
Troubleshooting under Uncertainty

David Heckerman John S. Breese

Microsoft Research
One Microsoft Way

Redmond, WA, 98052-6399
<heckerma|breese|koosr@microsoft.com>

Koos Rommelse

Abstract

We develop a series of approximations for
decision-theoretic troubleshooting under un-
certainty. Our approach generates trou-
bleshooting plans in the face of uncertainty
in the relationships among components and
device status, observations, as well as the af-
fect of actions on device status. Included
in our approach is a Bayesian-network rep-
resentation of these relationships. We have
applied our technique successfully to trou-
bleshooting problems with printing, photo-
copier feeders, automobiles, and gas turbines.
We report empirical findings demonstrating
the high quality of plans produced by our ap-
proach.

1 Introduction

The purpose of troubleshooting is to generate a low
cost plan for the repair of a device, where a plan con-
sists of observations and component-repair actions.1

In this paper, we develop a series of approximations for
decision-theoretic troubleshooting under uncertainty.
Our approach generates troubleshooting plans in the
face of uncertainty in (1) the relationships among com-
ponents and device status, (2) observations of device
behavior, and (3) the affect of actions on device sta-
tus. Included in our approach is a Bayesian-network
representation of these relationships.

Let C be the set of variables {c1, c2, . . . , cn} represent-
ing the components of the system that we are trou-
bleshooting. We shall assume that each component or
fault ci is in exactly one of a finite set of states.2 By

1A repair action may be a simple replacement of the
component.

2Our approach can be generalized to continuous vari-
ables, but we do not do so here.

convention, we use ci = Normal to denote the event
that component ci is functioning properly. Let O be
the set of variables {o1, o2, . . . om} representing the set
of observations that one can potentially make about
the system in question, with each oi taking on exactly
one of ri possible states {oi1, oi2, . . . , oiri

}. We write
oi = k to indicate that observation oi takes on state
k. In this paper, we assume there is a distinguished
observation e that denotes the functional status of the
device. We use e = Normal to denote the event that
the device is functioning normally.

Both repairs and observations can have nonzero cost.
Optimal troubleshooting is the development of a trou-
bleshooting plan with minimum expected cost. In this
framework, an observation is valuable only if the ex-
pected cost of repair given that observation is less
than the expected cost of repair in the absence of
that observation. This type of analysis is called value-

of-information analysis in the field of decision analy-
sis, because we are explicitly calculating the expected
value of various observations in terms of their subse-
quent effect on actions.

A decision tree for optimal troubleshooting of a simple
two-component device is shown in Figure 1. The val-
ues at the end of the tree are the cumulative costs of
observations and costs of repairs along the path from
the root. We use Co

i and Cr
i to denote the cost of ob-

serving and repairing component ci, respectively. The
expression Pr(e = Normal|Repair(ci), oj) is the prob-
ability that the device will work properly, given that
we have repaired component ci and have observed oj

before repair. We call such probabilities repair proba-

bilities. In drawing this model, we have assumed that
the costs of repair are independent, that the device
will be fixed if one repairs both components, and that
only component c1 can be observed.

The expected cost of a repair sequence defines the
(negative) value of that sequence. In Figure 1, the
expected cost of repair for the sequence with no obser-

Repair c1

Observe o1

Pr(¬o1)

Pr(o1)

o1

¬o1

Repair c2

Repair c1

Repair c2

Repair c1

Repair c2

Co
1+ Cr

2+ Cr
1

Co
1+ Cr

1+ Cr
2

Co
1+ Cr

1

Co
1+ Cr

2

Co
1+ Cr

2+ Cr
1

Co
1+ Cr

1+ Cr
2

Co
1+ Cr

1

Co
1+ Cr

2

Cr
1+ Cr

2

Cr
1

Cr
2+ Cr

1

Cr
2

Pr(e=Normal|Fix(c1),o1)

Pr(e=Normal|Fix(c1))

Pr(e=Abnormal|Fix(c1),o1)

Pr(e=Normal|Fix(c2),o1)

Pr(e=Abnormal|Fix(c2),o1)

Pr(e=Normal|Fix(c1),¬o1)

Pr(e=Abnormal|Fix(c1),¬o1)

Pr(e=Normal|Fix(c2),¬o1)

Pr(e=Abnormal|Fix(c2),¬o1)

Pr(e=Abnormal|Fix(c1))

Pr(e=Normal|Fix(c2))

Pr(e=Abnormal|Fix(c2))

Figure 1: A decision tree for optimal troubleshooting of a two-component device.

vations and repairing c1 first is

Pr(e = Normal|Repair(c1))C
r
1+

(1 − Pr(e = Normal|Repair(c1)))(C
r
1 + Cr

2)

where the repair cost is Cr
1 if the repair of c1 succeeds

in fixing the problem, and Cr
1 + Cr

2 if we must also re-
pair c2. Again, this expression assumes that repairing
both c1 and c2 is guaranteed to fix the problem.

