

Keywords

Interface Builder, UI Toolkit, UIMS, Pedagogy,
Portability, Software Engineering.

Abstract

User interface support software, such as UI toolkits,
UIMSs, and interface builders, are currently too
complex for undergraduates. Tools typically require a
learning period of several weeks, which is impractical
in a semester course. Most tools are also limited to a
specific platform, usually either Macintosh, DOS, or
UNIX/X. This is problematic for students who switch
from DOS or Macintosh machines to UNIX machines
as they move through the curriculum. The situation is
similar to programming languages before the
introduction of Pascal, which provided an easily
ported, easily learned language for undergraduate
instruction.

SUIT (the Simple User Interface Toolkit), is a C
subroutine library which provides an external control
UIMS, an interactive layout editor, and a set of
standard screen objects. SUIT applications run
transparently across Macintosh, DOS, UNIX/X, and
Silicon Graphics platforms. Through careful design
and extensive user testing of the system and its
documentation, we have been able to reduce learning
time. We have formally measured that new users are
productive with SUIT in less than three hours. SUIT
currently has over one hundred students using it for

undergraduate and graduate course work and for
research projects.

Introduction

In the 1960s and 1970s, many computer science
researchers developed new programming languages.
Most of the advances were incremental, and
eventually, with the advent of languages like PL/1,
even advanced programmers could not master all the
capabilities presented to them. For novice
programmers, the situation was dire: language
designers had been rapidly developing new paradigms
and semantic advances, but as the languages grew,
they became harder to learn.

In 1971, Niklaus Wirth presented Pascal[Wirth], a
language whose primary contribution to the field was
that it had been designed to be easy to learn. Despite
its many drawbacks, Pascal succeeded for two basic
reasons. First, it presented a small, consistent language
with simple semantics. Second, the language was
designed so that compilers could easily be
implemented for a variety of hardware platforms.

User interface toolkits and UIMSs are now in a state
analogous to programming languages in 1970.
Students still write Ph.D. dissertations on new UIMS
models, but practical experience indicates that the
existing tools are much too difficult for new users. In
the same spirit as Pascal, we have developed SUIT, the
Simple User Interface Toolkit, which offers the same
two advantages as Pascal: it is easy to learn, and it can
be easily ported to different platforms. SUIT already
runs on the DOS, Macintosh, UNIX/X, and Silicon
Graphics platforms.

SUIT: The Pascal of User Interface Toolkits

Randy Pausch, Nathaniel R. Young II, and Robert DeLine

Computer Science Department, Thornton Hall
University of Virginia

Charlottesville, VA, 22903
(804) 982-2211

contact: suit@Virginia.Edu

to appear in: Proceedings of UIST: the Annual ACM
SIGGRAPH Symposium on User Interface Software
and Technology, November 11-13, 1991.

This document was created with FrameMaker 4.0.4

Over one hundred students currently use SUIT for
both course work and research projects at the
University of Virginia. We have formally measured
that students require an average of two and a half
hours to become productive with SUIT. This is a vast
improvement over the four to six week learning curve
we observed for our students with systems like Xtk
[McCormack], the Andrew Tool Kit [Palay],
Interviews [Calder], and the Motif Widget Set. The
description of the system itself is a secondary goal of
this paper; the main goal is to stress the design
methodology which drove us throughout the project.

Design Goals

Software used to support education must meet
stringent criteria. At many universities, undergraduates
begin their programming experience on Macintosh or
DOS machines, and then move up to UNIX
workstations in their junior or senior year. This
requires learning a new file system, a new operating
system, a new text editor, a new set of utilities, and
often a new programming language. Given this, most
educators are not willing to invest large amounts of
time exposing their students to interface development
tools. This is especially problematic with current tools,
which are designed more for expert users than for
novices. A six week learning curve during a fourteen
week course is intolerable. Given these constraints, we
established the following design goals for SUIT:

• portability: SUIT must run transparently across
UNIX, Macintosh, and DOS

• simplicity: SUIT must be usable by undergradu-
ates in under three hours

Portability

A user interface toolkit requires three basic forms of
support: an implementation language, operating
system support, and a graphics package. Our
implementation language had to be either C or Pascal,
since they are the only languages most widely known
by undergraduates. Although Pascal is more widely
used and is simpler than C, implementing SUIT in
Pascal was not technologically feasible. Pascal exists
on all three platforms, but it varies widely [Welsh].
Also, standard Pascal is not powerful enough to
support the external control model: it lacks the ability
to store function addresses as variables. Therefore, we
chose ANSI-C. Our operating system dependency was
very small: we only needed to be able to read and

write an ASCII text file, and the standard C I/O
libraries always support this.

