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ABSTRACT

A new real time HMM-Based endpoint detector is proposed
in this paper. Endpoint detection has been shown to be critical
in automatic speech recognition systems. The system uses
static (energy) and dynamic (delta energy) features of the
signal on a frame by frame basis. The endpoint detector is
trainable for the working conditions (i.e. telephone lines) and
is able to track changes in background noise conditions. Our
experiments indicate that high accuracy, low false rejection
and low false alarm rates can be obtained with this new
endpoint detector.

1. INTRODUCTION

The problem of automatic endpoint detection consists of
determining the beginning and end times for an utterance
embedded in noise. Typically, isolated-word recognizers
perform pattern matching on endpointed speech and it is
well-known that the recognizer’s error rate is highly dependent
on accurate endpointing [1][2]. Explicit endpoint detectors
(term proposed by Lamel [1]) work reasonably well with
recordings exhibiting an SNR of 30 dB or greater, but fail
considerably on noisier speech [3].

A more robust recognizer can be achieved by considering all
possible start and end times to select the most likely word
candidate. This approach, known as implicit endpoint
detection, can be combined with Hidden Markov Modelling
techniques [4] to best align, in the maximum likelihood sense,
the word preceded and followed by noise with the incoming
utterance. Implicit endpoint detection was found to be much
more reliable than explicit endpoint detection in the sense of
more accurate modelling and more importantly lower error
rate. Implicit endpointing requires the word to lie within the
boundaries of the signal sent to the recognizer, because
insertions will occur if no word is present and deletions will
occur if several words are present when only one is expected.
While this is not a problem when running from a labelled file,
in real-time implementations some kind of explicit endpointing
is needed to assure that no word is missed. In addition, given
that in practice a speech recognizer may be an expensive
system resource, computation may be saved by running the
recognizers only on periods of time where we know that
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speech is present.

Standard endpoint detection algorithms, such as that
proposed by Lamel ez al. [1], running on laboratory databases
recorded on clean speech will most likely exhibit very low
rejection rate, very low false alarm rate and very high
accuracy as defined in Section 2. However, the problem is
considerably harder on telephone speech [2] because of the
reduced bandwidth and SNR, and variability of telephone
lines.

In this paper we present a novel endpoint detector based on
Hidden Markov Models and we compare its performance with
our implementation of Lamel’s [1]. We will describe
experiments that show superiority of our algorithm, resulting
in higher accuracy, lower false alarm rate, lower rejection rate.
The new algorithm can be trained for different environments
and it is also computationally inexpensive. In Section 2 we
describe the experimental setup while Section 3 describes the
algorithm.

2. EXPERIMENTAL SETUP

In order to assess the performance of various endpointers we
need to define objective functions:

- Accuracy. It can be defined as the average difference and
standard deviation in milliseconds between manually
endpointed speech and automatically endpointed speech.
This can be extracted from histogram of the differences.
This measurement is mainly useful for recognizers based
on explicit endpointing.

- Rejection rate. It can be defined as the percentage of
speech pulses that are not detected by the endpointer. In
an automatic speech recognizer, one such rejection will
lead to a word rejection/deletion.

- False alarm rate. It can be defined as the number of false
alarms per hour of recordings considered. Any such false
alarm will lead to an insertion in the speech recognizer,
unless the system has rejection capabilities for clicks, lip
smacks and background noise.

A speech database was collected over telephone lines

throughout Spain. Speech was sampled at 8 KHz and digitized
with a commercial mu-law coder. The database consists of
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8992 files amounting to 5 hours of recordings, each one
containing one digit embedded in background noise, including
breath noises, line clicks and other non-stationary noises. If
the endpointer produces more than one speech segment in a
file it means there is a false alarm. Likewise, if no segments
are detected in a file a false rejection has occurred.

To evaluate the endpointing accuracy, we manually
endpointed 347 files of the former database and measured the
difference between manual endpoints and automatic endpoints
at the beginning and end of the word. Following Wilpon [4],
positive difference (for both the beginning point and ending
point data) means that more signal was included within the
hand endpoints than within the automatically determined
endpoints. Trained listeners obtained manual endpoints by
visual inspection of waveform and spectrogram, as well as by
listening to the waveform segment. Manual endpoints may not
be the best for automatic speech recognizers [2], but it is an
objective measure that is independent of the recognizer, and
therefore easier for comparisons.

