
E�cient Broadcast Time-Stamping

(Extended Abstract)

Josh Benaloh

Clarkson University

Michael de Mare

Clarkson University

April 21, 1992



E�cient Broadcast Time-Stamping

(Extended Abstract)

Abstract

Even using an authenticated synchronous broadcast model, the task of unforgeably

time-stamping digital documents still presents some problems. It is simply not practical

to assume that all participants will record and store everyone else's documents so that

creation times can be veri�ed. This paper presents a time and space e�cient method

for accumulation of time-stamped documents. Whenever a question arises, a claimant

can convince any \honest" participant of the time that its document was posted.

1 Introduction

The problem of unforgeably time-stamping documents has long been believed to be \open

and shut". Given any unpredictable stream of data (e.g. sun-spot activity), one can digitally

sign a document together with a su�ciently long portion of the stream at the time of signing.

If the document is later revealed, it is plain that it must have been signed at a time after

the relevant portion of the stream was generated. This method is commonly used in hostage

photographs where a hostage is shown holding a newspaper in order to demonstrate that the

hostage was alive on the date the newspaper was printed.

It has, until recently, been equally plain to researchers that the problem of showing that

an event occurred before a certain time was impossible since it would involve requiring the

prover to forget information. (A photograph of a hostage holding the Magna Carta does not

provide compelling evidence that the hostage was being held in the year 1215.) Recently,

however, Haber and Stornetta ([HaSt90]) show that in a reasonable model, forward and

backward time-stamping are both possible! They o�er several solutions, but all require at

least one of the following: a central authority, substantial cooperation among participating

agents to validate a time-stamp, substantial cooperation to post a document, or a substantial

amount of storage.

This paper presents a solution to the time-stamping problem in which none of the above

are required. For simplicity, the communication model used is that of authenticated broad-

cast channels. Since such channels can be simulated by a variety of more easily realiz-

able methods (see, for example, [CGMA85], [Fisc83], [BenO83], or [Rabi83]), authenticated

broadcast channels serve as a useful communication primitive on which to develop interactive

protocols.

1



The model used in this work is somewhat di�erent from that used by Haber and Stornetta.

We assume that our time-stamping protocols run in �xed time periods (rounds) and allow

a claimant to e�ciently demonstrate to any challenger the round in which a document was

stamped. Thus, unlike Haber and Stornetta, we cannot guarantee that our protocols will,

for every pair of documents, determine which was stamped �rst. However, in exchange for

this loss of �ne discrimination, we are able to eliminate other requirements and substantially

improve e�ciency.

The actual best choice for the length of a round would be dependent on the level of

usage of the system. It could be an hour, a day, a week, or any other suitable time period.

Shortening the period increases the complexity. However, it does not seem unreasonable

that, for example, two claims submitted to a patent o�ce on the same day be regarded as

having arrived together. Note that the document which is stamped could be digitally signed,

encrypted, or hashed with the authors' names (perhaps to be revealed at some later time), so

that it would not be possible for a dishonest agent to duplicate the contents of a document

and send a rival claim the same day.

2 De�nitions

We begin by giving a formal de�nition of time-stamping.

De�nition A time-stamping system with security parameter N consists of a set of partic-

ipants P = fp

1

; p

2

; : : : ; p

m

g which are synchronous communicating processes together with

a triple of protocols (S; C;V). The stamping protocol S proceeds in rounds and allows each

participant to post one or more messages during that round. The claimant protocol C can

at any subsequent time be run by a participant who posted a message to convince any

\honest" participant running the veri�cation protocol V of the round in which the message

was actually posted. Finally, there is no polynomial P such that one or more \dishonest"

participants running substitute protocols S

0

and C

0

can, with probability 1=P (N), falsely

convince an honest veri�er running protocol V that a message was submitted during a given

round.

This de�nition is very broad since it allows any model of communication and does not

require symmetry among the protocols (since a protocol may require a participant to use

its own index to determine what action to take). Some of the protocols may not require

any interaction at all. The model attempts to capture the notion that time-stamping can

continually be performed using protocol S. If it becomes necessary to demonstrate a time-

stamp at some later time, protocols C and V are provided to allow a claimant to demonstrate

a time-stamp to a veri�er.