For graphics, we needed a common, low-level
graphics package which supported operations such as

DrawLine

 and

DrawFilledCircle

 on each of
the platforms. We were surprised to find few graphics
packages implemented for all three platforms. Most
researchers we contacted said that they had always
ported between platforms by implementing small
compatibility libraries for the specific graphics
commands they used in their applications. This made
porting their systems unnecessarily time-consuming,
so we determined that we would use a well-defined
common graphics layer from the beginning of the
project.

We chose to use SRGP, the Simple Raster Graphics
Package, which was being distributed by the Addison-
Wesley publishing company with the second edition of

Fundamentals of Interactive Computer Graphics

, by
Foley, van Dam, Feiner, and Hughes [Foley90]. SRGP
was already implemented for the Macintosh and X
windows; we ported it to Turbo C on DOS, on top of
Borland’s BGI graphics driver. Our DOS version of
SRGP is now distributed with the textbook. Figure 1
shows the software layering which makes SUIT
portable.

A different approach to portability is taken by XVT
[Valdes, Rochkind], which provides a virtual toolkit
on top of the native toolkit layer on each platform. The
advantage of the XVT approach is that on each
platform the application has the same look and feel as
other applications built locally on that platform. There
are two major drawbacks to this approach. First, XVT
is forced to provide only those functions common to
all platforms - the lowest common denominator
solution. Second, the user must use different support
tools (e.g. layout editors) on each platform.

SUIT (Simple User Interface Toolkit)

SRGP (Simple Raster Graphics Package)

X

UNIX
machine

Mac Toolbox

Macintosh

BGI driver

DOS PC

Figure 1: Layered Software for Portability

Simplicity

Throughout SUIT’s development, we applied the
following principles:

• minimize the user’s need to learn new things

• make the simple things easy and the hard things
possible

• perform end-user testing early and often

Current UI toolkits and UIMSs tend to violate the first
point by forcing their users to learn a new
programming language. For example, Motif-oriented
tools require learning UIL, the Next Interface Builder
[Mahoney] requires learning objective-C, and
Interviews requires learning C++. While these
languages are required to support the model each
system provides, users who are focused on their task at
hand often fail to use advanced tools because the
learning threshold of these languages is too high.

The importance of end-user testing cannot be
overstated. We routinely forced SUIT’s developers to
sit silently in the back of a room where new users were
learning to use SUIT from a printed tutorial. By
constantly observing new users, we were able to
maintain perspective on the difficulties new users face
when trying to understand the SUIT model. This sort
of user testing is well understood in some corporate
cultures, most notably at Apple Computer. This
technique was also used with great success in the
development of Trillium [Blomberg].

It can be hard to know what is going through a single
user’s mind when he or she becomes confused. While
one way to address this is to ask the user to think out
loud, a more natural solution is to have two or more
students work together. The students learn the system
together, and as they talk to each other, eavesdropping
provides valuable feedback. It is important not only to
observe when the system’s response confuses the
users, but also to note what the users had expected the
system to do at that time. In a similar vein, when
students use SUIT, we suggest they work in groups,
since interactive software is more easily learned as a
collaborative effort.

Our original desire was merely to produce a tool
which would introduce students to relatively difficult
concepts, specifically external control and inheritance.
We had presumed that after spending a few weeks
with SUIT they would outgrow it and move on to other
more mature and complex systems such as UIMX

[Visual, Lee], based on Motif Widget set, or
Interviews. Instead, we have observed the
phenomenon that also occurred with Pascal: Unless
students discovered a specific need to move to a more
advanced platform, they continued to use SUIT for
their own research projects.

