
One-Way Accumulators:

A Decentralized Alternative to Digital Signatures

(Extended Abstract)

Josh Benaloh

Clarkson University

Michael de Mare

Giordano Automation

Abstract

This paper describes a simple candidate one-way hash function which satis�es a

quasi-commutative property that allows it to be used as an accumulator. This property

allows protocols to be developed in which the need for a trusted central authority can be

eliminated. Space-e�cient distributed protocols are given for document time stamping

and for membership testing, and many other applications are possible.

1 Introduction

One-way hash functions are generally de�ned as functions of a single argument which (in

a \di�cult to invert" fashion) reduce their arguments to a pre-determined size. We view

hash functions, somewhat di�erently here, as functions which take two arguments from

comparably sized domains and produce a result of similar size. In other words, a hash

function is a function h with the property that h:A�B ! C where jAj � jBj � jCj. There

is, of course, no substantial di�erence between this view and the traditional view except that

this view allows us to de�ne a special quasi-commutative property which, as it turns out,

has several applications.

The desired property is obtained by considering functions h:X � Y ! X and asserting

that for all x 2 X and for all y

1

; y

2

2 Y ,

h(h(x; y

1

); y

2

) = h(h(x; y

2

); y

1

):

This property is not at all unusual. Addition and multiplication modulo n both have this

property as does exponentiation modulo n when written as e

n

(x; y) = x

y

mod n. Of these,

only exponentiation modulo n has the additional property that (under suitable conditions),

the function is believed to be di�cult to invert.

This paper will describe how to use the combination of these two properties (quasi-

commutativity and one-wayness) to develop a one-way accumulator which (among other

applications) can be used to provide space-e�cient cryptographic protocols for time stamping

and membership testing.

1



2 De�nitions

We begin by formalizing the necessary de�nitions.

De�nition A family of one-way hash functions is an in�nite set of functions h

`

:X

`

�Y

`

!

Z

`

having the following properties:

1. There exists a polynomial P such that for each integer `, h

`

(x; y) is computable in time

P (`; jxj; jyj) for all x 2 X

`

and all y 2 Y

`

.

2. There is no polynomial P such that there exists a probabilistic polynomial time algo-

rithm which, for all su�ciently large `, will when given `, a pair (x; y) 2 X

`

� Y

`

, and

a y

0

2 Y

`

, �nd an x

0

2 X

`

such that h

`

(x; y) = h

`

(x

0

; y

0

) with probability greater than

1=P (`) when (x; y) is chosen uniformly among all elements of X

`

� Y

`

and y

0

is chosen

uniformly from Y

`

.

Note that the above de�nition only requires that \collisions" of the form h(x; y) = h(x

0

; y

0

)

for given x, y, and y

0

are hard to �nd. That is, given x, y, y

0

, it is, in general, hard to �nd

a preimage x

0

such that h(x; y) = h(x

0

; y

0

). It may in fact be easy, given (x; y) 2 X � Y , to

�nd a pair (x

0

; y

0

) 2 X � Y such that h(x; y) = h(x

0

; y

0

). It must, however, be the case that

for a given (x; y) pair, there are relatively few y

0

2 Y for which an x

0

2 X can practically be

found such that h(x; y) = h(x

0

; y

0

).

Note also that this de�nition does not require that the \hash" value be smaller than

its arguments. However, the hash functions considered here will have the property that

jXj � jY j � jZj.

It follows from the above de�nition that a family of one-way hash functions is itself a

family of one-way functions. Work by Naor and Yung ([NaYu89]) and by Rompel ([Romp90])

has shown that one-way hash functions exists if and only if one-way functions exist which, in

turn, exist if and only if secure signature schemes exist. It has also been shown ([ILL89]) that

the existence of one-way functions is equivalent to the existence of secure pseudo-random

number-generators.

De�nition A function f :X �Y ! X is said to be quasi-commutative if for all x 2 X and

for all y

1

; y

2

2 Y ,

f(f(x; y

1

); y

2

) = f(f(x; y

2

); y

1

):

By considering one-way hash functions for which the range is equal to the �rst argument

of the domain, i.e. h:X � Y ! X, we can exploit the properties of one-way hash functions

which also have the quasi-commutative property.

