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The mathematical description of three-dimensional surfaces usually falls into one of two classifica- 
tions: parametric and implicit. An implicit surface is defined to be all points which satisfy some 
equation F (x, y, z) = 0. This form is ideally suited for image space shaded picture drawing; the pixel 
coordinates are substituted for x and y, and the equation is solved for z. Algorithms for drawing such 
objects have been developed primarily for fLrst- and second-order polynomial functions, a subcategory 
known as algebraic surfaces. This paper presents a new algorithm applicable to other functional 
forms, in particular to the summation of several Gaussian density distributions. The algorithm was 
created to model electron density maps of molecular structures, but it can be used for other artistically 
interesting shapes. 

Categories and Subject Descriptors: 1.3.3 [Compute r  Graphics]:  Picture/Image Generation--display 
algorithms; 1.3.5 [Compute r  Graphics]:  Computational Geometry and Object Modeling--curve, 
surface, solid, and object representations; 1.3.7 [Computer  Graphics]:  Three-Dimensional Graphics 
and Realism--visible line~surface algorithms 

General Terms: Algorithms, Performance 

1. INTRODUCTION 

The technology of creating realistic and visually interesting images of three- 
dimensional shapes is advancing on many fronts. One such front is the develop- 
ment of algorithms for drawing curved surfaces directly from their mathematical 
definitions rather than by dividing them into large numbers of polygons. Two 
classes of surfaces which have received attention are the quadric and the bivariate 
parametric surfaces. Bivariate parametric surfaces are generated by three func- 
tions of two variables (most popularly polynomials), as the variables take on 
different values. Algorithms dealing with such surfaces are due to Catmull [2]; 
Lane, Carpenter, Whitted and Blinn [7]; and Clark [3]. 
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236 J.F. Blinn 

Quadric surfaces, on the other hand, are solutions to second-order functions of 
the coordinates: 

a x  2 + bxy + cxz  + dx  

+ ey 2 + f y z  + g y  

+ h z  2 + iz  

+ j = 0 .  

This class of surfaces includes such shapes as spheres, cones, hyperboloids of 
revolution, and so forth. Algorithms for dealing with such shapes have not been 
widely published but have been implemented by MAGI [5], Blinn [1], Duff [4], 
and General Motors research labs [10]. While this class of shapes is somewhat 
restricted, it can be used to advantage in modeling many useful objects such as 
machine tool parts, as long as the modeling system allows a fragment of a shape 
to be employed as well as the entire shape. 

Quadrics belong to the class of curved surfaces known as "implicit" surfaces, 
that  is, solutions to some equation 

F ( x ,  y, z )  = O. 

This paper examines a more general solution to the imaging problem for such 
surfaces and describes in detail its application to a class of surfaces which are 
closely allied to quadrics but have a wider range of shapes. 

2. THE MODEL 

The problem which motivated this paper is the familiar one in computer graphics 
of displaying molecular models. This is most often done with a ball-and-stick 
model or a space-filling-sphere model. In either case, the model consists of a 
possibly intersecting collection of two basic shapes: spheres and cylinders. To 
draw a picture of the model, the spheres and cylinders can easily be broken down 
into polygons and passed to a conventional polygon-rendering algorithm. Alter- 
natively, any of several curved surface algorithms may be employed, and, in fact, 
several special-purpose algorithms [6, 8, 9] have been formulated to handle 
efficiently just these two shapes for rapid display of large molecular structures. 

In the interests both of artistic variety and scientific accuracy, a new model 
was sought that  breaks away from the ball-and-stick/space-filling mold. It was 
desired to make the bonds between atoms appear more like those shown in Figure 
1. This is, in fact, more like what a real electron density cloud might look like for 
a covalent bond. In addition, for the purposes of animation, this bond must 
stretch and contract in a pleasing manner as it vibrates, ultimately snapping 
apart as an atom is pulled completely away from the molecule. This is illustrated 
in Figure 2. 

A conventional approach might be to model such a shape via the already 
familiar bicubic or quadric surfaces. This is moderately feasible for one isolated 
bond but becomes difficult for more elaborate molecules with several overlapping 
bonds (e.g., ring structures). In addition, the topological changes that  must occur 
when a bond breaks are difficult to deal with in an automated manner. For these 
reasons a basic mathematical model was used which is similar in form to an 
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Fig. 1. Desired object  appearance.  