The Basic SUIT Model

The remainder of this paper describes SUIT in detail.
Again, we wish to stress that SUIT’s contribution is its
portability and ease of learning, not its functionality.
Many other toolkits provide more functionality.

SUIT provides a collection of screen objects, where
each object is described by:

• its state, contained in a property list

• a C procedure which examines the object’s state
and displays it on the screen

• a C procedure which handles user input to the
object and updates the object’s state

The property list containing an object’s state is a set of

[name, type, value]

 triples, as in:

[“label”, “text”, “pizza”]
[“diameter”, “floating point”, 10.5]
[“number of slices”, “integer”, 6]
[“has anchovies”, “boolean”, FALSE]

Once students understand that a SUIT-based
application is a collection of objects, we introduce
external control by explaining that SUIT maintains a
table of all on-screen objects, and that SUIT
multiplexes keyboard and mouse input based on the
location of the cursor. Students quickly understand
that three different slider objects share code for their
input handling and display procedures, but have a
distinct property lists in the state table. The contents of
this table are written to a human-readable ASCII text
file between executions of the program.

After students understand that SUIT maintains a table
of objects, we explain that SUIT’s interactive tools are
provided by accepting some of the user’s input as
commands to SUIT, rather than to a particular screen
object. When user input occurs, SUIT queries the state
of the CONTROL and SHIFT keys: if they are both
down when mouse buttons are pressed, SUIT
interprets the input as a command to move or resize a
screen object, and updates the object table
accordingly. This use of keyboard modifiers allows us

to avoid the “run vs. build” mode used by other
interface builders, such as the Next Interface Builder.
Avoiding this mode switch is important for new users,
and we have experienced almost no cases of users
being confused about when they are giving input to
SUIT and when they are giving input to the
application.

External Control and Attaching User Call-
backs

Students have difficulty adjusting to the idea that a
painting procedure may examine an object’s state, but
that only that object’s input handler may alter the
object’s state. Most students, when implementing their
own objects, place graphics library calls in their input
handlers. The more advanced students alter the
object’s state and then call the object’s painting
procedure from within the input handler. Because
SUIT traps all state changes and triggers calls to the
appropriate paint routines, the input handler only
needs to update the object’s state. This separation of
“painting reads the state” and “input handling sets the
state” is often a difficult concept for students. We have
experimented with producing run time errors if
programs paint while inside input handlers and/or set
properties while inside painting routines, but this tends
to confuse students even more.

Having grasped how external control works, many
students find it mildly unsettling, because they have
become accustomed to using the flow of control in
programs to sequence actions. Students do not,
however, find external control to be nearly as difficult
as their first introduction to either pointer variables or
recursion. Once students understand the basic
mechanism which drives SUIT, we explain that a
standard set of screen objects have already been
implemented and stored in a library. This motivates
the question of how screen objects can be made to
invoke application procedures, or “callbacks.” In the
example of a slider, students understand how the input
handler and painting procedure will cause the slider to
behave properly, but are not sure how an application
routine can be informed that a value contained in that
slider has changed. We then explain that a

callback

property of type

function pointer

 can be added to the
slider object’s property list. If such a property exists,
the input handler calls the function after changing the
state of the slider object. This attachment of user-level
callbacks is the most difficult intellectual leap for most
students.

Objects as Abstract Data Types

Many students tend to confuse the notion of an
object’s state and the mechanisms which affect that
state. We have had good success combating this by
treating objects as abstract data types which have
multiple mechanisms for displaying state. For
example, SUIT supports a

bounded value

 object with
properties:

[“minimum value”, “floating point”, 0.0]
[“current value”, “floating point”, 0.7]
[“maximum value”, “floating point”, 1.0]

which can appear as any of the following

display
styles

 [Sibert, Foley86] shown in Figure 2. A

keystroke command (again, with keyboard modifiers
down)

cycles

 between the various display styles, and
this has been very effective in establishing the
difference between an object’s state and the
mechanism for displaying and altering that state. For
many students, it is the most visceral experience they
have had in understanding general concept of an

abstract data type

.

User Defined Property Types

Users may define their own types for use in property
lists by registering subroutines with SUIT that
initialize, copy, destroy, convert the type to ASCII, and
convert from ASCII to the type. The ASCII conversion
allows SUIT to write the interface file that is saved
between executions, and to convert one arbitrary type
to another by going through an ASCII representation.