De�nition A family of one-way accumulators is a family of one-way hash functions each

of which is quasi-commutative.

2



3 Motivation

The quasi-commutative property of one-way accumulators h ensures that if one starts with

an initial value x 2 X, and a set of values y

1

; y

2

; : : : ; y

m

2 Y , then the accumulated hash

z = h(h(h(� � � h(h(h(x; y

1

); y

2

); y

3

); � � � ; y

m�2

); y

m�1

); y

m

)

would be unchanged if the order of the y

i

were permuted.

In addition, the fact that h is a one-way hash function means that given x 2 X and

y 2 Y it is di�cult to, for a given y

0

2 Y , �nd an x

0

2 X such that h(x; y) = h(x

0

; y

0

).

1

Thus, if the values y

1

; y

2

; : : : ; y

m

are associated with users of a cryptosystem, the accu-

mulated hash z of all of the y

i

can be computed. A user holding a particular y

j

can compute

a partial accumulated hash z

j

of all y

i

with i 6= j. The holder of y

j

can then (presumably

at a later time) demonstrate that y

j

was a part of the original hash by presenting z

j

and y

j

such that z = h(z

j

; y

j

). A user who wishes to forge a particular y

0

would be faced with the

problem of constructing an x

0

with the property that z = h(x

0

; y

0

).

This approach does not enable users to hide their individual y

j

since all of the y

j

are nec-

essary to compute the accumulated hash z (although the y

j

may themselves be encryptions

of hidden information). However, using a one-way accumulator in this way keeps each user

from having to remember all of the y

j

.

A general application of this basic trick is as an alternative to digital signatures for

credential authentication: if all parties retain the result z of the accumulated hash, then at

a later time, any party can present its (y

j

; z

j

) pair to any other party who can then compute

and verify h(y

j

; z

j

) = z to authenticate y

j

.

It might, of course, be possible for a dishonest user to construct a false pair (x

0

; y

0

) such

that h(x

0

; y

0

) = z by combining the various y

i

in one way or another. It will, however, be

seen in section 5.1 that this is not practical. Other methods of computing false (x

0

; y

0

) pairs

may also be possible. However, by restricting the choice of y

0

, constructing \useful" false

pairs can be made impractical.

It should be emphasized that the advantage of this approach is over the naive \save

everything you see" approach is simply one of storage. In terms of storage, this protocol is

comparable to that of retaining a public-key for a central authority and using it to verify

that y

j

has been signed by the central authority. However, using the one-way accumulator

method can obviate the need for a central authority altogether.

Two applications of one-way accumulators will be presented in section 5. The �rst is a

method to construct a time stamping protocol in which participants can archive and time

stamp their documents in such a way as to allow the time stamped documents to be revealed

to others at a later time. A second application shows how a membership testing system can

be constructed without having to maintain membership lists. In both applications, storage

requirements are minimized without having to rely upon a (potentially corruptible) central

authority.

1

The assertion that the composition formed by applying h many times is one-way is not strictly the same

as asserting that h itself is one-way. This will be addressed in section 4.

3



4 Modular Exponentiation

For any n, the function e

n

(x; y) = x

y

mod n is clearly quasi-commutative. The commonly

used RSA assumption ([RSA78]) is that for \appropriately chosen" n, computing x from

e

n

(x; y), y, and, n cannot be done in time polynomial in n for all but an exponentially small

number of cases. In [Sham81], Shamir gives a proof which, when applied in this context,

shows that for these appropriately chosen n, if root �nding modulo n is hard, then the

family e

n

constitutes a family of one-way hash functions. However, even this may not be

enough if the e

n

are to be used as one-way accumulators. The reason for this is that repeated

application of an e

n

may reduce the size of the image so much that �nding collisions becomes

feasible.

To alleviate this problem, we restrict our n even further than do most.

De�nition De�ne a prime p to be safe if p = 2p

0

+ 1 where p

0

is an odd prime.

De�nition We de�ne n to be a rigid integer if n = pq where p and q are distinct safe

primes such that jpj = jqj.

It is not hard to see that for n = pq to be a rigid integer larger than 100, each of p, q,

(p�1)

2

and

(q�1)

2

must be primes congruent to 5 modulo 6.