Speech is passed through a preemphasis filter (coefficient
equals 0.95) to remove DC and 50-Hz hum and to emphasize
high frequency components present in fricatives. A 32 ms
Hamming window is used every 16 ms to compute short-time
log-energies. :

Baseline results for our implementation of Lamel’s [1]
algorithm are shown in Table I and II, where the empirical
thresholds were set (K1 = 3.5dB, K2 = 6.5dB K3 = 5dB, K4
= 15.5dB, T1 = 80ms, T2 = T3 = 64ms, NSEP = 96ms) after
some trial and error. Figure 1 shows a histogram of
differences between manual and automatic endpoints. In the
following section we will describe our algorithm and compare
it to the previous results.
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Figure 1. Histogram of error in endpoint location for the beginning
and end of utterance for Lamel’s algorithm. Time is in milliseconds.

3. ALGORITHM FUNDAMENTALS

The proposed endpoint detector consists of four modules: a
feature extractor module, a speech activity module, a noise
adaptation module and an endpoint detection module. A block
diagram is shown in Figure 2.

Lamel’s endpoint detector {1] can also be thought of having
the same structure. In this case, the feature extraction module
computes short-time energy in dB as the input feature. The
noise estimation is accomplished by picking the mode of the
10 dB low energy values (the minimum energy has to be
found in the file). The speech activity module performs a plain
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subtraction producing a noise-normalized log-energy. In this
case there is no feedback from the speech activity module.
The pulse detection is carried out by using a set of empirical
thresholds on the length of the pulse and the values of energy
during that pulse. Finally the utterance detection module
makes up an utterance out of various pulses if they are close
to each other to allow for intra-word silences, such as those
present in stops, and inter-word silences, such as those present
in real utterances. In the next subsections we will be
presenting our algorithm and how it differs from [1].

FEATURE . SPEECH
p ACTIVITY
EXTRACTOR DETEGTOR
ADAPTIVE NOISE
ESTIMATOR

Figure 2. Block diagram of a general endpoint detector.

3.1 Feature Extractor

Lamel [1] proposes as the only feature the use of log-energy
values. Although zero-crossing rate has been proposed in the
literature [3] to determine endpoint location, it is not so useful
for telephone bandwidth recordings [1], and therefore we did
not use it here. In this work we propose to augment this
feature with the use of delta log-energy (Dynamic information
has been shown to provide improvements in speech
recognition [6]). The use of delta-energy in Lamel’s algorithm
is probably complicated given the many ad hoc thresholds it
contains. In Tables I and II we show that the use of delta
log-energy does not improve the accuracy, but it yields lower
false rejection rate and lower false alarm rate.

3.2 Speech Activity Detector

Speech activity is modeled here with Hidden Markov Models
[5] following the rationale behind implicit endpoint detection.
There is one HMM model for background stationary noise and
one HMM model for speech and other signals. The feamre
vector consists of noise-normalized log-energy and delta
log-energy. Continuous density HMM models are built with
one Gaussian density per state, three states for the noise
model and four states for the speech model (the exact number
of states was not critical). HMM models for both noise and
speech are trained from an isolated word database with digits
embedded in noise. A Viterbi search is then run on another
database using the network shown in Figure 3a to detect
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endpoints from a waveform file. The Viterbi search is in this
case extremely simple, having only 7 states active each with
one Gaussian density with a feature vector of only two
components.

Unfortunately the former approach has the same problems of
implicit endpoint detection if real-time is needed, i.e. we do
not know when the utterance starts and we do not know when
it finishes.
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Figure 3.Network of HMMs defining the possible sequences for
noise and speech. Network a) is suitable for canned speech, while
network b) is required for live input.

To overcome this problem we started to look at the state
probabilities while the Viterbi search is performed with time.
The network is shown in Figure 3b, where the noise model is
followed by the speech model that in turn makes a transition
to the noise model. We define the log-likelihood of a frame
being speech, log P(O/speech), as the average accumulated
log-probability for all the N states in the speech model

N-1
In P(O,/ speech)=%z In o(i) 1
i=0

where oy(i) represents the accumulated probability in time t
for i-state, according to the terminology suggested in [5].
Likewise we can compute the log-likelihood for the M-state
noise model as

TR @

In P(O,/ noise)=-—Y" In a;(i)
M i=0

whose difference is a normalized score that is positive when
speech is more likely and negative when background noise is
more likely:

score[f] = In P(O,/speech) - In P(O /noise)  (3)
Figure 4 shows the log-energy and score as a function of time
for a given utterance. Both normalized log-energy and the
score can be the output of the speech activity detector.
3.3 Adaptive Noise Estimation
The noise adaptation module constantly updates the

log-energy of the background noise, which is subtracted from
the log-energy of every frame to make up the
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noise-normalized log-energy. Noise-level normalization makes
the background noise pdf sharper, therefore increasing the
discrimination between speech and noise.
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Figure 4. Log-energy and score given by (3) are plotted as a
function of time for a given utterance. Both manual and automatic
endpoints are shown for Lamel’s algorithm (log-energy) and the
proposed method (score).

