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ABSTRACT 

The study of the physical process of light 
interacting with matter is an important part of 
computer image synthesis since it forms the basis 
for calculations of intensities in the picture. 
The simpler models used in the past are being 
augmented by more complex models gleaned from the 
physics literature. This paper is another step in 
the direction of assimilating such knowledge. It 
concerns the statistical simulation of light 
passing through and being reflected by clouds of 
similar small particles. (It does not, however, 
address the cloud structure modeling problem). By 
extension it can be applied to surfaces completely 
covered by dust and is therefore a physical basis 
for various theories of diffuse reflection. 

CR Categories and Subject Descriptors: 1.3.3 
[Computer Graphics] : Picture/Image Generation - 
display algorithas; I. 3.7 [Computer Graphics] : 
Three-Dimensional Graphics and Realism - Visible 
I ine/surface algorithn 

General Terms: Algorithms, Theory 

i. INTRODUCTION 

Computer image synthesis requires the calculation 
of intensities of light reflecting from an object. 
Such calculations are based on the physics of 
light interaction with the surface and on the 
geometry of the light sources. Intensity functions 
are generally expressed in terms of the vector 
quantities shown in figure i. 
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N = Vector perpendicular to the reflecting surface 
L = Vector in the direction of the light source 
E = Vector in the direction of the observer 

Figure i - Lighting Geometry 

Care must be taken in choosing the direction of 
the vector N. Two opposite directions will equally 
well describe the orientation of the surface. It 
usual to choose the direction which forms a 
positive dot product with E. 

Computer graphics first used the simplest of 
models, Lambert' s law, where the observed 
intensity is assigned proportional to the projected 
areas of the light source on the surface, thus: 

I = a (N.L) for N.L > 0 
= 0 for N.L < 0 

Later models [1,2] enhanced this by adding a 
specular component which is a function of all 
three vectors: 

I = a (N.L) + b Spec(N,L,E) 

These models were applied to solid surfaces and 
produced good simulations of both matte" (diffuse 
reflecting) and shiny (specularly reflecting) 
sur faces. 

One of the current frontiers in computer image 
synthesis is the simulation of fuzzy or cloudy 
surfaces [14]° Some initial efforts on this 
problem have been undertaken by Nelson Max at 
Lawrence Livermore Laboratory [13] and Roger 
Wilson at Ohio State University. The problem has 
two components, the modeling of the cloud density 
as a function of position in space, and the 
simulation ,of how light interacts with this 
density function. The modeling problem will not be 
addressed here. 
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This paper presents some simple simulations 
relevant to the second part of the problem. This 
work was motivated by the need to synthesize 
images of another type of cloudy object, the rings 
of the planet Saturn. This problem has the 
advantage that it is a fairly simple geometric 
situation and attention can be paid to the light 
reflection portion of the problem. 

2. SINGLE SCATFERING CLOUD MODEL 

The exact simulation of light interacting with 
clouds of particles is, in general, a very complex 
problem. It is extensively studied by the 
discipline known as Radiative Transport Theory. 
The classic work in the field is by Chandrasekhar 
[3]. Unfortt~nately this book is somewhat 
inaccessible for all but the mathematically 
sophisticated. Various of the simpler results have 
been presented elsewhere, however [5,8,10] and it 
is to these that we turn. 

2.1 Geometry of the Model 

The basic model, shown in figure 2, assumes a 
cloud of spherical reflecting particles of radius 
p , positioned randomly in a layer of thickness T, 
and having number density n (That is, there are n 
particles per unit volume). The proportional 
volume of the cloud occupied by particles is then 
the number density times the volume of one 
particle: 

3 
D = n (4/3)'~" p 

This will have values between 0 and 1 but will 
presumably be small for fairly diffuse clouds. 
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Figure 2 - Geometry of Cloud Layer 

We wish to find the amount of light escaping from 
the layer in the direction of E after entering 
from the direction L and reflecting off one or 
more particles. We would also like to find the 
transparency of the layer, Tr, the amount of light 
showing through the layer from behind, i.e. from 
the direction -E. 

In the literature on the subject the following 
notation is used for the angles between the three 
lighting vectors N, L and E. 

incident angle = i cos(i) = ~/0 = N.L 
emission angle = e cos(e) = 2~ = N.E 
phase angle = a cos(a) = L.E 

The angle between L and E is called the phase 
angle. A phase angle of zero occurs when light is 
coming from directly behind the viewer. When 
observing the moon, for example, this situation 
corresponds to a full moon. As the moon goes 
through its various phases the phase angle cycles 
through 360 degrees. 

We will make a series of simplifying assumptions 
about the physical system which will make the 
problem analytically tractable. The result will be 
a brightness function of form: 

B =w/y ~(a) s 

where 
w = albedo of individual particles (section 2.3) 
u = cosine of emission angle = N.E 

= Phase function of a (section 2.2) 
S = Scattering probability (section 2.4) 

The brightness calculations to follow will 
determine a brightness per unit area of the 
surface. An observer viewing the surface at a 
shallow angle e sees a greater portion of the 
surface projected into one pixel than an observer 
viewing it perpendicularly. This projected area is 
taken into consideration by the division by N.E. 
The remaining terms are discussed in sections 
below. 