4.1 Composition

The advantage of using a rigid integer n = pq is that the group of squares (quadratic residues)

modulo n that are relatively prime to n has the property that it has size n

0

=

(p�1)

2

(q�1)

2

and

the function e

n;y

(x) = x

y

mod n is a permutation of this group whenever y and n

0

are

relatively prime. Thus, if the factorization of n is hidden, \random" exponentiations of an

element of this group are extremely unlikely to produce elements of any proper subgroup.

This means that repeated applications of e

n

(x; y) are extremely unlikely to reduce the size

of the domain or produce random collisions.

Although constructing rigid integers is somewhat harder than constructing ordinary \dif-

�cult to factor" integers, it is still quite feasible. The process would be to select \random" p

0

congruent to 5 modulo 6 until one is found such that p

0

and 2p

0

+1 are both prime. Approx-

imately one out of every (ln p

0

)

2

of the p

0

selected will have this property. Once a suitable p

0

has been found, a suitable q

0

is selected similarly. This allows n = pq = (2p

0

+1)(2q

0

+1) to be

formed within approximately 2(ln p

0

)

2

trials. Thus, if the modulus n is to be approximately

200 digits in length, approximately 10,000 candidates for each of p

0

and q

0

would be expected

to be examined before suitable choices are found. This would mean executing roughly 20,000

primality tests on 100 digit integers { an amount of work which is not terribly unreasonable.

In some sense, rigid integers may be the hardest of all integers to factor. Most crypto-

graphic applications which depend upon the di�culty of factoring suggest that n be chosen

as a product of two comparably sized primes p and q and further suggest that p � 1 and

4



q � 1 each contain large prime factors. Such n are suitable for our purposes also. However,

taking these parameters to the extreme case in which each of p�1 and q�1 have the largest

of possible prime factors (namely (p � 1)=2 and (q � 1)=2) provides additional bene�cial

properties which can be exploited by our applications.

4.2 Collisions

The one-way property of one-way accumulators rests not on the di�culty of �nding arbitrary

collisions, but rather upon the di�culty of �nding collisions (or alternate preimages) with

speci�c constraints.

If an accumulated hash z, is formed from a given set of values taken modulo n, a new

item y can be forged by �nding an x such that z = x

y

mod n. If y is itself the result of a

one-way hash, a prospective forger must, for a y that it can change but not select, compute

a y

th

root of z modulo n.

This, on the face of it, appears to be as hard as computing roots modulo a composite n

which is believed to be computationally infeasible for large n of unknown factorization.

There are, however, other factors which may make the task easier for the prospective

forger. First, together with z, the forger is provided with a number of roots of z modulo n.

(These other roots are provided by the values used to form z.) Shamir, however, has shown

([Sham81]) that if basic root computation is di�cult, then the roots z

1=r

1

; z

1=r

2

; : : : ; z

1=r

k

are

insu�cient to compute the value of z

1=�

unless � is a divisor of R =

Q

k

i=1

r

i

. Second, the

forger may have had an opportunity to select some of the constituent y out of which the

accumulated hash z was constructed. It is conceivable that a forger may weaken the system

by choosing appropriate constituents which will facilitate a subsequent forgery.

We sketch below the result which says that even an actively participating (dynamic)

forger cannot exist unless root �nding is computationally feasible.

Theorem 1 Suppose there exists a polynomial time algorithm A which when given x and

n and a polynomial number of roots y

1

; y

2

; : : : ; y

k

and pre-selected indices r

1

; r

2

; : : : ; r

k

of x

such that each y

r

i

i

mod n = x can, for a given r, �nd a y such that y

r

mod n = x. Then there

exists a polynomial time algorithm B which when given x, n, and � = r= gcd(r; r

1

r

2

� � � r

k

)

will produce a y such that y

�

mod n = x. (In other words, the computation can be duplicated

without the use of the roots y

1

; y

2

; : : : ; y

k

.)