In general, a sequential troubleshooting plan involves
the following steps:

1. If the device is working properly, terminate.

2. If not, then either

(a) Select a component ci to replace or repair,

(b) Select an unobserved variable oj for observa-
tion, or

(c) Call service.

3. Go to 1.

In addition to being able to observe or repair a com-
ponent at each stage, we have the option of calling
service. The idea is that at any level of troubleshoot-
ing a device it is possible to “promote” the problem to
a higher level of expertise that is guaranteed to be able
to repair the device. In the worst case, a service call
may correspond to completely replacing a device. For
example, if an airplane mechanic is troubleshooting an
engine on a jet on the runway, a service call may cor-
respond to replacing the faulty engine and sending it
to the maintenance shop for repair.

Development of an optimal solution to the general
troubleshooting problem requires an off-line analysis of
all possible mixed observation-repair-service sequences
using dynamic programming. As we increase the num-
ber of reparable components and possible observations,
the decision tree grows exponentially. For example, a
troubleshooting problem of this form with 5 compo-
nents and 3 observations would generate a decision
tree with nearly 340,000 endpoints. Our strategy in
this paper is to generate a series of approximations
that more efficiently selects either an observation, a
repair action, or the service-call action at each stage
of the troubleshooting process.

Our approach incorporates the Bayesian-network rep-
resentation, an annotated directed graph that en-
codes probabilistic dependencies among distinctions
[Howard and Matheson, 1981, Pearl, 1988]. The rep-
resentation rigorously describes probabilistic relation-
ships, yet includes a human-oriented qualitative struc-
ture that facilitates communication between the user
and the probabilistic model. A Bayesian network for a

set of variables {x1, . . . , xn} represents a joint proba-
bility distribution over those variables. The Bayesian
network represents the joint distribution by encoding
assertions of conditional independence as well as a col-
lection of probability distributions. From the chain
rule of probability, we know

Pr(x1, . . . , xn) =

n∏

i=1

Pr(xi|x1, . . . , xi−1) (1)

For each variable xi, let Πi ⊆ {x1, . . . , xi−1} be a set
of variables that renders xi and {x1, . . . , xi−1} condi-
tionally independent. That is,

Pr(xi|x1, . . . , xi−1) = Pr(xi|Πi) (2)

A Bayesian network consists of (1) a Bayesian-network
structure that encodes the assertions of conditional in-
dependence in Equation 2, and (2) a set of probability
distributions corresponding to that structure. In par-
ticular, the Bayesian-network structure is a directed
acyclic graph such that each variable x1, . . . , xn cor-
responds to a node in that structure, and the parents
of the node corresponding to xi are the nodes corre-
sponding to the variables in Πi. (In the remainder
of this paper, we use xi to refer to both the vari-
able and its corresponding node in a graph.) Asso-
ciated with each node xi are the probability distribu-
tions Pr(xi|Πi)—one probability distribution for each
instance of Πi. Combining Equations 1 and 2, we see
that any Bayesian network for {x1, . . . , xn} uniquely
determines a joint probability distribution for those
variables. That is,

Pr(x1, . . . , xn) =

n∏

i=1

Pr(xi|Πi) (3)

Algorithms exist for calculating any conditional proba-
bility of interest from this implicit joint probability dis-
tribution [Pearl, 1988, Jensen et al., 1990]. For most
real-world problems, these algorithms are efficient.

2 Determination of the Repair

Sequence

Under particular assumptions, it is possible to gen-
erate an optimal sequence of repair actions under
uncertainty without enumerating a decision tree or
equivalent search procedure. Let pi = Pr(e =
Normal|Repair(ci)) be the repair probability that the
device will be functioning properly given ci is repaired;
and let Cr

i be the cost of repairing component ci. In
our simple decision tree in Figure 1, ignoring the ob-
servation o1, we repair c1 first if and only if

p1C
r
1 + (1− p1)(C

r
1 + Cr

2) < p2C
r
2 + (1− p2)(C

r
1 + Cr

2)

or equivalently when

p1

Cr
1

>
p2

Cr
2

For example, if repairs have the same cost, we choose
the one with the higher probability of solving the prob-
lem; and if the repairs are equally likely to succeed,
then we choose the one with lower cost. Kalagnanam
and Henrion (1988) have shown that this result gener-
alizes to generating a sequence of n repairable compo-
nents under the following assumptions:

A1 There is a single fault—that is, one and only one
of the components is responsible for the failure of
the device. This assumption implies

∑n

i=1
pi = 1.

A2 Costs of repair are independent.

A3 There are no observations interleaved between re-
pair actions, except for the observation of whether
or not the device is functioning.