To better track varying background noises, an exponential
window

wli] = A®? , 0<A<l, —w<ign @)
is used to compute Q[n], a running average of noise frames:
Y w,li1*El)#PIA]
Qln) = == - (5)
E w, [i] *Pi]

where E[i] is log-energy of frame i and Pli] is the a posteriori
probability of frame i being noise, obtained from the speech
activity module as:
P(0, /noise) _
P(O,/noise) + P(O,[speech) - 6)
1
1 + exp(scorelt])
Note that both numerator and denominator in (5) can be
implemented recursively:

Pli] =

Num{n+1] = AsNum[n] + E[i]+Pli]
Denln+1] = AsDen[n) + P[] ™

In our case we set the forgetting factor A to 0.95 that results
in a 200 ms time constant.

This method is able to track a decrease in background noise
within a time constant. An increase in background noise takes
considerably longer, as the energy will be above the noise
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level. To make possible the adaptation to changing
background noises, we had to introduce two ad hoc
modifications. To account for the modelling inaccuracies of
the speech Gaussian, that can give values greater than those
obtained by the noise Gaussian for negative noise-normalized
log-energies, we forced the score to be a predetermined
negative values in those cases. This makes possible to track a
decrease in noise level in all cases. Likewise, to be able to
track an increase in noise level, we forced the score not to
exceed a predetermined value.

3.4 Pulse Detection

The pulse detection mechanism proposed by Lamel [1]
consists of imposing a number of thresholds on the speech
activity feature (normalized log-energy in this case). We built
a similar scheme but only used two thresholds instead of four
for values of the speech activity feature. Since the score in (3)
is a log-likelihood function, pulse endpoints are determined by
zero crossings. A check is made on the pulse so that the
speech activity feature exceeds some empirical value (125) .
As in the case of [1}, we imposed a minimum duration on a
pulse to consider it a valid pulse (160ms). These thresholds
will hopefully eliminate clicks and other noises that are either
too short or too low to be speech. Tables I and II show the
performance of this approach.

ENDPOINT REJECTION FALSE ALARM
DETECTORS RATE (%) RATE (per hour)
LAMEL ® 1 56
DURATION,
ampLTODE | 4B 027 2
HMM- (®AE) 0.19 35
BASED AREA
® 024 37

Table L Rejection and False Alarm Rates for Lamel’s algorithm and
the proposed method with one (the area under the score function)
and two thresholds (maximum speech activity and minimum

duration).
ACCURACY (ms)
ENDPOINT
DETECTORS INITIAL ENDPT| FINAL ENDPT
B o p G
LAMEL ® 102 | 458 | 337 | 1046
HMM-BASED (E,4E) -148 | 53.7 6.9 62.1
(Area Criterion)
® 3.7 51.0 149 554

Table I. Accuracy (mean and standard deviation) measured on the
difference between manual and automatic endpoints.

The new criterion proposed is based on the log-likelihood of
the a posteriori probabilities of a segment of frames being
speech or noise, given by
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T
P(spefchlol 000 _ Y scoreld 8
P(noise/0,0,..0) 3
where we have used Bayes rule, and the assumption that the
a priori probabilities of speech and noise are equal. To reject
spikes and other non-stationary noises we requested every
pulse to exceed a threshold (we used 1000 for this database).
We see in Table I that this method performs better than the
previous one, and better than Lamel’s.

Area = In

3.5 Utterance Detection

An utterance consists of a group of pulses separated by
silence/background noise. As in [1], an utterance is considered
finished when the silence following a pulse exceeds some
programmable threshold (this can vary from about 100 ms for
isolated word recognizers to almost one second if we are to
accept sentences of spontaneous speech with some pauses or
hesitations).

This scheme also allows for intra-word silences such as
those coming from stops.

4. CONCLUSIONS

We have developed a novel real-time endpoint detector that
exhibits higher accuracy than other non-real-time detectors
published in the literature [1], has 80% fewer missed speech
signals and has a 62% lower false alarm rate.

The system is able to track the evolutions of the background
noise and it also offers the advantage that the endpointer is
easily trainable from a database. The computational cost of
the new algorithm is low.

The use of the delta energy parameter provides dynamic
information about the signal, which outperforms systems
based only on energy.
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