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and Acero [6]. Although relatively successful, the aboveAbstract
methods all depend on the assumption of independence of the

In this paper we report our initial efforts to make SPHINX, the CMU spectral estimates across frequencies.  Erell and Weintraub
continuous-speech speaker-independent recognition system, robust to [7] demonstrated improved performance with an MMSE es-
changes in the environment. To deal with differences in noise level and

timator in which correlation among frequencies is modeled ex-spectral tilt between close-talking and desk-top microphones, we propose
plicitly.two novel methods based on additive corrections in the cepstral domain.

In the first algorithm, the additive correction depends on the instantaneous In this paper we present two algorithms for speech normalization
SNR of the signal. In the second technique, EM techniques are used to

based on additive corrections in the cepstral domain. We havebest match the cepstral vectors of the input utterances to the ensemble of
chosen the cepstral domain rather than the frequency domain socodebook entries representing a standard acoustical ambience.  Use of the
that we work directly with the parameters that SPHINX uses, andproposed algorithms dramatically improves recognition accuracy when
because speech can be characterized with a smaller number ofthe system is tested on a microphone other than the one on which it was

trained. parameters in the cepstral domain than in the frequency domain.
The first algorithm, SNR-dependent cepstral normalization
(SDCN) is simple and effective, but it cannot be applied to new1. Introduction
microphones without microphone-specific training.  The secondReal applications demand that the performance of speech recog-
algorithm, codeword-dependent cepstral normalization (CDCN)nition systems is not affected by changes in the environment.
computes an ML estimate for the noise and spectral tilt, and thenHowever, it is well known that when a system is trained and
an MMSE estimate for the speech cepstrum. These algorithms aretested under different conditions, the recognition rate drops un-
evaluated using an alphanumeric database in which utterancesacceptably. In this study we are concerned with the variability
were recorded simultaneously with two different microphones.present when different microphones are used in training and

testing, and specifically the development of procedures that can
2. A Model of the Environmentsignficantly improve the accuracy of speech-recognition systems

that use desk-top microphones. We assume that the speech signal x (t) is first passed through a
linear filter h (t) whose output is then corrupted by uncorrelated

There are many sources of acoustical distortion that can degrade additive noise n (t). We can characterize the power spectral
the accuracy of speech-recognition systems. For example, density (PSD) of the processes involved as
obstacles to robustness include additive noise from machinery,

2P ( f ) = P ( f ) | H ( f ) | + P ( f ) (1)competing talkers, etc., reverberation from surface reflections in a y x n
room, and spectral shaping by microphones and the vocal tracts

If we let the cepstral vectors x, n, y and q represent the Fourier
of individual speakers.  These sources of distortion cluster into 2series expansion of ln P ( f ), ln P ( f ), ln P ( f ) and ln | H( f ) |x n ytwo complementary classes: additive noise (as in the first two

respectively, (1) can be rewritten asexamples) and distortions resulting from the convolution of the
y = x + q + r (x, n, q) or y = n + s (x, n, q) (2)speech signal with an unknown linear system (as in the remaining

three). where the correction vectors r (x, n, q) and s (x, n, q) are given by

DFT [n − q − x]r (x, n, q) = IDFT {ln (1 + e )} (3)A number of algorithms for speech enhancement have been
proposed in the literature. For example, Boll [1] and Berouti et al. DFT [x + q − n]s (x, n, q) = IDFT {ln (1 + e )} (4)
[2] introduced the spectral subtraction of DFT coefficients, and
Porter and Boll [3] used MMSE techniques to estimate the DFT If x (0) + q (0) » n(0) (i.e. high SNR), r ≈ 0, and y ≈ x + q. On
coefficients of corrupted speech.  Spectral equalization to com- the other hand, when x (0) + q (0) « n(0) (i.e. low SNR), s ≈ 0,

∧pensate for convolved distortions was introduced by Stockham et
and y ≈ n. We can obtain an estimate P ( f ) of the PSD P ( f )y yal. [4]. Recent applications of spectral subtraction and spectral
from a sample function of the process y ( t) (i.e. a frame of speech

equalization include the work of Van Compernolle [5] and Stern
that is assumed to be locally stationary). If z represents the



due to nonlinearities introduced by the correction vectors, we∧
Fourier expansion of ln P ( f), our goal is to estimate the uncor-y obtained approximate estimates with the following procedure:
rupted vectors X = x ,...x of an utterance given the obser-0 N − 1 1. We assign the mixture component 0 to the noise
vations Z = z ,...z .0 N − 1 event, and assume that the elements of the

covariance matrix C are much smaller than the03. SNR-Dependent Cepstral Normalization corresponding elements from Γ. This implies that
p ( x / k = 0) ≈ δ (x − c ).If we assume that the estimation error is negligible (i.e. 0