Proof:(sketch)

Algorithm B can be constructed from algorithm A as follows. Given x, n, and �, B

computes x̂ = x

r

1

r

2

���r

k

mod n and asks A for an r

th

root of x̂ modulo n by providing A with

the appropriate roots of x̂ which can be easily computed from x and the r

i

. A will return a

ŷ such that ŷ

r

mod n = x̂. Let g = gcd(r; r

1

r

2

� � � r

k

). The quotients

r

g

and

r

1

r

2

���r

k

g

are now

relatively prime, and the extended Euclidean algorithm can be used to construct cofactors

a and b such that

a

 

r

g

!

+ b

 

r

1

r

2

� � � r

k

g

!

= 1:

5



The desired root x

1=�

mod n can now be constructed as x

1=�

mod n = x

a

ŷ

b

mod n since

(x

a

ŷ

b

)

�

mod n = x

(ar=g)

ŷ

(br=g)

mod n = x

(ar=g)

x

(br

1

r

2

���r

k

=g)

mod n = x mod n.

It may, however, be possible for a forger to obtain a set of roots such that the product R

of their indices is a multiple of the desired root index �. It can, however, be shown that the

number of known roots which would have to be provided in order to have a non-negligible

probability of their product being a multiple of a random number selected later would be

prohibitively large (see [KnTr76]). Asymptotically, for any polynomial P , it is the case P (jnj)

items can be combined into a single accumulated hash value with extremely high security.

Numerically, a 220 digit n would comfortably allow about 20 million items to be hashed with

probability of forgery well below 10

�30

. (See [Brui51], [Mitc68], and [LuWa69].)

A full asymptotic and numerical analysis will be included in the full version of this paper.

5 Applications

Two applications are described in this section.

5.1 Time Stamping

Haber and Stornetta ([HaSt90]) describe how documents can be time stamped by crypto-

graphically chaining documents. By following the links in the chain, one can later determine

where in the sequence a document occurred and thereby determine the relative positions of

any two documents. This process, however, is somewhat cumbersome since it requires the

active cooperation of other participants who have documents in the chain. Each link of the

chain must be individually reconstructed to relocate the position of a document.

In the same work, Haber and Stornetta also describe a system by which documents

are transmitted to a subset of the participants. The speci�c subset is determined by the

document itself. With the appropriate cooperation of these participants, one can later sub-

stantiate to others that the document was sent at the claimed time.

Benaloh and de Mare ([BeMa91]) describe another method using a somewhat di�erent

model. They break time into rounds and assume the existence of broadcast channels (which of

course can be simulated with a variety of consensus protocols | see, for example, [CGMA85],

[Fisc83], [BenO83], and [Rabi83]). Benaloh and de Mare describe how time stamping can

be accomplished without assumptions of cooperation. Within their model, they show how

the amount of information which must be saved in each round of the protocol can be made

proportional to the logarithm of the number of participants in the protocol. They pose as

an open problem the question of whether the amount of information which must be saved

can be made independent of the number of participants.

The time stamping protocol given here essentially solves the question posed by Benaloh

and de Mare. Using modular exponentiation as a one-way accumulator, a simple protocol

can be devised.

6



5.1.1 A Time Stamping Protocol

Before beginning, a rigid integer n is agreed to by all parties. This n can be supplied by a

(trusted) outside source, constructed by a special purpose physical device, or (perhaps more

likely) chosen by joint evaluation of a circuit for computing such an n which is supplied with

random inputs by the participants (see [GMW86], [GMW87], [BGW88], [CCD88], [RaBe89],

[Beav89], [BeGo89], [GoLe90], [MiRa90], and [Beav91] for work on secure multiparty com-

putation). Since this n need be selected only once and may thereafter be used continuously,

any extraordinary e�ort which may be required to construct such an n may be warranted.

Once n has been selected, a starting value x is agreed upon. This x may, for instance,

be a representation of the current date. From this x, the value x

0

= x

2

mod n is formed.

Each of the m participants takes any document(s) that it wishes to stamp in a given

round and applies an agreed upon conventional one-way hash function to its document(s)

to produce a y such that y < n. Let y

1

; y

2

; : : : ; y

m

denote the set of (conventionally hashed)

documents to be stamped in a given round. Let Y =

Q

m

i=1

y

i

, and for each j let y

0

j

denote

the product Y=y

j

. The time print of the round z is computed as the accumulated hash

z = x

Y

0

mod n = ((� � � ((x

y

1

0

mod n)

y

2

mod n) � � �)

y

m

) mod n:

The j

th

participant also computes and maintains the partial accumulated hash

z

j

= x

y

0

j

0

mod n

which is also easily computed.