As will be seen in the next section, the de�nition admits many simplistic solutions to

the time-stamping problem. However, the simplistic solutions all prove to be ine�cient, and

a slightly more sophisticated protocol will be given which both satis�es the de�nition and

gives reasonable e�ciency.

2



One of the fundamental tools that will be used for our time-stamping systems is that of

one-way hash functions.

De�nition A family of one-way hash functions is an in�nite set of functions fh

`

g such

that the functions h

`

: f0; 1g

�

! f0; 1g

`

have the following properties:

1. There exists a polynomial P such that for each integer `, h

`

(x) is computable in time

P (`; jxj) for all x 2 f0; 1g

�

.

2. There is no polynomial P such that there exists a probabilistic polynomial time algo-

rithm which, for all su�ciently large `, will when given ` and some x 2 f0; 1g

�

, �nd

an x

0

2 f0; 1g

�

such that h

`

(x) = h

`

(x

0

) with probability greater than 1=P (`) when x

is chosen uniformly among all elements of f0; 1g

jxj

.

By applying a one-way hash function to a document, it becomes computationally infea-

sible to �nd another document which hashes to the same value. For this reason, Haber and

Stornetta utilize one-way hash functions in their schemes as do we here.

It follows from the above de�nition that a family of one-way hash functions is itself a

family of one-way functions. Work by Naor and Yung ([NaYu89]) and by Rompel ([Romp90])

has shown that one-way hash functions exists if and only if one-way functions exist which, in

turn, exist if and only if secure signature schemes exist. It has also been shown ([ILL89]) that

the existence of one-way functions is equivalent to the existence of secure pseudo-random

number-generators.

3 Simple Broadcast-Based Protocols

There are several simple protocols which will satisfy the de�nition but are not desirable

because they require excessive storage or cooperation. We will brie
y describe them for

completeness.

3.1 Remember Everything

This protocol simply requires each participant to broadcast (perhaps in encrypted form) any

document it wants time-stamped. All the other participants simply remember all posted

documents together with the time of posting. To verify a time-stamp, any honest participant

can simply go back through its archives, �nd the document, and (if it's present) check its

posting time to verify that the document was indeed posted at the claimed time.

In this case, the stamping protocol S simply requires broadcast of any message to be

stamped and a recording of all broadcasts, the claimant protocol C is null, and the veri�cation

protocol V simply requires a look-up in local memory.

While this is simple, and any machine can post any document at any time, the space

required is unacceptable, as every machine must permanently store every document.

3



3.2 Chaining

The above system can be made quite storage e�cient by chaining everything using one-

way hash functions in a manner similar to a method proposed by Haber and Stornetta

([HaSt90]). When a participant wants to time-stamp a message, it computes a hash of its

message together with the most recently posted hash value. This new hash value is then

posted for possible use by others. A participant need only remember, for each message it

posts, the message, and the hash of the previous document. The current (most recent) hash

value is always saved by all participants. This describes the S protocol.

To verify a time-stamp, one participant may have to enlist the help of many other partici-

pants. The entire chain of hash values from the claimed message through to some hash value

known by the veri�er (if necessary, the current hash) must be re-hashed and veri�ed. Thus,

protocol C requires a claimant to obtain (from other participants) all intervening messages,

and protocol V requires the veri�er to re-hash every message in this sequence to make sure

that a match is obtained.

This approach is very storage e�cient, requiring each participant to remember only its

own documents and one hash value per document it posts. The problem is that it requires

a very high degree of cooperation; even one participant refusing to produce its documents

could destroy the entire veri�cation process. This is clearly unacceptable, since the system

must still function when participants within it are hostile to one another.