p (z / y ) = δ ( z − y)), and that the correction vector r in (3) 2. All other components are assumed to belong to
depends only on x (0) − n (0) (i.e. that we can apply an average some class of speech event.  We assume that the
correction to all spectral shapes with the same SNR), then we can elements of their covariance matrices C are muchk∧ larger than the corresponding elements of Γ, whichestimate x by the expression

implies that p ( z / x, n, q, k) ≈ δ (z − x − q − r).
∧
x = z − w(SNR) (5) With these approximations, the estimate has the form

which subtracts from the observed vector a correction w that K−1∧ ∧depends only on the instantaneous SNR of the observed signal, x = f c + f x (8)∑MMSE 0 0 k kz (0) − n (0). We have estimated these compensation vectors k=1
w(SNR) by computing the average difference between cepstral ∧

where x = z − q − r and (9)vectors for the test condition versus a standard acoustical en- k k
pvironment from simultaneous stereo recordings. Although this k

exp( − d / 2)technique performs acceptably, it has the disadvantage that new k1/2| C |kmicrophones must be "calibrated" by collecting long-term statis-
f = (10)k K−1tics from a new stereo database. Since only long-term averages p p0 l

exp( − d / 2) + exp( − d / 2)are used, the SDCN is clearly not able to model a non-stationary ∑0 l1/2 1/2| Γ | | C |l=1environment. l
∧ ∧ ∧ ∧−1−1d = ( x − c ) Γ ( x − c ); d = ( x − c ) C ( x − c )0 0 0 0 0 k k k k kk4. Codeword-Dependent Cepstral Normalization

In this procedure the correction vectors r = r (c , n, q) andA robust speech recognizer should be immune to the transfor- k k
s = s (c , n, q) are no longer a function of x, so the cepstralmation described by (1).  To reverse the effects of H( f ) and k k
normalization is codeword-dependent.P ( f ) we have to solve two problems:n

1. Estimate q and n, the equalization and noise vec-
4.2. ML Estimation of Noise and Spectral Tilttors, given the observations Z for an utterance. An

ML estimator of the parameter vectors will be used. If no a priori information is given about the noise and equaliza-
tion vectors n and q, the optimum estimation method is max-2. Estimate the uncorrupted vector x given the obser-
imum likelihood:vation for that frame z and the equalization and

noise vectors q and n. For this task we will use an ∧ ∧
( n , q ) = argmax p ( Z / q, n) (11)MMSE estimator. ML ML

By assuming that different frames are independent from eachIn the absence of exact statistics for the AR spectral estimator, we
other, we can use the expressionmodeled the distribution p ( z / y) as a multivariate gaussian

N−1N ( y, Γ ). We have confirmed the validity of this assumptionz
ln p (Z / q, n) = ln p (z / q, n) (12)empirically for the signal processing in SPHINX. The probability ∑ i

i=0density function of x will be assumed to be a mixture of K
whose maximization leads togaussian densities with means c , covariance matrices C , andk k

N−1weights p : ∇ p (z / q, n)k n i
∇ ln p (Z / q, n) = = 0 (13)∑nK−1 K−1 p (z / q, n)ii=0p (x) = p p (x / k) = p N (c , C ) (6)∑ ∑k k x k k A similar expression can be derived for q.

k=0 k=0

By using the approximations described above we can express the4.1. MMSE Estimator of the Cepstral Vector
distribution of z asiThe MMSE estimate for x has the form

p 10K−1 −1p ( z / q, n) = exp( − (z − n − s ) Γ (z − n − s )) +i i 0 i 01/2 2p x p ( z / x, n, q, k) p ( x / k) dx | Γ |∑ k ∫∧ k=0
x = (7) pK−1MMSE iK−1 1k −1exp( − (z − q − r − c ) C (z − q − r − c ))p p ( z / x, n, q, k) p ( x / k) dx ∑ i k k k i k k1/2∑ 2k ∫ | C |k=1 kk=0

except for a constant factor.  The first term is expressed as aSince the true MMSE estimate for x cannot be obtained directly



function of the noise n explicitly to reflect the fact that the noise 5. Evaluation
codeword (k = 0) is largely insensitive to q, and depends mostly

5.1. Databaseon n. Similarly, the other codewords are largely insensitive to n
and depend mostly on q. An alphanumeric database has been collected that consists of

1018 training utterances (74 different speakers) and 140 (10 dif-Since (13) leads to a highly nonlinear equation, we will use a
ferent speakers) testing utterances. These utterances werevariant of the well-known EM algorithm [8] that has been exten-
recorded simultaneously in stereo using both the close-talkingsively used in the literature to obtain ML solutions with incom-
Sennheiser HMD224 microphone (CLSTLK), a standard in pre-plete data:
vious DARPA evaluations, and a desk-top Crown PZM6fs

∧ ∧(0) (0) microphone (CRPZM). The recordings with the CRPZM exhibit1. Assume initial values of n and q for j = 1.
not only background noise but also key clicks from workstations,