The Class Mechanism

Subclassing and inheritance are complex ideas. When
we first show students SUIT, we explain that SUIT
provides a non-hierarchical collection of screen
objects, each of which belongs to one class, and can
inherit some portion of their state from that class.

Figure 2: Bounded Value Display Styles

When explaining the class and inheritance
mechanisms, we find it necessary to briefly lie to our
students. There is a strong analogy here to
programming languages: introductory students are not
typically receptive to explanations that subroutines are
an abstraction mechanism. They do, however,
understand that subroutines are a great way to save on
code space in a compiled program. Students
understand concrete explanations much better than
abstract ones, and once they understand the concept,
one can revisit the motivation for it. Therefore, we
explain that having each object describe things like its
foreground and background color is wasteful,
especially since all buttons will probably be the same
color. When a program requests the value of a
property, SUIT looks first in the property list
containing that object’s state. If SUIT does not find the

requested property, it then looks in a property list
stored with the object’s class. If the property is not
found at that level, SUIT looks in a global property
list. If the property is not found in the global property
list, SUIT creates it using the type’s initialization
routine to establish a default value.

The Property Editor

Students do best with concrete, visible items. Screen
objects are good for explaining object-oriented
programming, as shown by the early success in
Smalltalk [Goldberg]. The problem with class and
global property lists is that they are no longer
implicitly visible. The prototype-instance architecture
[Myers90] does not really solve this problem, because
prototype objects are typically not visible on-screen.

Figure 3: The SUIT Property Editor

We provide a direct manipulation [Schneiderman]

property editor

 that allows users to interactively
examine and alter the state of objects. The SUIT
property editor, always displays the object, class, and
global property lists when allowing the user to edit the
state of an object. The SUIT property editor is shown
in Figure 3.

Users alter a property’s value by clicking on that
property with the mouse; boolean properties toggle
when clicked, and other properties either bring up a
type-in box, or a type-specific dialog box, such as the
dialog box for type

font

 shown in Figure 4. If an object
is currently inheriting a value from its class, the user
can take that property value and drag it from the class
level to the object level, thereby copying it. If a
property is currently specified at the object level and
the user wishes to have that property default to the
class’ specification, the user drags the property from
the object level to the trash can, deleting the object
level property. In the same way, properties can be
manipulated at the global level. An exercise in the
SUIT tutorial asks students to make all labels in an
application blue, and then have one particular label
override that default and be red.

Property sheets date back to (at least) the Xerox Star
[Bewley]. Other systems use a spreadsheet model for
accessing attributes of objects [Myers91, Wilde]. Our
contribution is to always expose the fixed three levels
on every invocation. This produces some screen
clutter, but also avoids having the student learn the
mechanisms for accessing inherited state. The
property editor has been tremendously successful; it
allows our students to understand and use state
inheritance in less than five minutes. We believe this is
due to the combination of limiting the class hierarchy

Figure 4: The Font Dialog Box

to a single level, exposing information at all three
levels, and using direct manipulation.

Linking Objects to Other Objects

By default, SUIT provides a very simple linkage
mechanism. Application-level callbacks can be
registered with objects, and those callbacks are
invoked by the input handlers for the screen objects. A
more complicated problem is how to provide general
linkage between screen components and arbitrary user
routines. The Next Interface Builder, for example,
allows the user to draw a connection between two
screen objects, then prompts the user to specify details
about the linkage via a sequence of dialog boxes.
SUIT provides a simpler but more limited form of
linkage that handles a large number of common cases
and avoids the novice’s usual confusion about whether
the first object is linked to the second, or the second is
linked to the first.

Many linkages between on-screen objects merely
allow one object to control a particular aspect, or
property, of another. For example, in the polygon
drawing program in Figure 5, the slider controls the
number of sides in the polygon. Rather than
attempting to link two existing objects, a SUIT user
would start with only the polygon object and then
invoke the property editor. The user would then drag
the “number of sides” property to the “expose” icon,
which causes SUIT to create a new object that controls
that property. This also has the side effect of locking
the property, which is shown with a small “lock” icon
in the property editor. This avoids the ambiguous
situation of the user modifying the polygon’s “number
of sides” in the property editor after exposing it. SUIT
knows what kind of object to use to expose all
common property types, and users can define dialog
boxes for modifying user-defined types.