Now, for the j

th

participant to demonstrate at a later time that a given document (which

presumably only it saved) has a claimed time stamp, the participant need only produce y

j

and z

j

. Anyone can check that z

y

j

j

mod n is equal to the time print z of the round and

must therefore accept the time stamp of the document as legitimate. The claimant can then

show that when the conventional hash function is applied to its document the value y

j

is

produced.

5.1.2 Is Forgery Possible?

Before discussing whether or not forgery is possible, we must de�ne precisely what forgery

means within this context. A participant has the ability to time stamp many documents

per round. These documents might contain contradictory information or promises. There is

nothing, for instance, to stop a participant from time stamping a large number of predictions

about the world series outcome and then (after the outcome is decided) revealing only the

one time stamped document which correctly predicted the outcome.

Depending on the method of implementation, it might even be possible for a user who

wishes to stamp (hashed) document y to, for example, submit (hashed) documents u and

v for stamping where y = uv and then later construct a time stamp for y out of the time

stamps for u and v. Although this simple ploy can be remedied by requiring the submission

7



of both pre-hash and post-hash documents (note that the documents may, of course, also be

encrypted before any hashing to protect their contents), other similar ploys may be possible

if the user knows the document for which a stamp is desired at the time of the stamp. This,

however, does not pose a concern since we allow participants to stamp any and all documents

within any round.

The only claim which we can make about forgery is that a user cannot produce a valid

time stamp for a document that was not anticipated at the time indicated by the stamp. For

example, an industrial spy who reads a patent application with a given date will not be able

to change the name on the application and forge a time stamp to indicate an earlier date.

The results of theorem 1, however, show that forging unanticipated documents is infea-

sible.

5.2 Membership Testing

Suppose a large group of people (perhaps the attendees of a cryptography conference) want

to develop a mechanism which will allow participants to recognize each other at a later time.

Several solutions are possible.

The attendees could simply produce a membership list and distribute the list amongst

themselves. However, this requires each member to maintain a large and bulky membership

list. In addition, if the members do not want outsiders to know their identities, these

membership lists would have to be carefully guarded by all members. Thus, it is never

possible for a member to be identi�ed to a non-member.

An alternative solution would be for the group to appoint a trusted secretary. The

secretary can digitally sign \id cards" for each member and post its own public veri�cation

key. Each member need only remember its own signed information and the secretary's

public key. At a later time, one member can be identi�ed to another by providing its own

signed id card. Additionally, it is possible to give the secretary's public key to outsiders so

the members can identify themselves to non-members. The problem, of course, is that the

secretary must be trusted to not produce additional \phony" id cards for non-members.

One-way accumulators o�er a solution with the advantages of a single trusted secretary

but without the need for such an authority. Each member selects a y

j

consisting of its name

and any other desired identifying characteristics. A base x is agreed upon, and the members

exchange their information and compute the accumulated hash value

z = h(h(h(� � � h(h(h(x; y

1

); y

2

); y

3

); � � � ; y

m�2

); y

m�1

); y

m

):

Each member saves the hash function h, its own y

j

, and the value z

j

which represents the

accumulated hash of all y

i

with i 6= j. For the holder of y

j

to prove that it is a member of

the group, it need only present the pair (y

j

; z

j

). By verifying that h(y

j

; z

j

) = z, any other

participant can authenticate the membership of the holder of y

j

. Note that it is not even

necessary for each participant to retain the accumulated hash value z since each participant

would hold its own (y

j

; z

j

) pair from which z = h(y

j

; z

j

) can be easily generated.

8



Also, non-members can be given the hash function h and the value of the accumulated

hash z. Thus, any member that wishes to can identify itself to a non-member without

revealing the entire membership list.