Fig. 2. Bond s t re tching  and  breaking. 

a c t u a l  s i m u l a t i o n  o f  e l e c t r o n  d e n s i t y  m a p s .  Q u a n t u m  m e c h a n i c s  r e p r e s e n t s  t h e  
e l e c t r o n  in a n  a t o m  as  a d e n s i t y  f u n c t i o n  of  t h e  s p a t i a l  loca t ion .  A s a m p l e  func t ion  
for  a h y d r o g e n  a t o m  is 

w h e r e  

D ( x ,  y,  z )  = e x p ( - a r )  

r = ~ / ( x -  x l )  2 + ( y - y 1 )  2 + (z - z l )  2 

(xl ,  y l ,  Zl) = l o c a t i o n  o f  a t o m  

W e  c a n  r e p r e s e n t  t h i s  f u n c t i o n  for  a co l l ec t ion  of  a t o m s  b y  s u m m i n g  t h e  
c o n t r i b u t i o n  f rom e a c h  a t o m  s e p a r a t e l y .  

D ( x ,  y,  z )  = ~, bi e x p ( - a i r i )  
i 

w h e r e  ri = d i s t a n c e  f rom x, y, z to  t h e  c e n t e r  of  a t o m  i. 
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A surface can be defined as those points where this density function equals 
some threshold amount:  

F ( x ,  y,  z )  = D ( x ,  y, z )  - T. 

Note  tha t  all points inside the sugace  have electron densities greater  than  T. For  
the purposes of computat ional  eft~ciency, the function actually implemented was 
similarly shaped: 

D ( x ,  y,  z )  = ~ bi e x p ( - a i r ~ )  
i 

This  does not  require taking a square root. The  exponential  t e rm is a simple 
Gaussian bump centered at  ri, with height bi and s tandard devat ion ai. By 
adjusting the ai and bi parameters ,  different effects can be achieved for the same 
a tom arrangement .  These  effects al ter  the "blobbiness" of the object. In fact, for 
modeling purposes,  it is more  useful for a designer to specify these two parameters  
in terms of the radius of the a tom in isolation and a blobbiness parameter .  Th e  
radius of an isolated a tom Ri  is found by setting 

X 2 T = bi e p ( - a i R i )  = e x p ( - a i R ~  + In bi) 

so the ai can be chosen to be 

ln(T/b~)  
ai = R? 

t 

We can define the blobbiness pa ramete r  to be 

so tha t  (solving for bi) 

bi = T exp( -B / )  

The  net  densi ty contr ibut ion of one a tom in terms of the two shape-defining 
parameters  Ri and Bi is 

D i ( x , y , z )  = T e x p ( B i  2~--~ri-Bi)" 

Note  tha t  B~ must  be negative to ensure tha t  the desity function goes to zero as 
r~ goes to infinity. 

Since there  is a factor of T in each contributing a tom te rm the value of the 
threshold is now irrelevant; we can set it to some canonical value such as 1. One 
can get the same effect as changing the threshold by adjusting the scale factors, 
bi, of the individual terms (i.e., by adjusting the blobbiness parameters  Bi).  For 
clarity, though,  we usually write the threshold as T, with the unders tanding tha t  
T = 1. A canonical threshold value of 1 is part icularly convenient  since its 
logari thm is 0. The  surface defined by an isolated atom, defined by setting Di = 
T, is then  a conventional  quadric surface. This  is seen by taking the logari thm of 
bo th  sides of the above equat ion yielding 0 = (Bi /R~)r~ - B/. A sample image 
showing a range of such parameters  is shown in Figure 3. 
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Fig. 3. Object appearance for different blobbiness and radius values. 

3. THE RENDERING ALGORITHM 

Surfaces defined algebraically are inherently well suited to raster conversion 
algorithms. The general structure of such an algorithm is straightforward: for 
each (xs, ys) pixel location the defining algebraic equation reduces to a univariate 
equation in z. Solutions to this equation {if any) yield the z depth of the surface 
at that pixel. In the case of the more common quadric surfaces this solution is 
easy to obtain. In the case of the more general surfaces described here, the 
solution must be obtained numerically. The important part of the algorithm 
described here is a technique for speeding up this computation. 

3.1 Coordinate Systems 

We begin by defining the various coordinate systems to be used. All atoms are 
transformed into a standard viewing space, with the eye looking down the +z 
axis, the x axis pointing to the right, and the y axis pointing upward (a left-handed 
coordinate system). In this space the sizes and shapes of viewed objects are not 
altered, only their orientations and positions are adjusted according to the viewing 
direction. 