Under these conditions, the optimal repair sequence is
generated by sorting the components for repair such
that

p1

Cr
1

≥
p2

Cr
2

≥ . . . ≥
pn

Cr
n

(4)

and the expected cost of the repair sequence is given
by

ECR = Cr
1 + (1 − p1)C

r
2 + . . . + (1 −

n−1∑

j=1

pj)C
r
n

=

n∑

i=1

(1 −

i−1∑

j=1

pj)C
r
i (5)

The preceding equation says the expected cost of re-
pair consists of the cost of repairing the first compo-
nent, and if that repair is unsuccessful (with proba-
bility 1 − p1), then we incur the cost of the second
component, and so on.

In real-world problems, Assumptions A1–A3 are some-
times unreasonable. For example, if the cost of observ-
ing a component is significantly less than the cost of
repairing the component, then it may be useful to ob-
serve that component before repairing it. As another
example, there may be multiple faults. To address
these possibilities, we use the following approxima-
tions of the previous approach for determining repair
sequence.

We begin by labeling each component as observable or
unobservable. If a component is observable, then we
require that it be observed immediately prior to its re-
pair. We call this sequence of an observation followed
by a repair an observation–repair action. Conversely,

if a component is unobservable, then we do not allow
its observation prior to repair (or at any time). For
convenience, we also call this simple repair action an
observation–repair action. Let E denote the current in-
formation state of the troubleshooter. E may include
information about previous observations as well as re-
pairs. The expected cost of the observation–repair ac-
tion for an observable component ci given information
state E, denoted Cor

i (E), is given by

Cor
i (E) = Co

i + Pr(ci 6= Normal|E) · Cr
i (6)

For unobservable components, we have Cor
i (E) = Cr

i .

With observation–repair actions and costs so defined,
we can still use Equation 4 with Cr

i replaced by
Cor

i (Ei), where Ei denotes the state of information af-
ter i − 1 observation–repair actions have taken place.
In addition, when multiple faults are possible, this
equation remains valid, provided we replace pi with
pi(Ei) = Pr(e = Normal|Repair(ci), Ei). Because the
repair probabilities and costs are no longer constant,
the repair sequence specified by Equation 5 is invalid;
and the problem of finding a repair sequence that mini-
mizes ECR becomes intractable. Nonetheless, we have
found the following approximation to be useful. First,
we compute all repair probabilities pi(E1) and costs
Cor

i (E1) under the assumption that no observation–
repair actions have taken place. Then, we identify the
component with the highest ratio pi(E1)/Cor

i (E1) as
the first component to be observed/repaired. Next, we
set this component to Normal, update the information
state to E2, recompute repair probabilities and costs,
and identify the second component to be repaired. We
iterate this procedure, generating a full sequence.

We can include the special repair action of a service
call easily in this procedure. Namely, let Cs denote the
cost of a service call. Then, we identify a service call
as the next action in the repair sequence when 1/Cs

is greater than all ratios pi(E)/Cor
i (E).

3 A Myopic Approximation for

Observation Planning

In the previous section, we considered two special
classes of observations: (1) the observation of the de-
vice after a repair is made, and (2) the observation of
a component before a repair is made (as part of an
observation-repair action). We refer to these observa-
tions as base observations. In this section, we describe
a method for making more general observations. To do
so, we use a myopic approximation. In this approxima-
tion, we pretend that we can make at most one nonbase
observation before executing a plan consisting of only
observation–repair actions and a service call. Then,
we determine which nonbase observation if any should

be made, and make the observation if appropriate. Fi-
nally, we iterate this procedure, possibly making ad-
ditional observations. The procedure is called myopic,
because we may make additional nonbase observations
in the troubleshooting sequence, but we ignore these
possible actions when selecting the next nonbase ob-
servation.

Using the procedure described in the previous section,
we obtain the expected cost of repair under informa-
tion state E:

ECR(E) =
nf∑

i=1

(1 −

i−1∑

j=1

pj(Ej))C
or
i (Ei)) + (1 −

nf∑

j=1

pj(Ej))C
s

where nf is the number of components fixed before a
service call. Recall that E1 = E by definition. Simi-
larly, the expected cost of making nonbase observation
oi under the current state of information E is given by

ECO(E, oi) = (7)

Co
i +

ri∑

k=1

ECR(E ∪ {oi = k}) Pr(oi = k|E)

Equation 7 says that the expected cost of a plan start-
ing with a nonbase observation is the cost of observa-
tion (Co

i , incurred with certainty) plus the expected
cost of the repair sequences that would result under
each possible state of the observation variable. We
note that the repair sequence may be different for ev-
ery possible outcome of the observation.

If ECR(E) < ECO(E, oi) for any nonbase observation
oi, then we choose not to make an additional nonbase
observation, but rather to observe and possibly repair
that component with the maximum probability-to-cost
ratio. Otherwise, we choose to observe that oi with the
lowest ECO. Once a repair or nonbase observation has
been carried out, we update the information state E,
and repeat the cycle. When we update the information
state, if a repair action has been carried out, we must
remove all observations that correspond to nodes that
are descendants of the repair-action node, because the
repair action could have changed these observations.
The net result of this procedure is a troubleshooting
plan consisting of interleaved observation–repair ac-
tions and nonbase observations.