In [Merk80], Merkle describes a similar application in which a directory of public keys

is to be jointly maintained. He describes a \tree authentication" solution to the problem in

which each user must retain its own key, a hash function h, and a number of additional partial

hashes which is logarithmic in the number of participants. By using one-way accumulators,

the same properties can be achieved while reducing the number of values which must be

retained by each participant to a constant.

6 Other Applications and Further Work

The idea of one-way accumulators can be applied to a variety of other problems. The special

advantage o�ered by accumulators over signatures is that no one individual need know how

to authenticate/sign/stamp a document or message. Thus, a class of applications of one-

way accumulators is as a simple and e�ective method of forming collective signatures. There

seem to be a variety of cryptographic problems which are closely related to membership

testing, and it seems likely that such problems may be amenable to the approach of one-way

accumulators. Many other applications may also be possible.

Clearly the existence of one-way accumulators implies the existence of one-way functions.

The question of whether or not the existence of one-way accumulators is implied by the

existence of arbitrary one-way functions is an area for future research. No relationship

is known between the existence of one-way accumulators and that of one-way trap-door

functions.

A related open question is that of whether a candidate one-way accumulator can be

found which does not have a trap-door. There is no apparent reason why this should not be

possible, and such a function could alleviate the need for the secure multiparty computation

required to select an appropriate modulus n for the function e

n

(x; y) = x

y

mod n.

Acknowledgements

The authors would like to express their thanks to Narsim Banavara, Laurie Benaloh,

Ernie Brickell, Joshua Glasser, David Greenberg, Kevin McCurley, Janice Searleman, Satish

Thatte, Dwight Tuinstra, and anonymous reviewers for their helpful comments and sug-

gestions regarding this work. The authors would also like to express their thanks to Paul

Giordano.

9



References

[Beav91] Beaver, D. \E�cient Multiparty Protocols Using Circuit Randomization."

Advances in Cryptology | Crypto '91, ed. by J. Feigenbaum in Lecture Notes

in Computer Science, vol. 576, ed. by G. Goos and J. Hartmanis. Springer-

Verlag, New York (1992), 420{432.

[Beav89] Beaver, D. \Multiparty Protocols Tolerating Half Faulty Processors." Ad-

vances in Cryptology | Crypto '89, ed. by G. Brassard in Lecture Notes in

Computer Science, vol. 435, ed. by G. Goos and J. Hartmanis. Springer-Verlag,

New York (1990), 560{572.

[BeGo89] Beaver, D. and Goldwasser, S. \Multiparty Computation with Faulty Ma-

jority." Proc. 30

th

IEEE Symp. on Foundations of Computer Science, Research

Triangle Park, NC (Oct.{Nov. 1989), 468{473.

[BeMa91] Benaloh, J. and de Mare, M. \E�cient Broadcast Time-Stamping." Clark-

son University Department of Mathematics and Computer Science TR 91-1.

(Aug. 1991).

[BenO83] Ben-Or, M. \Another Advantage of Free Choice: Completely Asynchronous

Agreement Protocols." Proc. 2

nd

ACM Symp. on Principles of Distributed Com-

puting, Montreal, PQ (Aug. 1983), 27{30.

[BGW88] Ben-Or, M.,Goldwasser, S., andWigderson, A. \Completeness Theorems

for Non-Cryptographic Fault-Tolerant Distributed Computation." Proc. 20

st

ACM Symp. on Theory of Computation, Chicago, IL (May 1988), 1{10.

[Brui51] de Bruijn, N. \The Asymptotic Behaviour of a Function Occurring in the

Theory of Primes." Journal of the Indian Mathematical Society 15. (1951), 25{

32.

[CCD88] Chaum, D., Cr�epeau, C., and Damg�ard, I. \Multiparty Unconditionally

Secure Protocols." Proc. 20

st

ACM Symp. on Theory of Computation, Chicago,

IL (May 1988), 11{19.

[CGMA85] Chor, B.,Goldwasser, S.,Micali, S., andAwerbuch, B. \Veri�able Secret

Sharing and Achieving Simultaneity in the Presence of Faults." Proc. 26

th

IEEE

Symp. on Foundations of Computer Science, Portland, OR (Oct. 1985), 383{

395.

[Denn82] Denning, D. Cryptography and Data Security, Addison-Wesley, Reading,

Massachusetts (1982).