A perspective image is then obtained with the eye positioned at the origin. 
This yields a homogeneous perspective matrix in terms of the field of view (Fov) 
and the locations of the near and far clipping planes (Zn and zr). 

p = 

if0001 wherec cosFovj2 
C 0 0 S =sin(Fov/2)  

0 Q S Q=--Szf/(Zn--Zf) 

0 R 0 R - - - Q z n  

This transformation will be followed by a scale and translation in x and y (the 
"viewport" transformation) which converts from the canonical - 1  to +1 visible 
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coordinate space into hardware screen (pixel) coordinates. Note  tha t  the x and y 
scale might  not  be equal if pixels in the screen space are not  square. [XwO 

V =  0 yw 0 
0 0 1 

Xc yc 0 

These  two t ransformat ions are concatenated with the viewing t ransformat ion to 
make  one net  t ransformat ion directly into p e r s p e c t i v e  space. In this space, the 
shapes of objects have been distorted in such a manner  tha t  a simple orthographic 
project ion onto the z = 0 plane yields the correct  perspec t ive  picture. I t  must  be 
realized tha t  this perspective space is just  an efficiency measure.  It  represents  
removing the perspective calculations from the rendering loop; the perspective 
project ion {e.g., of polygon vertices) is done simultaneously with the modeling 
and viewing t ransformations via one matr ix multiplication. This  merging of 
t ransformat ions  also works for rat ional  bicubic and quadric surfaces since these 
classes of surfaces are closed under  the perspective transformation.  

The re  are some calculations, however,  which must  still be done in the undis- 
tor ted  viewing space (e.g., light reflection calculations) since they  depend on 
geometric distances and vector  dot  products.  In fact, for the functions used here, 
the solution of the function itself can be done about  as easily in viewing space as 
in perspect ive space. For  this reason the merging of the perspect ive/viewport  
t ransformat ions and the modeling/viewing t ransformations is not  used for this 
algorithm. All the a tom centers and radii are t ransformed into viewing space, and 
pixel by pixel calculations are done by explicit rays from the origin through the 
pixel. A point  on such a ray is defined by its z depth  and the perspective and 
screen parameters .  We find this relationship by first t ransforming a point  on the 
ray into perspective space. 

(x y z 1)[P][V]  = ( x ' y ' z ' w ' )  = ( x C x w  + z S x c ,  y C y w  + z S y c ,  z Q  + R ,  z S )  

The  pixel coordinates (xs, y~) are formed by the homogeneous  division 

x~ = x ' / w '  = ( x C x w  + z S x c ) / ( z S )  

y~ = y ' / w '  = ( y C y w  + z S y c ) / ( z S )  

solving for the viewing space (x, y) in terms of viewing space z yields 

x = z ( x s  - x ~ ) S / ( C x w )  - ZXz ( , )  

y = z ( y s  - y c ) S / ( C y w )  =- zyz .  

Thus  we can define the viewing ray for a part icular  pixel as 

= (Xz, y z ,  1). 

Any point  on this ray  is a scalar multiple of this vector  and can be parameter ized 
by its z coordinate,  yielding 

(x, y ,  z )  = z R .  
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r? 
I 

hhl 

Z ~ Zml 

Fig. 4. C a u s e  of  r ound -o f f  error .  

3.2 Basic Algorithm 

For a part icular  pixel, the square of the distance from the center  of a tom i, P~, to 
a point  on the viewing ray, z/t,  reduces to a quadratic polynomial in z. 

r~ = (zR - P i ) "  ( z / ~  - P i )  

-- z 2 ( R  . R  ) - 2 z ( R  "Pi) + ( P i ' P i )  

This  expression is algebraically correct  but  it is unfor tunate ly  susceptible to 
round-off  error. The  reason for this can be seen from Figure 4. 

The  function can be a quite narrow parabola centered possibly quite far back 
on the z axis. While commonly encountered values for the coefficients of this 
equat ion do not  themselves present  problems, solution of the equation requires 
taking differences of their  products.  This  can easily exceed the accuracy of single 
precision ari thmetic.  To avoid the necessity of multiple precision ar i thmetic  we 
adopt  a more geometrically meaningful representat ion 

r~ = (R  . R  ) ( z  - z~i)  + M i  

where 

zmi = (R  . P D / ( R  . R  ) 

M~ = (zm~[~ - P i )"  ( z m i ~  - P~) 

Here,  zm~ is the z distance of the local minimum, Mi, of r~. Each te rm in the 
density function is thus a Gaussian bump function of z centered at zm,. Th e  total  
function is the sum of several such bumps. Th e  visible z depth  value is the first 
location where this function exceeds the value T. This  is shown in Figure 5. 

If only one a tom is visible, the z depth  can be found analytically by setting the 
density t e rm for tha t  a tom equal to the threshold value of 1. 

T = 1 = e x p ( - a i r ~  - B i )  

Taking the logari thm of both  sides and substi tuting our formula for r~, 

= - z m i )  + M i ]  + Bi.  0 a i [ ( R  . R  ) (z  2 

Solving for z (note tha t  the negative square root  is taken to get the solution 
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f 

A ~ 

z - - - - ~  I 
VISIBLE POINT 

Fig. 5. D e n s i t y  f u n c t i o n  of z dep th .  ( D o t t e d  l i ne  is  s u m  of  Di.) 

closest to the eye), 

"l / a'M'- --+'-BL 
z = Zmi--  ~ l - a i ( R . R ) "  

3.3 Iterative Solution 

If  there  is more  than  one atom, an analytic solution is not  feasible and we must  
resor t  to numerical  methods.  Two popular  methods  for the i terat ive solution of 
such equat ions are Newton  i terat ion and "regula falsi." 