3.3 A Flat System Using Rounds

Using rounds one can construct a scheme which does not require extensive cooperation and

where the storage for participants is not substantial during times when they don't have

documents to post. During each round, all the participants broadcast their documents to

be stamped. All of these documents are hashed together with the previous round's time-

stamp to produce a single value which serves as the current round's time-stamp. This

S protocol requires every participant that produced a document that round to remember

all the documents for that round. All participants (whether or not they are submitting

documents that round) must remember the round's time-stamp.

To demonstrate that a document is properly stamped, the claimant protocol C requires

a participant to produce all documents submitted the same round. The veri�cation protocol

V simply requires a participant to compute the hash of these messages and check that it

matches the round's time-stamp.

Since the cost of storage is levied on only those participants actually producing documents

to be tagged, this is better then the \Remember Everything" model, and less cooperation is

required then in the \Chaining" model.

4



3.4 A Scheme which Assumes Associativity

If one is willing to assume the existence of one-way hash functions which are associative,

then it is easy to make the \
at" scheme above extremely space-e�cient.

Let x

i

denote the document set submitted by participant p

i

in a given round. The process

of hashing together all of the document sets of all of the participants could be completed

by starting with y

0

as the previous round's time-stamp and forming and y

i

= h(y

i�1

; x

i

)

for 1 � i � m. The resulting hash value y

m

would then be used as the current round's

time-stamp.

It is clear that to reproduce the round's time-stamp as a hash which includes x

i

, partic-

ipant p

i

, need only save y

i�1

and x

j

for i � j � m (rather than saving all x

j

). However, for

most p

i

, this will not result in more than a small constant factor improvement in the storage

requirements.

If, however, the one-way hash function h were associative, then p

i

could simply store

y

i�1

, x

i

, and a value z

i+1

which represents the cumulative hash of all of the document sets

x

j

for i < j � m. Since the order of application of the hashes would not matter, the round's

time-stamp would be equal to h(h(y

i�1

; x

i

); z

i+1

) regardless of i.

In fact, if h were also commutative, then it would only be necessary for p

i

to store one

value along with x

i

: the cumulative hash of all document sets x

j

for j 6= i. In either case,

the number of �xed sized hash values which must be stored by a participant in order to

demonstrate the validity of its documents in a given round would be constant.

Unfortunately, although this scheme is very e�cient and provides for simple veri�cation,

the assumption of an associative one-way hash function may be unrealistic. The next section

describes a scheme which, although not quite as e�cient, depends only on the existence of

one-way hash functions which, in turn, is known to be equivalent to the existence of arbitrary

one-way functions.

4 A Hierarchical System that Proceeds in Rounds

We now describe a time-stamping system which is both time and space e�cient and depends

only on the assumption that one-way functions (and hence one-way hash functions) exist.

The method is similar to the \Flat" system of the previous section, but by structuring things

hierarchically, it is possible to eliminate the bulk of the storage requirements. The auxiliary

storage required of each machine in this scheme is only O(logm) per round where m is the

number of participants.

The idea is to structure things such that, as before, the time-stamp for a round depends

on the time-stamp for the previous round and on all documents submitted in the current

round. The di�erence is that it will no longer be necessary to store all of a round's documents

to prove any one document's time-stamp. The m participants in the time-stamping system

are organized into a hierarchy with each participant placed at a leaf of a complete K-ary

tree.

5



4.1 The Stamping Protocol S

1. In round k, each participant p

i

gathers all documents it wishes to stamp that round

and hashes them together with the previous round's hash value R

k�1

to produce its

hash value h

k;i

. Each participant then broadcasts its h

k;i

. (Defaults can be substituted

for R

0

and for the hash values of any participants which have no messages to stamp in

a given round.)

2. The hash values h

k;i

are associated with the leaves of the K-ary tree into which the

participants are organized. (Default values are used for leaves with which there is no

participant associated.) The value associated with an internal node of the tree is the

hash of the values of its K children. The value associated with the root is denoted by

R

k

, and this value is called the time-stamp of the round.

3. Each p

i

independently computes (from the broadcast information and the �xed de-

faults), all of the tree values for round k. However, only the values associated with

ancestors of a participant's leaf and its ancestors' siblings are saved.