10



[Fisc83] Fischer, M. \The Consensus Problem in Unreliable Distributed Systems",

Proc. 1983 International FCT-Conference, Borgholm, Sweeden (Aug. 1983),

127{140. Published as Foundations of Computation Theory, ed. by M. Karpin-

ski in Lecture Notes in Computer Science, vol. 158, ed. by G. Goos and J. Hart-

manis. Springer-Verlag, New York (1983).

[GMW86] Goldreich, O., Micali, S., and Wigderson, A \Proofs that Yield Nothing

but Their Validity and aMethodology of Cryptographic Protocol Design."Proc.

27

th

IEEE Symp. on Foundations of Computer Science, Toronto, ON (Oct.

1986), 174{187.

[GMW87] Goldreich, O., Micali, S., and Wigderson, A \How to Play Any Mental

Game or A Completeness Theorem for Protocols with Honest Majority." Proc.

19

st

ACM Symp. on Theory of Computation, New York, NY (May 1987), 218{

229.

[GoLe90] Goldwasser, S. and Levin, L. \Fair Computation of General Functions in

Presence of Immoral Majority." Advances in Cryptology | Crypto '90, ed. by

A. Menezes and S. Vanstone in Lecture Notes in Computer Science, vol. 537,

ed. by G. Goos and J. Hartmanis. Springer-Verlag, New York (1991), 77{93.

[HaSt90] Haber, S. and Stornetta, W. \How to Time-Stamp a Digital Document."

Jounal of Cryptology 3. (1991), 99{112.

[KnTr76] Knuth, D. and Trabb Pardo, L. \Analysis of a Simple Factorization Algo-

rithm." Theoretical Computer Science 3. (1976), 321{348.

[ILL89] Impagliazzo, R., Levin, L., and Luby, M. \Pseudorandom Generation from

One-Way Functions." Proc. 21

st

ACM Symp. on Theory of Computation, Seat-

tle, WA (May 1989), 12{24.

[LuWa69] van de Lune, J. andWattel, E. \On the Numerical Solution of a Di�erential-

Di�erence Equation Arising in Analytic Number Theory."Mathematics of Com-

putation 23. (1969), 417{421.

[Merk80] Merkle, R. \Protocols for Public Key Cryptosystems." Proc. 1980 Symp. on

Security and Privacy, IEEE Computer Society (April 1980), 122{133.

[MiRa90] Micali, T. and Rabin, T. \Collective Coin Tossing Without Assumptions nor

Broadcasting." Advances in Cryptology | Crypto '90, ed. by A. Menezes and

S. Vanstone in Lecture Notes in Computer Science, vol. 537, ed. by G. Goos

and J. Hartmanis. Springer-Verlag, New York (1991), 253{266.

[Mitc68] Mitchell, W. \An Evaluation of Golomb's Constant." Mathematics of Com-

putation 22. (1968), 411{415.

11



[NaYu89] Naor, M. andYung, M. \Universal One-Way Hash Functions and their Cryp-

tographic Applications." Proc. 21

st

ACM Symp. on Theory of Computation,

Seattle, WA (May 1989), 33{43.

[RaBe89] Rabin, T. and Ben-Or, M. \Veri�able Secret Sharing and Multiparty Proto-

cols with Honest Majority." Proc. 21

st

ACM Symp. on Theory of Computation,

Seattle, WA (May 1989), 73{85.

[Rabi83] Rabin, M. \Randomized Byzantine Generals." Proc. 24

th

IEEE Symp. on

Foundations of Computer Science, Tucson, AZ (Nov. 1983), 403{409.

[Romp90] Rompel, J. \One-Way Functions are Necessary and Su�cient for Secure Sig-

natures." Proc. 22

nd

ACM Symp. on Theory of Computation, Baltimore, MD

(May 1990).

[RSA78] Rivest, R., Shamir, A., and Adleman, L. \A Method for Obtaining Digital

Signatures and Public-key Cryptosystems." Comm. ACM 21, 2 (Feb. 1978),

120{126.

[Sham81] Shamir, A. \On the Generation of Cryptographically Strong Pseudo-Random

Sequences." Proc. ICALP, (1981).

12