Newton  i terat ion works by beginning with an initial guess and refining it by. 
approximating the function D with a straight  line tangent  to the function at tha t  
point. Solving this l inear equat ion yields a new guess, z . . . .  

D ( z )  - T 
Znew ~ Z 

D ' ( z )  

Derivat ives are easily obtained from the functional form. 

d D  
- D '  = ~ - 2  a i ( R  . R ) ( z  - Zmi) e x p ( - a i r ~  - B i )  

d z  i 

Note  tha t  this calculation uses many  computat ions  in common with the calcula- 
t ion of D, so evaluation of bo th  D and D '  is relatively economical. 

Regula falsi begins with two initial guesses which are known to bracket  the 
solution: Zn, where D (z,)  < T, and zf ,  where D (zf) > T.  I t  generates a new guess 
by  drawing a line between (z,, D ( z n ) )  and (zf, D ( z f ) )  and solving for T. 

z n ( D ( z : )  - T )  - z f ( D ( z , )  - T )  

Z.ew = D ( z f )  - -  D ( z n )  

T h e  real value of D (z.ew) is then  calculated. If  D (Znew) < T then  Znew replaces Zn. 

Otherwise it replaces zf .  Thus  the range between z ,  and z f  continually contracts  
a round the correct  solution. 

If  the initial guess is close enough to the real solution, Newton  i terat ion 
converges rapidly. If  it is not  close, however,  it will diverge. Regula falsi is 
guaranteed  to converge but  does so more  slowly. We therefore  have adopted  a 
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t i 
i 

- - ~ l , . -  INITIAL 
GUESS 

Initial guess when D.~ax > T. (Dotted line is sum of Di.) 

Z 

Fig. 6. 

t 
r~ 

/ \ 

.,'72q% 
z ~  I 

IN IT IAL  
GUESS 

Fig. 7. Initial guess when Dmax < T. (Dotted line is sum of Di.) 

hybr id  solution. A value for Znew is calculated by Newton  iteration. I f  this value 
is outside the  range (Zn, Zf) then  the value is recalculated f rom the regula falsi 
formula.  Th is  process is r epea ted  until  the value of lD (Znew)  - -  T I is less than  
some error  tolerance t. 

To  generate  the  first initial guess range, we rely on some heuristics based on 
our  knowledge of the functional  form. We expect  the solution to be at  or near  
solutions to e i ther  the  individual a tom b u m p s  (Figure 6) or to the local m a x i m u m  
of a b u m p  if it does not  itself exceed the  threshold value T (Figure 7). 

We therefore  make  a list of potent ia l  initial guess z values and sort  t h e m  in 
ascending order  of  z. The  sorted list is then  scanned f rom front  to back, and, for 
each element ,  the actual  function value (i.e., the  sum of all a t o m  contributions) 
is calculated.  I f  this is less than  the threshold value, it is assumed tha t  the local 
m a x i m u m  of D near  here  does not  reach the threshold and the next  list i tem is 
evaluated.  I f  it exceeds the threshold value, t ha t  z is used as the initial value of 
zf and the  previous list i t em is used as the initial value of zn. See Figure 8. 
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f 
N 
a / \ 
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I I I I 
k.1 2 3 4 7 

y -  

INITIAL GUESSES SORTED ON Z 

FIRST TWO SKIPPED SINCE .~ D i <  T 
I 

THIRD USED SINCE .~ DI > T  
I 

Z --------4~ 

Fig. 8. I n i t i a l  g u e s s  l is t .  

3.4 Intensity Calculat ions 

W h e n  a z solution is found, it is subs t i tu ted  into eq. (*) to get the  x and y locations 
of  the  visible point  on the  surface in viewing space. To  calculate an intensity, it 
is t hen  necessary  to find the surface normal  at  this  point. Th is  can be found by  
taking the  gradient  of  the  surface defining function, F. 

For  the  funct ion we are using here  this is readily done. For  example,  the x 
componen t  will be 

OF 
-- ~ - - 2 a i ( x  -- x i )  e x p ( - - a i r ~  - -  B i ) .  

Ox i 

Finally, we can allow the  surface reflective proper t ies  (such as color) to vary  
over  the  surface by  blending t h e m  according to the  contr ibut ions f rom each a tom.  
This  is done by  taking a weighted sum of the  surface p rope r ty  f rom each a tom,  
the  weight  being chosen as the  value of Di f rom tha t  a tom.  (Recall t ha t  these  sum 
to the  threshold  value of 1.0.) Alternat ively,  as in the  ease of the  d iagrams shown 
here,  we can find the  a t o m  with the  highest  value of Di at  the visible point  and 
use its surface propert ies .  