4 Calculation of the Probability of

Repair

Bayesian networks represent uncertain relationships
among observations, and inference algorithms for
Bayesian networks allow us to compute the probabil-
ity of component faults and observations given evi-
dence. When we move to a troubleshooting model,

(a)

Fuel

Gauge

(b)

Gauge(Fuel)

Gaugepre Gaugepost

Fuelpre Fuelpost

Figure 2: (a) A Bayesian network for the interaction
between fuel in tank and fuel gauge. (b) A response
network for determining the probability that gauge
will read not empty after we fill the tank with gas,
given that the gauge currently reads empty.

we must also be able to represent actions in the world
and the ensuing changes in the state of the device.
Furthermore, we must be able to predict (under un-
certainty) the state of the system given some action,
before we take that action. In our simple model,
for example, we must be able to compute Pr(e =
Normal|Repair(ci), E), the probability that the device
will perform properly after we repair component ci,
given that we know E before we fix ci. In this section,
we address these issues.

4.1 Response Networks

Consider the simple causal relationship between the
fuel in a gas tank (“Fuel”), which we model as having
states empty (e) or not empty (¬e), and the reading
on a fuel gauge (“Gauge”), which we also model as
having states empty and not empty. The two nodes
are dependent as depicted in the Bayesian network in
Figure 2a.

Now suppose we observe the gauge to be empty, and
we want to determine the probability that the gauge
will read not empty, after we fill the tank with gas.
We can do so, using the Bayesian network shown in
Figure 2b. In this network, “Fuelpre” and “Fuelpost”
represent whether or not the tank is empty before and
after we fill the tank, respectively (thus, “Fuelpost”
= ¬e). Similarly, “Gaugepre” and “Gaugepost” rep-
resent whether or not the gauge reads empty be-
fore and after we fill the tank, respectively (thus,
“Gaugepre” = e). The node “Gauge(Fuel)”, called a
mapping variable, represents all of the possible map-
pings from “Fuel” to “Gauge”. As shown in Ta-
ble 1, this node has four states: (1) ok, where the
gauge reads empty if and only if there is no fuel,
(2) stuck on empty, where the gauge always reads
empty, (3) stuck on not empty, where the gauge al-
ways reads not empty, and (4) backwards, where the
gauge reads empty if and only if there is fuel. The node
“Gaugepre” is a deterministic function of its cause
“Fuelpre” and the mapping variable “Gauge(Fuel)”,

Table 1: The four possible mappings between “Fuel”
and “Gauge”.

stuck on stuck on

ok empty not empty backwards

Fuel e ¬e e ¬e e ¬e e ¬e

Gauge e ¬e e e ¬e ¬e ¬e e

as indicated by the double ovals around the node
“Gaugepre”. For example, if “Fuelpre” is empty and
“Gauge(Fuel)” is backwards, then “Gaugepre” will be
not empty. The node “Gaugepost” is the same de-
terministic function of cause “Fuelpost” and the node
“Gauge(Fuel)”. The uncertainty in the relationship
between “Fuel” and “Gauge”, formerly associated with
the variable “Gauge”, now is associated with the vari-
able “Gauge(Fuel)”. In effect, we have extracted the
uncertainty in the relationship between these two vari-
ables, and moved this uncertainty to the mapping
variable. The probabilities associated with the node
“Gauge(Fuel)” are constrained by, but not necessar-
ily determined by, the probabilities in the original
Bayesian network. We return to this issue in the fol-
lowing section.

By using a single node “Gauge(Fuel)” to represent the
mappings from “Fuel” to “Gauge” both before and
after the action is taken, we have assumed that these
mappings are not affected by the action(s) that affect
“Fuel”. We say that “Gauge(Fuel)” is unresponsive to
the actions that affect “Fuel”. In general, a domain or
mapping variable is said to be unresponsive to a set
of actions if the outcome of that variable can not be
affected by those actions.

Suppose we have a Bayesian network for a set of do-
main variables U = {x1, . . . , xn}. Further, suppose
that we want to answer questions of the form: “What
would be the probability of X ⊆ U if we were to take
some action, given that we now observe Y ⊆ U .” To
answer such questions, we construct a new Bayesian
network as we did in our example. First, we label
each domain variable as being either responsive or un-
responsive to the action. Second, we introduce a map-
ping node xi(Πi) for each responsive domain variable
xi that represents the possible mappings from the par-
ents of xi to xi itself. Provided Πi are causes for xi,
each such mapping variable will be unresponsive to
the action. Third, we assess the probabilistic relation-
ships among all the unresponsive variables, including
the mapping variables. Fourth, we copy every respon-
sive variable; the first and second instance of each such
variable represents that variable before and after the
action is taken, respectively. Fifth, we make both
copies of the responsive variable xi the same deter-
ministic function of its old parents Πi and the mapping
node xi(Πi), as in our example. Finally, we identify

e(c1,c2)

epre epost

c1,pre c1,postc2c2,pre c2,pre

Figure 3: A response network for troubleshooting a
two-component device.

those domain nodes in the post-action network that
are affected directly by our action, break the arcs from
their parents, and set the states of these nodes to their
values as determined by our action.