4.2 The Claimant Protocol C

To demonstrate that a document was submitted in round k,

1. The claimant p

i

produces all documents which it submitted in round k (note that

a document may be encrypted or pre-hashed so that revealing a document does not

necessarily reveal its contents).

2. The claimant then produces all of the hash values (of ancestors and their siblings)

which it stored from round k.

4.3 The Veri�cation Protocol V

To verify a claim that a document was stamped in round k,

1. The veri�er checks that the documents released by the claimant p

i

together with the

time-stamp R

k�1

for round k � 1 hash to the value h

k;i

supplied by the claimant.

2. The veri�er then checks that the hash values produced by the claimant (starting from

h

k;i

) do indeed (following the tree towards the root) ultimately hash to the time stamp

R

k

for round k.

If all of the above hashes match, the veri�er accepts the time-stamped document. Oth-

erwise, the time-stamp is rejected.

Note that it is not essential that the veri�er store the time-stamp for every round. If the

veri�er does not know the time-stamp for a given round, a claimant can provide information

6



to chain together the time-stamps for two consecutive rounds. This can be continued until a

round is found for which the veri�er knows the time-stamp. The current round's time-stamp

should always be stored by all participants.

It turns out, that for the protocols described above, a branching factor of K = 3 in the

hierarchy is optimal. However, a slightly re�ned set of protocols in which participants do not

save the hash values of their ancestor nodes but instead save only their ancestors' siblings'

values (which | together with the relevant document hash h

k;i

| is su�cient to reconstruct

the missing values) would yield an optimal branching factor of K = 2.

5 Proof of the Hierarchical Scheme

The fact that the hierarchical scheme satis�es the de�nition of a time-stamping system stems

from the assumption that given a one-way hashed document, it is infeasible to �nd another

document which has the same hash. Hashes are chained so as to make it infeasible to match

outputs by matching inputs.

Most of the conditions of the de�nition of a time-stamping system are trivially satis�ed

by the hierarchical scheme. For example, if the inputs used by a claimant to compute a hash

value are released for veri�cation, there is no question that an honest veri�er will be able to

compute the same hash value. The only condition which requires e�ort is the assertion that

no alternate claimant protocols S

0

and C

0

will be able to falsely convince an honest veri�er

running protocol V of an allegedly stamped document.

Theorem 1 The hierarchical protocols (S; C;V) when used with a one-way hash function h

N

chosen (according to security parameter N) from a family of one-way hash functions fh

`

g

constitutes a time-stamping system.

Proof:(sketch)

Assume that (S; C;V) does not constitute a time-stamping system. Then, by the argu-

ments which precede this theorem, it must be the case that there exist alternate protocols

S

0

and C

0

which can fool protocol V with unacceptably high probability. This would imply

the existence of a polynomial P such that V will be fooled with probability 1=P (N).

In order for S

0

and C

0

to fool V, they must produce a document which is alleged to have

been stamped in a given round and a sequence of values which includes this document which

will hash to the known time-stamp for the round in question.

Consider the sequence of values which originally led up to the round's time-stamp and

compare it to the \false" sequence released by C

0

. Let y denote the �rst value where the

two sequences coincide. (Such a y must exist since the �nal values of the sequences must

coincide.) Since the two sequences must di�er (else the document stamp would be valid), it

must be the case that y is computed both as y = h(x) and as y = h(x

0

) where x is taken

from the original sequence and x

0

is taken from the false sequence. The value x

0

is either

the document which the dishonest participants want to falsely stamp or it is some derived

hash value dependent on this value. In either case, it is a �xed value for which x must

7



have been chosen to yield a collision. (Note that a one-way hash function does not preclude

the possibility of �nding colliding pairs of inputs. It only requires that a collision cannot

be found for a given input.) Thus, even though x may have been derived from a document

chosen so as to facilitate collisions, the distribution of the value x

0

which is derived through a

constant number of iterations of a one-way hash function cannot be \too far" from uniform.