3.5 Optimizing the Algorithm 

For  images  containing more  t han  a few a toms  (up to 4000 in some of the  images 
required for this project) ,  the s u m m a t i o n  of the D function over  all the  a toms  is 
computa t ionaUy out  of the  question. For tunate ly ,  for any  given pixel, mos t  of the  
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Q • • 

O Q • 

Fig. 9. Effect  of  different  e r ror  tolerances,  t. 

atoms are sufficiently far away from the scan ray so that their contribution to the 
D function is negligible. We can therefore economize considerably by using in 
calculations only those atoms which are "close" to the scan ray. The term "close" 
is given precise meaning by enclosing each atom in a sphere defined by 

Di (x, y, z )  = tT,  

where the value t is the same error tolerance used as the convergence criterion. 
If the scan ray intersects this sphere, there must be points along it where the 
contribution to D is large enough to matter. If, on the other hand, the scan ray is 
disjoint from the enclosing sphere, then all points on it contribute less than the 
error introduced by the termination conditions of the numeric solution. The atom 
can then be skipped. 

The value of the error tolerance, of course, determines the quality of the image. 
A larger tolerance will be faster but the image will have some noise added. Figure 
9 shows the results obtained with different values of t. The halo around each 
example indicates those pixels covered by the enclosing spheres of the atoms. 
The errors in the surface begin to be apparent with t = 0.03. They show up 
initially as a crease through the highlight at the top of the shape. 

The process of maintaining a list of "close" atoms during the rendering is 
similar to that of maintaining a list of potentially visible polygons in more 
conventional poygon-rendering algorithms (or perhaps, more properly, maintain- 
ing a list of visible spheres in a sphere-drawing program). 

We begin with the outer (y) loop. To initialize the loop, the enclosing spheres 
of all atoms are projected into screen space and the maximum and minimum 
visible y values are computed. The exact mathematics for this is given in the next 
section. The atom list is then sorted on minimum y, forming the "y-enter" list. 
During the y scan loop we maintain an additional "y-active" list of all atoms 
whose enclosing sphere includes the current scan plane. Additions to and deletions 
from this list are done incrementally each time through the loop. That  is, each 
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OLD Ys 

NEW Ys 

A 

F 

Y-ENTER 

Y-ENTER 
Y-ACTIVE 

Y-ENTER 
Y-ACTIVE 

Fig. 10. 

AT INITIALIZATION: A, B, C, D, E, F 

AT OLD Ys: D, E, F 
AT OLD Ys: A, B, C 

AT NEW Ys: E, F 
AT NEWYs: B, C, D 

y-enter~y-active l is ts .  

t ime  ys is inc remented  the  top e lement  on the  y-enter  list is examined.  I f  it is now 
above  the  new ys it is moved  to the  y-act ive  list and the  next  e lement  on the y- 
enter  list is examined.  When  the  top of the y-en te r  list is below the  new y8 then  
we know tha t  all enter ing a toms  have  been added. Now examine the  y-act ive list 
for deletions. T h e  ymh of each a t o m  on the y-act ive list is tes ted against  the  new 
y~, and if it is above it the  e lement  is removed.  See Figure 10. 

Inside the  y loop there  is an x loop which goes across the screen. Here  we 
ma in ta in  an x-act ive list with the candidates  coming f rom the y-act ive  list. This  
is done in a m a n n e r  exact ly analogous to the y loop. For  each e lement  in the y- 
act ive list the  enclosing sphere  is projected onto the  screen and the m a x i m u m  
and m i n i m u m  x value is computed.  T h e  y-act ive  list is then  sorted on Xmin and 
becomes  the  x-enter  list. Since the y-act ive list is in fact  identical to the x-enter  
list it is a lways kep t  in x-sor ted order, f rom scan line to scan line. Any addit ions 
are merged  into the list using an exchange sort. As the  scan progresses f rom left 
to r ight  the  x-enter  list is examined for enter ing a toms  to add to the x-act ive list. 
T h e  x-act ive list is then  scanned for any  exiting atoms.  See Figure 11. 

At  this point  we have, for a given pixel, a list of all a toms  whose enclosing 
sphere  intersects  the  cur rent  scan ray  th rough  tha t  pixel. Th is  list represents  a 
significant culling of the  to ta l i ty  of  a toms  to jus t  those which are re levant  to the 
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C "" 

OLD Xs NEW Xs 

X-ENTER AT OLD Xs: B 
X-ACTIVE AT OLD Xs: C, A 

X-ENTER AT NEW Xs: 
X-ACTIVE AT NEW Xs: C, B 

Fig. 11. x-enter~x-active lists. 