We refer to Bayesian networks constructed in this
manner as response networks. Figure 3 shows a re-
sponse network for troubleshooting a device with out-
put e consisting of two components c1 and c2. The
Bayesian network in the figure allows us to compute
the probability that the device will function after we
repair c1, given that the device is observed not to
function before we do the repair—that is, Pr(epost =
Normal|Repair(c1), epre = ¬Normal). Note that there
is only one copy of the variable c2 in this network,
reflecting the assertion that c2 is unresponsive to the
repair of c1.

This transformation is described in more detail in
Balke and Pearl (1994) and Heckerman and Shachter
(1994). We emphasize that, in both works, the au-
thors require that the original Bayesian network re-
flect causal interaction, not simply probabilistic de-
pendence.

4.2 Causal Independence

A problem with constructing response networks is that
the number of states of each mapping node mi can be
large, making the assessment of probabilities for these
nodes intractable. In particular, if xi has ri states,
and if the parents of xi have qi states, then the num-
ber of states of mi will be rqi

i . In this section, we
present a simplification that substantially reduces and
sometimes eliminates entirely the need for these as-
sessments.

When a set of variables {c1, . . . , cn} are the cause of
an effect e, it is often reasonable to apply a particular
form of conditional independence to this interaction.
Heckerman (1993) introduces this form of conditional
independence, which he calls causal independence. To
define causal independence, we associate a set of vari-
ables indexed by time with each cause and with the
effect. We use cjt to denote the variable associated
with cause cj at time t, and et to denote the variable

associated with the effect at time t. For all times t
and t′, we require the variables cjt and cjt′ to have
the same set of instances. Finally, for each cause, we
designate some state of its associated variables to be
distinguished. For most real-world models, this state
will be the normal state, but we do not require this as-
sociation. We use ∗ to denote the distinguished state
for cjt. Under these conditions, we say that c1, . . . , cn

are causally independent with respect to e if the follow-
ing set of conditional-independent assertions hold:

∀t < t′ ∀cj (et′ ⊥ c1t, . . . , cj−1,t, cj+1,t, . . . , cnt |

et, cjt = ∗, cjt′ , ckt = ckt′ for k 6= j)

hold, where (X ⊥ Y |Z) denotes the conditional-
independence assertion “the sets of variables X and Y
are independent, given Z.” These assertions state that
if cause cj makes a transition from its distinguished
state at time t (cjt = ∗) to some (possibly different)
state at time t′ (cjt′), and if no other cause makes a
transition during this time interval, then the probabil-
ity distribution over the effect at time t′ depends only
on the state of the effect at time t and on the transi-
tion made by cj ; the distribution does not depend on
the states of the other causes. We note that causal
independence refers to the relationships between a set
of causes and an effect; it does not refer to the rela-
tionships among the set of causes. In fact, causal inde-
pendence may hold even when the causes themselves
are dependent.

Heckerman and Breese (1994a,1994b) show that when
causal independence holds for the interaction between
{c1, . . . , cn} and e, and when e0 (e when all causes take
on their distinguished state) is a constant, then we can
express the relationship between the causes and the
effect atemporally as shown in Figure 4. In the figure,
node e′i represents e when all nodes but ci take on their
distinguished state. Each node e′i depends only on ci,
and e is a deterministic function (f) of nodes e′1, . . .,
e′n. We sometimes refer to e′i as the mediator of cause
ci. Heckerman and Breese also show that the mapping
variables associated with the variables e′ in a response
network must be independent.

If e0 is not a constant, we can introduce a dummy
cause cl that is always instantiated to a nondistin-
guished state. In this case, we can express the uncer-
tainty in e0 as uncertainty in e′l, leaving e0 a constant
in the mathematical formalism. Henrion (1989) calls
cl a leak cause for e.

An example of causal independence is the noisy max

relationship [Heckerman, 1993]. In this special case,
each cause ci is binary, and the effect e and all variables
e′i take on ordered states e0 < e1 < . . . < em, and
e0 = e0. The function f returns the state of e that is
the maximum of its inputs. Another example of causal

e

c1

e'1

c2

e'2

cn

e'n

.....

f

Figure 4: A Bayesian network for mediator indepen-
dence.

independence is the noisy adder [Heckerman, 1993]. In
this case, each cause ci is binary, each variable e′i takes
on integer states 0 < 1 < . . . < m, and e0 = 0.
The function f returns the sum of its inputs. With
n causes, e may vary from −nm to nm.

Heckerman and Breese (1994a) have shown that the
assumption of causal independence places constraints
on the function f , but these constraints are not im-
portant for this discussion. We refer to the general
interaction where (1) the mediator variables are inde-
pendent, (2) the mapping variables e′i(ci) associated
with the mediator variables are independent, and (3)
e0 is a constant as mediator independence. In the re-
mainder of this paper, we consider this general class
of cause-effect interaction.

