table 4: Consumption rate supportable (KB/sec).

	
	=4 kb
	=10 kb
	=20 kb
	=50 kb

	1 set
1 seek
	11.8
	29.4
	58.8
	147.0

	4 sets
1 seek
	8.8
	22.0
	44.0
	109.7

	16 sets
1 seek
	8.1
	20.3
	40.5
	101.0

	1 set
2 seeks
	7.8
	19.4
	38.8
	96.9

	4 sets
2 seeks
	4.8
	11.9
	23.9
	59.6

	16 sets
2 seeks
	4.1
	10.2
	20.3
	50.7


Table 5: Buffer space required (KB).

	
	=4 kb
	=10 kb
	=20 kb
	=50 kb

	1 set
1 seek
	0.49
	.053
	0.61
	0.85

	4 sets
1 seek
	0.56
	0.60
	0.68
	0.91

	16 sets
1 seek
	0.83
	0.88
	0.96
	1.19

	1 set
2 seeks
	0.92
	0.97
	1.04
	1.28

	4 sets
2 seeks
	0.99
	1.03
	1.11
	1.35

	16 sets
2 seeks
	1.26
	1.31
	1.39
	1.62


Table 6: Reading period length (seconds).

autonumlgl  Analysis Of Case Study

When viewing the results it should be kept in mind that values of  put a lower bound on cluster sizes. That is, in order for the assumption of 1 seek per read, the cluster size must be a multiple of . In order for the assumption of 2 seeks per read to hold, the cluster size must be at least .




Figure 8: Buffer space required (per channel) vs consumption rate supported (per channel)




Figure 9: Reading period length vs consumption  rate supported (per channel)
We can see from the examples that reading period length is optimized by reducing the number of sorting sets and the number of seeks, as would be expected.  Consumption rate for a given value (i.e. cluster size) is optimized in the same way. Note that this is not just for our example, but follows as consumption rate is linearly dependent on reading period length.

The only area where utilizing a single set and single seek per channel is not optimal is in terms of buffer space. For the given example, the 4 set approach is most economical in terms of buffer space. By balancing out seek latency reduction with the number of sets between reads it achieves the best performance.

autonumlgl  Analysis Of Previous Work

From the perspective of sorting sets, the work of Gemmell and Christodoulakis corresponds to a single set, single seek approach [9]. The approach of Anderson et al. [2] corresponds to a set-per-channel approach.

For the constrained block allocation scheme, we find that it is meaningless when any sorting is done.  The disk head will be performing full sweeps reading blocks as it goes making the spacing between blocks in a given file irrelevant.  Thus, constrained block allocation only makes sense when using a set-per-channel approach, with multiple blocks to be read per reading period for each channel.

Even if a constrained allocation is utilized for storage, the pre-seeking sweep algorithm is still optimal for retrieval.  However, the pre-seeking sweep algorithm makes no assumption regarding placement, so it is fair to ask whether constrained allocation yields any benefit compared to unconstrained allocation.  Using the linear seek time estimate given in equation (11) we would see no benefit.  However, using the square root estimate of Gray et. al. [10] there could be an improvement if the distance between successive blocks is well under 20% of a maximum seek (typically less than 5%).  This is because bounding the seeks allows us to put a tighter bound on our error term, , as the distance between blocks approaches one track (at a distance of one track we can use =0).  Note that to generate this gain, elaborate algorithms must be implemented for storage management [17,24,27].

autonumlgl  Conclusion

Delay sensitive data is rapidly establishing itself as part of the standard user interface. The issues related to multi-channel retrieval of delay sensitive data must be addressed in a formal way in order to achieve optimal solutions. We have adopted the necessary principle of non-starvation and added the assumption of buffer conservation. We have shown how buffer conservation can be used to achieve non-starvation, and how it is a sensible simplification to the general non-starvation problem. Building on this foundation, we have presented a model which supports contiguous and non-contiguous file layouts, varying consumption rates, independent pausing of channels, and sorting of reads for reducing disk latencies. Lower bounds for read amounts and buffer space were given, and the greedy algorithm shown to be able to achieve these lower bounds.  We presented the pre-seeking sweep algorithm as optimal for sorting set latency reduction.

At the heart of our approach is a disk scheduling algorithm which breaks playback channels into sorting sets on which to perform the pre-seeking sweep algorithm.  From the point of view of this algorithm, previous approaches are simple special cases.  Prior to this time, there was no intuitive relationship between different approaches, making comparison difficult.  In addition to allowing us to compare previous approaches, the sorting-set algorithm has also yielded results which, in the case of the example studied, outperform any previous approach for buffer requirements.
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�Usually, when reading a physical block (sector) from a disk drive the block is transfered as an atomic unit; parity checks, error correction etc. must be performed after which the entire block is declared "ready".  Therefore, none of the data may be consumed until the entire read is complete.  This is also the normal handshaking process for multi-block reads – the process requesting the data is notified when it is all ready.  Our approach may be readily adapted to withdraw this assumption, but at the cost of added complexity.
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