Figure 5: The Polygon Program

In fact, the program shown in Figure 5 can be created
with no programming, starting with a blank screen.
The user creates a “polygon object” via the menus of
standard objects, and then exposes that polygon
object’s “number of sides” and “filled” properties.

Hierarchy

With most interface builders, novices confuse the
logical tree of subclasses with the geometric tree that
visually nests objects. We avoid this problem in SUIT
by limiting classes to one level, and by hiding the
geometric hierarchy from novice users. Although
some basic SUIT objects, such as a radio button, are
actually hierarchial collections of other objects, we
provide procedural and interactive operations that treat
these objects atomically. By providing interactive
operations that allow users to move and resize multiple
objects at one time, we sidestep the only motivation
most novices have for wanting to compose basic
objects into a hierarchy.

Once users are comfortable with the basic system, we
introduce them to interactive manipulation of
hierarchy. SUIT allows users to create a composite, or

tupperware

 object. There is only one type of
composite object because multiple display styles are
used to implement vertical tiling (vboxes in
Interviews/TeX terminology), horizontal tiling
(hboxes), bulletin boards, pull down menus, etc.
Screen objects can be nested within a tupperware
object by dragging them inside it. Any object can be
nested into any of the tupperware styles.

When objects are inside a tupperware object, there is
ambiguity as to which object should receive input. For
regular input, this is simple: the input handler for the
tupperware object merely passes the input down to the
appropriate child. SUIT input, such as an attempt to
move an object, is more problematic. This is resolved
by allowing the user to

open

 a tupperware object.
When a tupperware object is open, SUIT draws a
special border around it to indicate that its children,
and not the tupperware object, will receive SUIT
commands. If a child is moved outside the boundaries
of its geometric parent, it becomes autonomous,
moving up to be a sibling a sibling of its parent in the
geometry tree.

SUIT’s Current Status

SUIT has been created over the last eighteen months.
Applications built with SUIT appear identical across
all platforms, within limitations imposed by font

availability, color palettes, and physical screen size.
SUIT is implemented in 9,000 lines of ANSI-C code,
and provides a library of standard objects
implemented by another 6,000 lines. Figure 6 shows
the more popular objects, all cycled to the Motif-like
display style.

SUIT currently has over one hundred users at the
University of Virginia and is used routinely in the
undergraduate software engineering course and the
graduate graphics course. Students from ten different
departments have used it on all platforms to create
interfaces in support of their ongoing research. SUIT
is currently complete, although we are still developing
new classes of objects and continuing to optimize both
speed and size. By UNIX/X standards, we are a
flyweight system, but under DOS and the Macintosh
our 300k executable images are relatively large.

We are currently beginning distribution via
anonymous FTP. In the spirit of SUIT, we are
investing a large effort in making SUIT easy to obtain
and install. Our current goal is to allow a remote user
who has no previous experience with FTP to be able to
read a network news post and be running a SUIT demo
on their workstation in under ten minutes.

Conclusions

Students who are not familiar with external control
and have never seen another UI toolkit are able to use
SUIT productively after only two and a half hours.
Our undergraduate software engineering class projects
have been able to expand their scope significantly by
using SUIT, and students are highly motivated by
being able to easily produce professional looking
interfaces for their projects.

By using a reduced model for subclassing, hiding
geometric hierarchy, and providing direct
manipulation tools for property setting and linkage,
we have been able to radically reduce the learning
time and complexity for a user interface toolkit. By
keeping the toolkit’s implementation lightweight and
building it on top of an easily ported graphics package,
we have been able to implement SUIT on a wide
variety of platforms. SUIT is a success, and we hope
that it will be accepted as a standard teaching vehicle
for user interface software as we begin to distribute it
widely.