If all interactions in a domain satisfy mediator in-
dependence, then the knowledge-acquisition burden
is significantly reduced. In particular, the only do-
main variables that require the introduction of map-
ping variables are causes and the variables e′i, which
have only one parent. Furthermore, by definition of e0

and e′i, and from our assumption that e0 is a constant,
it follows that e′i = e0, whenever ci takes on its distin-
guished state. Thus, if ci is a binary node, as is the
case for the noisy max and noisy adder relationships, e′i
and its associated mapping node e′i(ci) have the same
number of states. Consequently, because the mapping
variables are independent, the probabilities for these
are determined uniquely by the probabilities encoded
in the original Bayesian network; and the transforma-
tion from a Bayesian network to a response network
can be automated.3

3Even when the component ci is not binary, we can au-
tomate the transformation, because we consider only ac-
tions on ci that take it from an abnormal state to the nor-
mal (distinguished) state.

4.3 Single-Copy Approximation

Although the use of mediator independence facilitates
knowledge acquisition, we are still left with the prob-
lem that a response network often contains many undi-
rected cycles, making inference computationally ex-
pensive. In this section, we describe an additional
approximation wherein the repair probabilities can be
computed without copying the original Bayesian net-
work.

Suppose our device satisfies the following conditions:
(1) the interaction between the n components of the
device c1, . . . , cn and the output of the device e sat-
isfy mediator independence (with e0 = Normal, a con-
stant); and (2) the function f has the property that the
output is normal if all inputs are normal. For exam-
ple, the noisy max relationship (with e0 corresponding
to Normal), and the noisy adder relationship (with 0
corresponding to Normal) satisfy these conditions.

Let sf denote the event that a single component is
responsible for any observed failure of the device. That
is, sf denotes the event that if e is not Normal, then
exactly one e′i is not Normal. Under conditions 1 and
2 and the assumption that sf is true, if e is observed
to be some abnormal state k, then we have

Pr(epost = Normal|Repair(ci), epre = k, sf) =

Pr(e′i,pre 6= Normal|epre = k, sf) (8)

To see this fact, first note that given the single-fault
assumption sf and the observation epre = k, we know
that exactly one node e′i is abnormal. As discussed in
the previous section, when ci is normal, so is e′i. Thus,
we know ci is abnormal. If we repair this node, then
ci and hence e′i will become normal. Also, all nodes
e′j , j 6= i are unresponsive to the repair action and will
remain normal. Thus, all e′i will be normal, and by
condition 2, the device will be normal. Conversely, if
we repair node cj , j 6= i, e′i will remain abnormal, and
so will e. Thus, given the events sf and epre = k, the
event epost = Normal given the repair of ci is equiv-
alent to the event e′i,pre 6= Normal, which establishes
Equation 8.

In practice, the single-fault assumption sf may not be
true. Nonetheless, for many troubleshooting domains,
we have used the right-hand-side of Equation 8 in place
of the left-hand-side, as an approximation, because the
right-hand-side may be computed without copying the
Bayesian network for a device. In so doing, we rescale
the probabilities for the nodes e′i, so that the sum over
the probabilities of all non-normal states of all nodes
e′i is equal to one.

For the domains we have considered, we have found
empirically that the approximation is a good one.

Battery Age Fan BeltAl ternator

Charge Delivered

Battery Power

Engine Turn Over Engine Start

Gas Gauge

Gas

Fuel Pump Fuel Line

Distributor

Spark Plugs

Battery Quality

Starter

Radio Lights

Figure 5: A Bayesian network for an automobile trou-
bleshooting problem.

There are two explanations for this observation. First,
given the observation that e is abnormal, the single-
fault assumption is likely to be true, because it is
unlikely that two components of a device will fail at
roughly the same time. Second, we employ this ap-
proximation in the context of our other approxima-
tions, which can themselves introduce substantial er-
rors.

We note that conditions 1 and 2 are not as strong as
they first appear to be. In particular, it is common
to decompose a device into subsystems. For exam-
ple, Figure 5 shows a Bayesian network for an auto-
mobile troubleshooting problem. The components are
“Spark Plugs,” “Starter,” “Battery,” “Fuel Pump,”
“Fuel Line,” “Fuel,” and the device node e is “En-
gine Starts.” In this network, “Engine Starts” is de-
composed into subsystems “Engine Turns Over” and
“Fuel System.” Both subsystems exhibit a noisy max
relationship with their parent components. In addi-
tion, “Engine Starts” exhibits a noisy max relationship
with its parents, where “Engine Starts” is Abnormal

with certainty, if either subsystem is Abnormal. Conse-
quently, the effective or marginal relationship between
the components and “Engine Starts” satisfy conditions
1 and 2. In general, Bayesian networks resulting from
device decomposition, including recursive decomposi-
tion, will often satisfy our conditions.

