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Abstract 
In this paper we present several algorithms that increase the robustness of 
SPHINX, the CMU continuous-spccch speaker-independent recognition 
system, by normalizing the acoustic spacc via minimization of the overall 
VQ distortion. We propose an affme transformation of the cepstrum in 
which a matrix multiplication performs frequency normalization and a 
vector addition attempts environment normalization. The algorithms for 
environment normalization are very efficient and they improve dramati- 
cally the recognition accuracy when the system is tested on a microphone 
othcr from the one on which it was trained. The frequency normalization 
algorithm applies a different warping of the kquency axis to different 
speakers and it  achieves a 10% decrease in error rate. 

1. Introduction 
Building spoken language systems is difficult due to the enor- 
mous variability present in the speech signal. Although a model 
for the specific variability is often desired, in many cases we have 
to be content with some kind of "multi-style'' training, including 
data representing most possible conditions. In this paper we 
describe some algorithms that attempt to increase the system 
robustness by applying an affine transformation on the cepsmm 
that normalize the acoustic space. 

We are concerned in this study in reducing the long-term 
variabilities caused by different speakers and acoustical environ- 
ments. Most current recognition systems are very fragile when 
taken outside the laboratory into the real world, because they 
operate under different conditions from those for which they were 
trained. Especially harmful are the presence of additive noise and 
spectral tilt. Boll [ 11 proposed spectral subtraction techniques 
that with some modifications are st i l l  valid today. Some authors 
(e.g. Van Compernolle [2]) propose the use of a microphone 
array to create a directionality pattern that effectively increases 
the SNR by reducing noise from undesired directions. While 
previous approaches are effective in suppressing additive noise, 
they do not combat distortion introduced by linear filtering 
(spectral tilt). Stockham [3 J proposed blind deconvolution to 
compensate for these linear distortions. Erell and Weintraub 
[4] demonstrated improved performance by compensating in- 

dependently for the effects of noise and spectral tilt. Techniques 
basad on auditory models (e.g. Seneff 151) are also very promis- 
ing, but they incur a substantial computational burden. 

In (61, we presented two algorithms: SDCN and CDCN. SDCN 

. 

applies a fixed additive correction that depends exclusively on the 
instantaneous SNR of the input. CDCN first estimates the en- 
vironmental parameters representing additive noise and spectral 
tilt using EM techniques, and then performs the appropriate cor- 
rection. While SDCN is simple and effective, CDCN is more 
complex but performs better. 

In this paper we present two new algorithms to normalize the 
acoustic space in the cepstral domain, the parameter space of 
SPHINX. These algorithms, called Interpolated SNR-Dependent 
Cepstral Normalization (ISDCN) and Fixed CDCN (FCDCN), 
are extensions of the SDCN and CDCN algorithms presented in 
[6]. FCDCN is more computationally efficient than CDCN and 

at least as effective, although it requires environment-dependent 
training. ISDCN is also computationally efficient and doesn't 
require environment-dependent data, but it is not as accurate as 
CDCN. We also propose a novel method for kequency nor- 
malization that increases the recognition accuracy by about lo%, 
by removing some of the variability of different speakers. 

2. Environment Normalization 
To accomplish the normalization of the acoustic space we 
propose the following affine transformation 

A 
x i  = LZi + w (1) 

where xi and zi are the normalized and unnormalized cepstrum 
vectors, w is the environmental correction and L is the frequency 
normalization matrix. In ISDCN the correction vectors w are a 
function of the instantaneous signal-to-noise ratio (SNR) of the 
noisy input and the environmental parameters noise n and 
equalization q. In FCDCN the correction vectors w depend on 
the identity of the closest VQ codeword, as well as the instan- 
taneous SNR. 

2.1. Interpolated SDCN 
One of the deficiencies of the SDCN algorithm presented in [6] is 
its inability to adapt to new environments because its correction 
vectors are pre-computed by comparing cepstra representing 
simultaneously-recorded speech fkom the training and testing en- 
vironments. The ISDCN algorithm can reestimate these correc- 
tion from the testing data as it arrives. 