This implies that an e�cient algorithm has been found to produce a collision with a

(perhaps repeated) hash of a given input. In other words, an algorithm has been found

which will take one-way hash functions h

1

; h

2

; : : : ; h

j

and a value x and �nd a value x

0

such

that h

1

(h

2

(: : : h

j

(x) : : :)) = h

1

(h

2

(: : : h

j

(x

0

) : : :)). However, this would imply that at least

one of the h

i

is in fact not one-way.

The fact that the hierarchical scheme satis�es the claimed resource requirements follows

immediately from the protocols themselves.

6 Conclusions and Extensions

This paper has described several methods of unforgeably time-stamping documents in a

synchronous broadcast environment. While trivial solutions to this problem exist, they either

have unacceptably large storage requirements or unacceptably large communication and

cooperation requirements. By structuring time into rounds of appropriate length, e�cient

protocols can be found based only on the assumption of the existence of one-way functions.

The optimal choice for the length of a round cannot be described quantitatively. There

is a trade-o�. If the length of a round is increased, the storage required to maintain the

round time-stamps and auxiliary data will decrease. However, long rounds reduce the �ne

descrimination of document times since documents submitted during the same round are

considered to be simultaneous. It seems that choosing the length of the round to be such

that the average number of documents submitted per round is about one per participant may

be a good trade-o�. In this way, the descrimination is still quite �ne while the overhead is

not overwhelming. In many practical applications, it may be desirable to choose the length

of a round to be a day, since this is already a common unit for time-stamping. Post o�ces,

banks and other places of business typically use the date as the time-stamp for common

transactions.

Several problems remain to be addressed. Is it possible to further improve the e�ciency

of these schemes? Is the existence of associative one-way hash functions equivalent to the

existence of arbitrary one-way hash functions? Perhaps, the most widely applicable open

question raised by this work is that of whether or not the existence of one-way (hash)

functions implies the existence of one-way hash functions for which �nding any collision is

hard. This latter problem seems quite di�cult and would be of signi�cant interest in the

area of structural cryptography.

8



References

[BenO83] Ben-Or, M. \Another Advantage of Free Choice: Completely Asynchronous

Agreement Protocols." Proc. 2

nd

ACM Symp. on Principles of Distributed Com-

puting, Montreal, PQ (Aug. 1983), 27{30.

[CGMA85] Chor, B.,Goldwasser, S.,Micali, S., andAwerbuch, B. \Veri�able Secret

Sharing and Achieving Simultaneity in the Presence of Faults." Proc. 26

th

IEEE

Symp. on Foundations of Computer Science, Portland, OR (Oct. 1985), 383{

395.

[Fisc83] Fischer, M. \The Consensus Problem in Unreliable Distributed Systems",

Proc. 1983 International FCT-Conference, Borgholm, Sweeden (Aug. 1983),

127{140. Published as Foundations of Computation Theory, ed. by M. Karpin-

ski in Lecture Notes in Computer Science, vol. 158, ed. by G. Goos and J. Hart-

manis. Springer-Verlag, New York (1983).

[HaSt90] Haber, S. and Stornetta, W. \How to Time-Stamp a Digital Document."

Advances in Cryptology | Crypto '90. to appear in Springer-Verlag Lecture

Notes in Computer Science.

[ILL89] Impagliazzo, R., Levin, L., and Luby, M. \Pseudorandom Generation from

One-Way Functions." Proc. 21

st

ACM Symp. on Theory of Computation, Seat-

tle, WA (May 1989), 12{24.

[NaYu89] Naor, M. andYung, M. \Universal One-Way Hash Functions and their Cryp-

tographic Applications." Proc. 21

st

ACM Symp. on Theory of Computation,

Seattle, WA (May 1989), 33{43.

[Rabi83] Rabin, M. \Randomized Byzantine Generals." Proc. 24

th

IEEE Symp. on

Foundations of Computer Science, Tucson, AZ (Nov. 1983), 403{409.

[Romp90] Rompel, J. \One-Way Functions are Necessary and Su�cient for Secure Sig-

natures." Proc. 22

nd

ACM Symp. on Theory of Computation, Baltimore, MD

(May 1990).

9