The automobile troubleshooting example is some-
what more general than the model we have de-
scribed. In particular, there are several nonbase obser-
vation variables—“Lights”, “Fuel Gauge”, and “Bat-
tery Age”—that can affect the probabilities of com-
ponent failure. Nonetheless, given that some or all
of these variables are instantiated, Equation 8 is still
valid under conditions 1 and 2, provided we replace
epre = k with all observed evidence E. Also, if the
fuel gauge is electric, then we should add an arc from
“Battery” to “Fuel Gauge.” Although “Battery” and
“Fuel” become dependent when “Fuel Gauge” is ob-
served, this fact does not invalidate condition 1.

5 Application of the Method

In this section, we summarize the approach described
in the previous sections, with some operational details.
We describe the procedure consistent with the single-
copy approximation described in Section 4.3.

5.1 Representation of the Problem as a

Bayesian Network

We begin the construction of a troubleshooting model
by building a Bayesian network, indicating the causal
relationships among components, observations, and
subsystems (if any). A sample Bayesian network for
automobile starting problems in shown in Figure 5.
Next, under the assumption that all nondeterminis-
tic parent-child relationships satisfy mediator indepen-
dence, we introduce mediator nodes e′i and causal leaks
as necessary. This expansion can be automated, and
we have developed software for this purpose.

Next, we partition the nodes of the original Bayesian
network into the following classes:

Problem-Defining Node:
This node represents whether or not the device
is working properly. It is the single output node
e described in Section 1. In Figure 5, the node
labeled “Engine Starts” is the problem defining
node.

Repairable Nodes: These nodes should be direct or in-
direct predecessors of the problem-defining node.
In Figure 5, the repairable nodes are shown in
boldface type. For each repairable node, we assess
Cr

i —the cost of repairing component xi—and, if
appropriate, Co

i the cost of observing whether or
not that component actually is faulty, before a
repair is attempted.

Unrepairable Nodes: These nodes are similar to re-
pairable nodes in that they directly contribute to
the behavior of the device, and should be direct
or indirect predecessors of the problem-defining
node. The nodes are repairable in principle, but
are deemed unrepairable by the current trou-
bleshooter. Unrepairable nodes in Figure 5 are
“Fuel Pump” and “Fuel Line.”

Observation Nodes: These nodes represent nonbase
observations that we can make during the course
of troubleshooting. These nodes are not eligible
for repair or other forms of intervention. Ob-
servational nodes may include subsystem nodes.
In Figure 5, the nodes labeled “Lights,” “Fuel
Gauge,” “Battery Age,” and “Engine Turns
Over” are observation nodes. For each such node,
we assess the cost of observation.

Finally, we need to designate a cost of service, Cs. The
service cost is interpreted as a fixed cost that leads to
a functioning device with certainty.

5.2 Generation of Recommendations at

Runtime

A troubleshooting session is started by observing the
problem defining node to be abnormal. We then eval-
uate various observation–repair actions and nonbase
observations as described in Section 3. As mentioned
in Section 4.3, in order to apply Equation 8, we renor-
malize the probabilities of the nodes e′i, given each new
observation or action.

6 Empirical Results

We have applied our approach to troubleshoot-
ing printing problems, automobile startup problems,
copier feeder systems, and gas turbines. The results
have been satisfying along a number of dimensions.
The models have been easy to build and assess. In ad-
dition, the plans generated have been reasonable. In
the remainder of this section, we discuss experiments
that measure the performance of our decision-theoretic
approach.

We have developed a Monte-Carlo technique for esti-
mating troubleshooting costs for a given planner and
domain. The basic idea is to use a Bayesian network
for a given device to generate a relatively large set of
problem instances where one or more faults are known
to have occurred. We then apply the planning method
to each case, recording the sum of costs of each obser-
vation and repair action. A histogram of these total
costs then provides a good estimate of the distribution
of troubleshooting costs.

The method relies on an oracle Bayesian network to
generate sample problems and to predict the effects of
repair actions. This Bayesian network is a response
network where (1) every variable that is responsive to
any repair action or any combination of actions has
a corresponding mapping variable, and (2) there is
only one copy of every responsive variable. The oracle
Bayesian network in these experiments is identical to
the response networks used in the decision-theoretic
planner, insuring that the planner has the “correct”
model. This assumption could be relaxed in future
experiments.

To generate a case, we set the problem-defining node
to Abnormal, and update the probabilities throughout
the oracle network. We then choose one of the uncer-
tain (unresponsive) nodes, sample its updated proba-
bility distribution, and set its state accordingly. We
repeat this process until all fixable, unfixable, leak,

and mapping nodes are set. This procedure guaran-
tees that the device fails in every case, and the sam-
ples obey the probability distributions in the oracle
network.

When a planner posts a repair to the oracle, we set
the corresponding fixable node in the oracle Bayesian
network to Normal. When a planner queries the or-
acle Bayesian network for the state of an observation
variable, we can compute this state from the oracle
Bayesian network, because all uncertain nodes have
been set.