In both SDCN and ISDCN, the compensated vector xi is of the 
form 

A 
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The probability density function of x is assumed to be a mixture 
of Gaussian densities as in [6]. 

K- 1 

k=O 
The cepstra of the corrupted speech are modeled as Gaussian 
random vectors, whose variance depends also on the instan- 
taneous SNR, 1, of the input. 

(9) 

In[7] we show that the solution to the EM algorithm is the 
following iterative algorithm. In practice, convergence is reached 
after 2 or 3 iterations if we choose the initial values of the 
correction vectors to be the ones specified by the SDCN algo- 
rithm. 

1. Assume initial values for r'[k, fk] and 02[1 I. 
2. Estimatef;:[kJ, the Q posteriori probabilities of the 

mixture components given the correction vectors 
r'[k, f,], variances 02[f ] and codebook vectors c[k] 

3. Maximize the likelihood of the complete data by 
obtaining new estimates for the correction vectors 
r[k, I,] and corresponding o[f 1: 

N- 1 
(xi - zi)fiIkl WNRi - fAsj,r~l 

(11) 
i=O 

N- 1 r[k,f] = 

i d  
N-1 K-1 ,. 

4. Stop if convergence has been reached, otherwise go 

Figure 1 shows the resulting variances 02[f ]  obtained after the 
process for ASNR = 1 dB. The large variance exhibited at low 
SNR reflects the higher uncertainty in the value of the CLSTK 
speech given the CRPZM speech that occurs at low SNRS. 

We also tried estimating the correction vectors by replacing the 
sum in W. (8) by a maximum. The resulting Eqs. (1 1) and (12) 
are still valid, but the a posteriori probabilities &[kJ are now a 
Dirac function 6 [ k ] ,  being 1 if k is the VQ label for frame i and 0 
otherwise. The recognition rate for the CRPZM, 72.6%. is essen- 
tially the same obtained with the previous estimation method. 
One of the differences between our algorithm and the one sug- 
gested by Gish et al. [8], is that they made the approhat ion of 

to step 2. 
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Figure 1: Variance of the difference vector between the CLSTK 
and the restored CRPZM speech for different input SNR of the 
CRPZM. 

maximum by sum in the transformed noisy space, instead of in 
the clean space. In their algorithm, many different vectors in the 
clean space are transformed into essentially the same vector in 
the noisy space at low S N R s .  With their method, small fluctua- 
tions around the observed vector in the noisy space yield very 
different labels in the clean space at low SNR, and the restored 
vectors exhibit the musical noise characteristic of spectral sub- 
traction techniques (e.g. [7]). 

The computational complexity of this fixed CDCN is very low 
because the correction vectors are precomputed, and it is at least 
as accurate as CDCN. However, it does require simultaneously- 
recorded data from the training and testing environments. 

3. Frequency Normalization 
Speaker-independent systems perform with an error rate that is 
about 3 or 4 times greater than similarly trained speaker- 
dependent systems (PaUett et al. [9]). Part of the problem is that 
speaker-independent systems like SPHINX have to cope with the 
burden of differing formant-frequency distributions from dif- 
ferent speakers, which broaden the HMM distributions. In this 
section we present a novel technique for frequency normalization 
that is accomplished by multiplying the input cepstra by the 
matrix L in Eq. (1). 

The frequency-normalization algorithm makes use of the bilinear 
transform stage a e a d y  present in the SPHINX system, which 
accomplishes a nonlinear frequency warping of the cepstra. The 
bilinear transform is defmed as 

-1 z-1 - -CL 

1 - az-l 
zneW=- - 1 < a < 1  

and it produces the frequency transformation 
asin (a )  

1 - acos(0) 
a,,, = w + 2arctg [ 1 

In SPHJNx we use the efficient algorithm proposed by Oppenheim 
and Johnson [lo], that implements the bilinear transform as a 
matrix multiplication [7]. Specifically, the parameter a = 0.6 is 
used to warp the LPC-cepstnun into apseudo mcl scale ([lln. 
The present algorithm selects a value of a to minimize the overall 
VQ distortion. This algorithm works in an unsupervised mode, 
since it does not require sex information or any other charac- 
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