FIRST SECOND THIRD 

A ~ 

I A I I c I 

I B I I D 
Z-ACTIVE AT FIRST POINT: A, B 

Z-ACTIVE AT SECOND POINT: A, B 

Z-ACTIVE AT THIRD POINT: C, D 

Fig. 12. En te r ing /ex i t ing  f rom z-active list. 

current  pixel. There  is one more level of culling available, however. This is in the 
z direction. In Section 3.3 we described the technique for finding an initial point 
for the iterative solution as a scan from front to back through a z-sorted list of 
potential  solution points. If, prior to this zscan, we calculate the Zmin//Zmax values 
of the intersections of the enclosing spheres with the scan ray, we can maintain 
a z-active list as the zscan progresses. In this case, the z values examined for 
entering/exit ing tests are not  equally spaced integer values as in the x and y 
cases. They  are instead taken one at a time from the potential z list. This does 
not  alter the basic principle, however. See Figure 12. 
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4,; 

• t g  ' J  

~4 

Fig. 13. Image  containing 4000 a toms.  

W h e n  we pe r fo rm the i terat ion loop then  the  s u m m a t i o n  of the  Di will be t aken  
over  only those a toms  close enough to the  initial guess to mat te r .  For  example,  
for the  image containing over  4000 a toms  {Figure 13), there  were a t  mos t  6 a toms  
on the  z-act ive list for the i terat ion and usually much  less. 

3.6 Calculating the Range in x, y, and z 

In this section we explicitly indicate how to calculate the x, y, and z extents  of the 
enclosing sphere  of  an a tom.  Such enclosing spheres  are defined, as described in 
Sect ion 3.5, by  the  equat ion 

t T  = Di  = e x p ( - a i r ~  - B i ) .  

Taking  the  logar i thm (and recalling tha t  T = 1), we t rans form this into the 
equat ion  for a quadric surface 

0 = air~ + (Bi + in t). 

To  calculate ZmjZmax for the  range tes t  of the  zscan, we subst i tu te  the expression 
for r~ in t e rms  of z: 

0 = ai[ (R . R  )(z - Zmi) 2 + Mi] + (Bi + in t) 

and  solve for z: 

where  

Z m i n  ~ Z m i  - -  Dz 

Z m a x  ~ Z m i  "~  Dz 

x / a i M i  + B i  + In t 

T h e r e  will be two roots  to this as long as the expression under  the radical  is 
positive. T h e  curve defined by  set t ing this equal  to zero will then  define the 
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project ion of the  s i lhouet te  outlines of  the enclosing sphere  onto the screen: 

aiM~ + Bi  + in t = 0 

Subst i tu t ing  the definition of Mi and Zmi we can t rans form this into 

Bi + In t 
A { R . R } -  (R .P i )  2 = 0  where A =  (Pi .P i )  + - -  

ai 

Recalling t ha t  R = (xz, yz, 1) we get 

h(x~ + y2z + 1) - (XzXi + yzyi  + zg) e = O. 

Now for a par t icular  scan line, y ,  is constant.  We then  have  a quadrat ic  equat ion 
in xz whose solutions give the range in xz for tha t  scan line. 

x2( A - x 2) + X z ( - 2 x i ( y z y i  + zi))  + (h(yz 2 + 1) - ( y z y i  + z,) 2) = 0 

T h e  solutions to this equat ion (X, mm, X . . . .  ) mus t  still be conver ted  to pixel 
coordinates  (X~mi,, X . . . .  ) by reference to eq. (*). 

T h e  above equat ion will have  two roots  at  all values of yz for which its 
d iscr iminant  is positive. T h e  values of  yz for which this discr iminant  becomes 
zero therefore  yield the m a x i m u m  and m i n i m u m  yz for which the enclosing sphere 
is visible. 

4 x ~ ( y ~ y i + z i )  2 - 4 ( A  x~) A 2 _ - ( ( y z  + 1) (y~yi  + z,) 2) = 0 

Again, the two solutions for yz f rom this equat ion mus t  be conver ted to pixel 
coordinates  via eq. (*). 

In bo th  the  x and y cases, the pixel range for the enclosing sphere  mus t  be 
in tersected with the pixel range of the  display. This  effectively means  tha t  we are 
per forming  clipping in screen space. I f  the range of the sphere  is complete ly  
outside the  screen then  it can be el iminated entirely. 

4. TIMING 

T h e  rendering algori thm, while making  some quite interesting shapes,  is not  
terrifically fast. In  an effort  to see where the t ime is spent  within the a lgori thm 
it was ins t rumented  for t iming measurements .  Tab le  1 shows the results  for the 
calculat ions involved in generat ing Figure 14, containing 64 atoms.  Again, the 
halo a round the molecule represents  the enclosing spheres of the a toms  and 
indicates the  pixel range over  which calculations are made.  