In the results that follow, we compare our decision-
theoretic planner, a random planner, and a static plan-
ner. The decision-theoretic planner posts a mixture of
repairs and queries to the oracle Bayesian network—
as we have described—until the oracle reports that the
device is repaired. The random planner posts repairs
at random (without repetition) until the oracle reports
that the device is repaired. The static planner posts
repairs in a static order: components with lower ob-
servation costs are repaired first, with ties broken by
repair cost. Again, the static planner continues until
the oracle reports that the device is repaired.

We generated 1000 troubleshooting cases using a ver-
sion of the automobile Bayesian network shown in
Figure 5. The average cost of the decision-theoretic,
static, and random planners was $154, $298, and $457,
respectively. Figure 6 shows a histogram of the costs
for each of the planners for the 1000 cases. We see that
the decision-theoretic planner has significantly lower
costs than the other planners on average. For com-
parison, the average cost of repair for a planner that
knows the causes of failure with certainty was $127.
This figure sets a lower bound on the expected cost of
an optimal planner. Our decision-theoretic planner is
close to this lower bound.

7 Conclusions and Future Work

We have developed an approximate decision-theoretic
approach for generating troubleshooting plans under
uncertainty that interleaves both observations and re-
pair actions. Despite our approximations, we have
seen that our planner produces expected troubleshoot-
ing costs that are close to optimal and significantly
lower than simple planners for a domain of automo-
bile troubleshooting.

In future work, we shall relax the assumptions used for
approximating the expected costs of repair for various
scenarios, specifically examining extensions for depen-
dent costs of repair. We shall also investigate the ben-
efits of using response networks for calculating repair
probabilities.

<
 5

0

<
 1

50

<
 2

50

<
 3

50

<
 4

50

<
 5

50

<
 6

50

<
 7

50

<
 8

50

<
 9

50

0

100

200

300

400

500

Cost (Dollars)

F
re

qu
en

cy

Figure 6: A histogram of costs for three planners.
From front to back are the random, static, and
decision-theoretic planners.

References

[Balke and Pearl, 1994] Balke, A. and Pearl, J.
(1994). Probabilistic evaluation of counterfactual
queries. In Proceedings of Tenth Conference on

Uncertainty in Artificial Intelligence, Seattle, WA.
Morgan Kaufmann.

[Breese et al., 1992] Breese, J., Horvitz, E., Peot, M.,
Gay, R., and Quentin, G. (1992). Automated
decision-analytic diagnosis of thermal performance
in gas turbines. In Proceedings of the International

Gas Turbine and Aeroengine Congress and Exposi-

tion, Cologne, Germany, American Society of Me-
chanical Engineers.

[Heckerman, 1993] Heckerman, D. (1993). Causal in-
dependence for knowledge acquisition and inference.
In Proceedings of Ninth Conference on Uncertainty

in Artificial Intelligence, Washington, DC, pages
122–127. Morgan Kaufmann.

[Heckerman and Breese, 1994a] Heckerman, D. and
Breese, J. (1994a). Causal independence for
Bayesian-network knowledge acquisition and infer-
ence. Technical Report MSR-TR-94-08, Microsoft.

[Heckerman and Breese, 1994b] Heckerman, D. and
Breese, J. (1994b). A new look at causal inde-
pendence. In Proceedings of Tenth Conference on

Uncertainty in Artificial Intelligence, Seattle, WA,
pages 286–292. Morgan Kaufmann.

[Heckerman and Shachter, 1994a] Heckerman, D. and
Shachter, R. (1994a). A decision-based view of
causality. In Proceedings of Tenth Conference on

Uncertainty in Artificial Intelligence, Seattle, WA,
pages 302–310. Morgan Kaufmann.

[Henrion, 1989] Henrion, M. (1989). In Kanal, L.,
Levitt, T., and Lemmer, J., editors, Uncertainty

in Artificial Intelligence 3, pages 161–174. North-
Holland, New York, 1989.

[Howard and Matheson, 1981] Howard, R. and Math-
eson, J. (1981). Influence diagrams. In Howard, R.
and Matheson, J., editors, Readings on the Prin-

ciples and Applications of Decision Analysis, vol-
ume II, pages 721–762. Strategic Decisions Group,
Menlo Park, CA.

[Jensen et al., 1990] Jensen, F., Lauritzen, S., and
Olesen, K. (1990). Bayesian updating in recursive
graphical models by local computations. Computa-

tional Statisticals Quarterly, 4:269–282.

[Kalagnanam and Henrion, 1990] Kalagnanam, J.
and Henrion, M. (1990). In Shachter, R., Levitt,
T., Kanal, L., and Lemmer, J., editors, Uncertainty

in Artificial Intelligence 4, pages 271–281. North-
Holland, New York, 1990.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning

in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan Kaufmann, San Mateo, CA.