Acknowledgments

We would like to thank Roderic Collins, Matt
Conway, Jim Defay, Pramod Dwivedi, Brandon
Furlich, Rich Gossweiler, Drew Kessler, James
Leatherby, Chris Long, William McClennan, Anne
Shackelford, and Hans-Martin Werner, all of whom
have contributed to SUIT’s development. SUIT
should not be confused with SUITE [Dewan], a
project at Purdue with a similar name.

Figure 6: Popular SUIT Object Classes, In Motif Look and Feel

References:

[Bewley] Bewley, William, Roberts, Teresa,
Schroit, David, and Verplank,
Williams,

 Human Factors Testing in
the Design of Xerox’s 8010 ‘Star’
Office Workstation,

1983,
Proceedings of ACM CHI’83
Conference on Human Factors in
Computing Systems

[Blomberg] Blomberg, Jeanette, and
Henderson, Austin,

Reflections on
Participatory Design: Lessons from
the Trillium Experience,

Proceedings of ACM CHI’90
Conference on Human Factors in
Computing Systems, pp. 353-359

[Calder] Calder, Paul, Linton, Mark, and
Vlissides, John,

Composing User
Interfaces with InterViews

, IEEE
Computer, 1989.

[Dewan] Dewan, Prasun,

A Guide to Suite

,
Software Engineering Research
Center, Purdue University, SERC-
TR-60-P, February 1990

[Foley86] Foley, James D. and McMath, C.F.

Dynamic Process Visualization,

Computer Graphics and
Applications 6:3, March, 1986.

[Foley90] Foley, James, van Dam, Andries,
Feiner, Steven, and Hughes, John

Computer Graphics: Principles and
Practice (

2nd Edition), 1990,
Addison-Wesley Publishing Co,
Reading, MA, ISBN 0-201-12110-
7; T385.C587.

[Goldberg89] Goldberg, Adele, and Robson,
David,

Smalltalk--80: The
Language

, Addison-Wesley,
Reading, MA, 1989.

[McCormack] McCormack, Joel, and Asente, Paul,

An Overview of the X Toolkit

. In
Proceedings of the ACM
SIGGRAPH Symposium on User
Interface Software, pp 46-55. Banff,
Alberta, Canada, October, 1988.

[Myers90] Myers, Brad, et al,

Garnet:
Comprehensive Support for
Graphical, Highly Interactive User
Interfaces

 IEEE Computer, 23:11,
November, 1990.

[Myers91] Myers, Brad,

Graphical Techniques
in a Spreadsheet for Specifying User
Interfaces

. Proceedings of ACM
CHI’91 Conference on Human
Factors in Computing Systems.

[Palay] Palay, Andrew, eta al.

The Andrew
Toolkit---An Overview,

USENIX
Technical Conference Proceedings,
Dallas, TX, Feb, 1988.

[Rochkind] Rochkind, Marc J.

Technical
Overview of the Extensible Virtual
Toolkit,

Advanced Programming
Institute, Ltd., January 16, 1989,
API Ltd., Box 17665, Boulder, CO
80308 (303) 443-4223

[Schneiderman] Shneiderman, Ben

Direct
Manipulation: A Step Beyond
Programming Languages

, IEEE
Computer 16:8, Aug, 1983, pp. 57-
69.

[Sibert] Sibert, John, Hurley, William, and
Bleser, Teresa,

An Object-Oriented
User Interface Management
System,

 Computer Graphics, 20:4
August 1986 (Proceedings of
SIGGRAPH ‘86).

[UIMX] Visual Edge Software Ltd, 101 First
St., Suite 443, Los Altos, CA 94022
(415) 948-0753

[Valdes] Valdes, Ray,

A Virtual Toolkit for
Windows and the Mac

, BYTE,
March, 1989.

[Welsh] Welsh, J.,

Ambiguities and
Insecurities in Pascal

, Software -
Practice and Experience 7, 1977, pp.
685-696.

[Wilde] Wilde, Nicholas, and Lewis,
Clayton,

Spreadsheet-based
Interactive Graphics: from
Prototype to Tool

, Proceedings of
ACM CHI’90 Conference on
Human Factors in Computing
Systems, pp. 153-159.

[Wirth] Wirth, Niklaus,

The programming
language Pascal

, acta informatica
1:1 (1971) pp. 35-63.