Note  tha t  even though the y scan  and xscan  rout ines take quite a while (since 
they  have  to deal with larger active lists), their  net  contr ibut ion to the running 
t ime is small  since they  are called only once per  image and once per  potent ial ly  
occupied scan line, respectively.  The  zcalc routine is where the values of zm,, M~, 
and so forth,  are calculated for all the a toms  on the  z-active list. This  is wha t  
takes  mos t  of  the time. Pa r t  of the  reason for this is not  so much  the amoun t  of 
t ime  spent  in the  rout ine as the  very  large n u m b e r  of t imes it is called. I t  is called 
once for each pixel covered by any  enclosing sphere,  while the i terat ion and 
shading rout ine  are called once per  actual ly occupied pixel. 

We also present  h is tograms of the sizes of the active lists for each of the nested 
scans. Each  bin of the  h is togram counts  the n u m b e r  of t imes a given size of active 
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Table I. Timing for the calculations involved in generating Figure 14. 

N u m b e r  To ta l  t ime T i m e / c a l l  % of to ta l  

Rou t ine  of calls (seconds} (msec) t ime  

xscan 1 0.01 99.34 0.0 
yscan 163 9.57 58.69 6.5 
zcalc 31036 58.57 1.89 39.5 
zscan 17926 22.63 1.26 15.3 

I t e ra t ion  16762 25.20 1.50 17.0 
Shad ing  16762 32.28 1.92 21.8 

To ta l  - -  148.25 - -  - -  

Fig. 14. Sample  image for t iming  test.  

list is passed to the routine. Note  that ,  due to the culling process, the i terat ion 
and shading routines were usually called with active lists of length 3 or less. See 
Figure 15 (pages 252-253). 

5. HIERARCHICAL MODELING 

T h e  implementa t ion  of this algori thm was done on a PDP-11, which allows 
l imited address space for user programs. The re  is not  enough user memory  for a 
program which does both  the modeling and rendering for systems of atoms of the 
size desired. Accordingly the process is divided into two programs which com- 
municate  via a t empora ry  file. This  file is, in fact, just  the y-enter  list sorted on 
ymax for the enclosing volume of each atom. A general purpose modeling program 
accepts commands  controlling the positioning and blobbiness parameters  of 
atoms, global lighting, viewing parameters ,  and so forth. I t  then  writes out  the 
sorted y-enter  list into a t empora ry  file. The  rendering program then  reads in this 
file, a tom by atom, as the scan proceeds down the screen. This  frees the rendering 
program from any restrictions on the total  number  of a toms visible. I t  needs only 
to read one a tom ahead of itself in the y-enter  list Erie to be able to tell when the 
next  a tom is to enter  the y-active list. Internal ly  it maintains only the y-active 
list and thus  has restrictions only on the maximum number  of a toms visible on 
any one scan line. (This technique has also been used by the au thor  in polygon- 
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rendering programs and bicubic patch-rendering programs, the lists in those cases 
being of polygons or patches.) 

The r e  are still some limits on the maximum number  of atoms which the 
modeling program can maintain. These  can be relaxed by inserting a separate 
sorting module between the modeler  and the renderer.  The  modeler  then  does 
not  need to be able to store all the a toms in a scene. It  just  concerns itself with 
command  line interpretat ion,  setting parameters ,  and transforming atoms to 
viewing space. I t  writes out  the a tom list as it reads it f rom a molecule definition 
file. The  sorter  then  is a small program with a large array. It  reads the y-enter  list 
file, sorts the data, and writes it out  again. 

For  the purposes of modeling large polymerized molecules (like DNA) an 
al ternat ive hierarchical  modeling scheme was employed. Polymers  are made up 
of a large collection of a few basic modules. For  DNA these modules are the four 
nucleotides and a few free radicals used to simulate the replication process. Each 
module is modeled as a rigid body at  an arbi t rary  position and orientation. The  
definition of a module lists its const i tuent  atoms and the radius of an enclosing 
sphere for the entire module. When an image is to be made, the modules are first 
sorted in an order  based on the minimum y+ of their  enclosing spheres. Th en  a 
scan is made in the y direction to generate the entire y-enter  list of atoms directly 
in sorted order. For  each new y, value the y-module list is examined to see if any 
modules have become active. When  a module becomes active it is expanded into 
its const i tuent  a toms which are then  t ransformed into viewing space according to 
the module 's  or ientat ion and position. These  atoms are added to a candidate y- 
enter  pool. When  all newly act ivated modules have been expanded, the candidate 
y-enter  pool is examined. Any atoms which have actually become visible on the 
scan line are wri t ten to the y-enter  file. The  advantage of this process is tha t  the 
candidate  y-enter  pool never  gets very large and can therefore handle large 
structures.  

6. EXTENSIONS 

The  initial algori thm was devised for a special purpose task. We examine here  
some simple generalizations of the process to give a wider range of shapes which 
can be modeled. 