2. Estimate the correction vectors r and s givenk k interference from other talkers, and reverberation.  The database
∧ ∧ consists of strings of letters, numbers and a few control words,(j−1) (j−1)n , q , and x = c according to (3) and (4).k that were naturally elicited in the context of a task in which

3. Maximize the log-likelihood (12). The new es- speakers spelled their names, addresses and other personal infor-
∧ ∧(j) (j) mation, and entered some random letter and digit strings. A totaltimates for n and q are

of 106 vocabulary items appear in the vocabulary, of which aboutN−1 ∧ 40 were rarely uttered.f q∑ i i0 0∧ ∧ ∧i=0 Figure 1 compares averaged spectra from the database for frames(j) (j−1) (j−1)n = n + − q (14)
N−1 believed to contain speech and background noise from each of

f the two microphones. By comparing these curves, it can be seen∑ i0i=0 that the average SNR using the CLSTLK is about 25 dB.  The
N−1 K−1 ∧ signals from the CRPZM, on the other hand, exhibit an SNR of

f q∑ ∑ i i less than 10 dB for frequencies below 1500 Hz and about 15 dBk k∧ i=0 k=1(j) for frequencies above 2000 Hz. Furthermore, the response of theq = (15)
N−1 K−1

CRPZM exhibits a greater spectral tilt than that of the CLSTLK.
f∑ ∑ iki=0 k=1∧

where q = z − c − r (16)i i k kk
4. Stop if convergence has been reached, otherwise go

to Step 2.

4.3. Implementation and Discussion
For simplicity, all the covariance matrices C are assumed to bek

2 2equal to σ I. We also assumed that Γ equals γ I, which is
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Sennheiser HMD224 Microphone (CLSTLK)
actually not the case when frequency warping is performed. The
codebook elements {c } are estimated with a standard Lloydk
algorithm. Furthermore, all p are considered identical, exceptk
for p which is somewhat greater.0

Unlike in previous studies where estimates of the power nor-
malization factor, spectral equalization function, and noise are
obtained independently, these quantities are jointly estimated in
CDCN using a common maximum likelihood framework that is
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Crown PZM6fs Microphone (CRPZM)based on a priori knowledge of the speech signal.  In CDCN,
power normalization is acomplished by the appropriate q(0). The

Figure 1: Average speech and noise spectra from the stereocriterion used in CDCN is the minimization of the distortion
alphanumeric database obtained using the CLSTLK and CRPZMbetween the cepstral vectors of the input utterance and the en-
microphones. The separation of the two curves in each panelsemble of codebook entries of the normalized speech, rendering
provides an indication of SNR for each microphone. It can alsothe need for long-term averages unnecessary. Since CDCN only
be seen that the CRPZM produces greater spectral tilt.requires a single utterance in order to estimate noise and spectral

tilt, it can better capture the non-stationarity of the environment. 5.2. The Recognition System
Moreover, in a real application, long-term averages may not be

The first stages of signal processing in the evaluation system areavailable for every speaker and new microphone.
virtually identical to those that have been reported for the SPHINX

speech recognition system previously [9], except that the number
of cepstral coefficients before frequency warping was increased



from 12 to 32 to provide better frequency resolution after fre- using a stereo database for each new microphone considered, and
quency warping. This led to a relative improvement of 5 percent that the normalization is based on long-term statistical models.
in the baseline performance of SPHINX. All algorithms operate on

The second algorithm, codeword-dependent cepstralthe cepstral vectors computed by the SPHINX front end.  The
normalization, uses a maximum likelihood technique to estimatenormalized cepstra, differenced cepstra, and combined power and
noise and spectral tilt in the context of an iterative algorithmdifferenced power parameters are vector quantized into three
similar to the EM algorithm.  With CDCN, the system can adaptdifferent codebooks. A simplified version of SPHINX with no
to new speakers, microphones, and environments without thegrammar was used for the experiments.
need for collecting statistics about them a priori. By not relying
on long-term a priori information, the CDCN algorithm can5.3. Results
dynamically adapt to changes in the acoustical environment asTable 1 describes the recognition accuracy of the original SPHINX
well.system with no preprocessing, with conventional spectral

equalization and spectral subtraction as described in [6], and with Both algorithms provided dramatic improvement in performance
the SDCN and CDCN algorithms.  These results were tabulated when SPHINX is trained on one microphone and tested on another,
using current standard DARPA evaluation protocols. With no without degrading recognition accuracy obtained when the same
processing, training and testing using the CRPZM degrades microhone was used for training and testing.
recognition accuracy by about 60 percent relative to that obtained
by training and testing on the CLSTLK.  Although most of the 7. Acknowledgments
"new" errors introduced by the CRPZM were confusions of
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use of CDCN improves performance obtained when training and
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