6.1 General Quadric Seeds 

One obvious extension to the shapes defined so far is to provide for nonspherical  
primitive shapes. Recall the original defining equation consisted of terms 

e x p ( - a i r ~  - B i ) .  

The  exponent  of e is just  a special case quadric: 

- a i r ~  - B i  = - a i ( ( x  - x i )  2 + ( y  - y i )  2 + ( z  - z i )  2) - B i  ! 0 0 - x t r x  1 
1 0 -Y, l lY l  

= ( x y z l ) ( - a i )  0 1 -Z / l /Z  / 

x i  - Y i  - z i  PJL 1 J  
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where 

p x ~ 2 z ~ Bi = ~ + y i +  l + - - .  ai 

By allowing general quadrics here, we can have ellipsoids, cylinders, planes, and 
so forth, as modeling primitives. This  is done by beginning with a canonical unit  
sphere at the origin defined by 

0 0 ijlil 0 = ( x y z l )  0 - B i  0 
0 0 - B i  

0 0 0 

This  is then  scaled, rotated,  and t ranslated to the desired location by the s tandard 
t ransformat ion techniques for quadrics [1], tha t  is, mult iply on the left by the 
inverse of the t ransformat ion matr ix  and on the right by the transpose of the 
inverse. 

Q'  = T - 1 Q T  - i t  where T is t ransformat ion such tha t  

( x ' y '  z ' w ' )  = ( x y z w )  T 

This  expression is chosen to preserve the relationship: 

if ( x y z w ) Q ( x y z w )  t = 0 

then  ( x ' y ' z ' w ' ) Q ' ( x ' y ' z ' w ' )  t = 0 

T h e  reader  can verify tha t  by  scaling the matr ix  by Ri  and translating it to (xi, yi ,  
zi)  one obtains just  the special case formulat ion we used above for pure spheres. 
The  generalization of most  of the other  equations in the preceding discussion can 
be performed by making the following replacements:  

a i ( R . R )  becomes R Q ' R  t 

a i (Pi .  R ) becomes . ~ Q , ~ t  

a i ( P i . P i )  + Bi  becomes WQ'V~ rt 

where 

Q' = t ransformed (4 × 4) quadric matr ix  
W = ( 0  0 0 1) 
R = {xz yz 1 O) 

A sample picture appears  in Figure 16. 
For  shapes of infinite extent,  such as cylinders, the calculation of m ax /m in  

values in x, or ys may  yield an infinite range. This  occurs when there  are no 
solutions to the range determining quadratic equations of Sect ion 3.6. To  handle  
these si tuations properly we must  recall tha t  we are solving these equations not  
so much  to find their  zeros as to find the region where the quadrat ic  polynomial  
is positive (since its square root  is required later). In the general case this may  
yield one finite span (for ellipsoids), one infinite span (the axis of a cylinder) or 
two semiinfinite spans (hyperboloids). With proper  care in examining the poly- 
nomial  these cases can be readily distinguished. 
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Fig. 16. Image generated using general quadric exponents. 

Fig. 17. Effects of negative volumes. 

6.2 Negative Volumes 

Another extension is to allow negative values for bi. This effectively gives negative 
volumes. They are not visible themselves, but when placed near normal objects 
they make dents. This is because their density contributions are being subtracted 
from the summation. A sample image appears in Figure 17. 

In fact, with some adjustments to the algorithm it should be possible to allow 
complex values for the bi. This would prove useful for molecular simulations since 
quantum wave functions are actually complex valued functions. We could there- 
fore represent antibonding orbitals. 

6.3 Hyperellipsoids 

A more general surface shape can be provided by allowing exponents other than 
2 on the terms of the exponent. 

\ 
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6.4 Other Bump Functions 

The final extension considered here involves alterations to the exponential 
function. We can use any shape that has the same general form. In fact, the 
implementation of the algorithm here uses a table lookup procedure with inter- 
polation for rapid evaluation of the exponential function. By placing different 
values in the table we can easily change the shape of the bump function. Care 
should be taken not to defeat the heuristics for the selection of initial guesses for 
the numerical solution. Basically the function must equal 1 at f(0) and increase 
monotonically over the range used. 

7. CONCLUSIONS 

We have presented an algorithm which simultaneously models and renders a 
class of surfaces which have an interesting visual appearance and should prove 
useful for a variety of applications. Some simple extensions to this process show 
promise of generating other interesting shapes. 

All raster scan image synthesis algorithms must address the problem of anti- 
aliasing (e.g., area sampling). Algorithms based on algebraic surfaces are fairly 
entrenched in point sampling. This creates problems mostly at silhouette edges 
since the main body of the surface shape does not have any high frequencies to 
alias. No explicit anti-aliasing has yet been attempted on the images presented 
here. This would be a fruitful topic for further research. 
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