2.2 Phase Function 

Each particle is too ~nall to be seen individually 
and so its observed brightness is the integral of 
the contributions over its observed area. Due to 
the symmetry of the particles this net brightness 
can be assumed to vary only as a function of the 
lighting direction from the point of view of the 
observer. This is the angle between E and L, the 
phase angle a. A function characterizing the total 
brightness of a particle as a function of this 
angle is called a phase function, ~(a). For 
exanple, if the particles are substantially larger 
than the wavelength of light, diffraction at the 
edges of the particles is negligible and the phase 
function will be as in figure 3. ~he exact form of 
various useful 
in section 3. 
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Figure 3 - Definition of Phase Function 
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2.3 Albedo 

The next simplifying assumption is that the 
primary effect is from the interaction of a ray of 
light with a single particle, i.e. multiple 
reflections will be considered negligable. This 
will be true if the albedo, w, of each particle is 
small. (Albedo is the proportion of light 
reflected from a particle vs. light impinging on 
it, i.e. the reflectivity of the particle). The 
net brightness will be proportional to w. 

2.4 Scattering 

The final effect on the brightness will be due to 
the shadowing and blocking effect of other 
particles on the light ray as it enters and exits 
the cloud layer. The model asserts that a ray of 
light will be visible if there are no other 
particles in the way along this path. For example; 
for a particle at depth T' in the layer, 
illuminated from above, a ray of light will bounce 
off it and be visible if no other particles 
encroach on the volt,he formed by the two cylinders 
Vin and Vout having radius p in figure 4. 

ut eem t  
...... V m ' 6 ~ - - ~  Vim for light ray to enter at 

L and escape to E. 

Figure 4 - Scattering Conditions 

All other particles are assLmed to be of radius p 
also. For such a particle to be completely outside 
the cylinder its center must be outside this 
volume. Statistically, then, the attenuation of 
light traversing a cylinder of radius p and volume 
V is P(0;V) = the probability of 0 particles in 
volume V. Now the expected number of particles in 
a given volume V is nV. If n is small this can be 
modelled as a Poisson process and 

P(0;V) = exp(-nV) 

An approximation is made here that two particles 
being inside V are independent events. In reality, 
the impossibility of mutual overlap makes them 
slightly dependant. We can neglect this if D is 
small. 

The brightness due to a given layer dT' within the 
cloud is the product of 

2 
projected viewing area = ~7 p/)] 
brightness of particle = w ~(a) 
expected number of particles/unit area = n dT' 
probability particle will be illt~inated = p(0;V) 

The net brightness of the cloud will be the 
integral of this function over T. This reduces to 

T 2f 
B = w/]J ~(a) n ~ p P(0;V) dT' 

0 

There are two cases to be considered here. The top 
lit case, where N.L > 0, is shown in figure 5. 

\ 2 

F i g u r e  5 - T o p  L i t  

Note that there is an approximation introduced 
here in that the overlap between cylinders Vin and 
Vout is being neglected. That is, some of the 
volume is being counted twice. This becomes 
significant only when E~L and .will be addressed 

later. 

B=__w , r  - - ( " P  ' +~P_C_CJ-; , ~(~-) n~-p ~ ~ ~o  /~ " ~I.T 
J 
o 

~lhe bottom lit case, where N.L < 0, is illustrated 

in figure 6. 
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Figure 6 - Bottom Lit 
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Note that the variables T, n and p occur in the 
above expressions only in the form of 

2 
n~" p T 

This dimensionless quantity is called the "optical 
depth" and is written . Light traveling through a 
cloud of optical depth "~" is attenuated by the 
factor exp(-T). In terms of this quantity the 
final brightness function is 
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Top lit: 
-"r( l l l . ,o + l /F )  

B = w ~(a) }/01(p0+p) (i- e 

Bottom lit: 

B = w ~(a) p0/(F0+p) (e - e ) 

Note that in this latter case we may have a 
singularity if ~0=-~. Here we must perform the 
substitution before the integration and get 

_.r/~ 
B = W ~(a) "r/~ e 

2.5 Transparency 

The transparency of the cloud layer is the amount 
of light coming from directly behind the cloud 
which is not blocked off by particles. This will 
be the probability that a light ray does not 
encounter a particle in travelling through the 
layer. See figure 7. For arguments similar to the 
above it will be the probability that a cylinder 
of radius p extending through the layer has no 
particles in it. That is: 

-~-/~ 
T r  = e 

,z& 
Figure 7 - Transparency 

One may,_ in addition add a term for the forward 
scattering of the background through the cloud 

Tr = e + w ~(=) 

2.6 Net Intensity calculation 

The new brightness to be displayed at a given 
pixel for a cloud overlayed on a background color 
Bkg is 

Bnew = B + Tr * Bkg 

2.7 The HaDke-Irvin e Function 

An important special case of this function was 
presented by Ha~ke [8] and Irvine [i0]. They 
proposed to model a dust covered surface or a 
dense atmosphere as a cloud with an infinite 
optical depth. In this case the top lit brightness 
function becomes 

B = w ~(a) (N.L)/(N.L+N.E) 

Note that 
light is 
reduces to 

for the case where L=E (i.e. where the 
directly behind the observer) this 

B =1/2w ~(a) 

i.e.. a constant for any value of N. Recall that 
L=E corresponds to the situation during a full 
moon. This result, then, says that the entire disk 
of the full moon should have a uniform intensity, 
independant of the variation in normal vector from 
center to edges. 

3. PHASE FUNCTIONS 

We now turn to the phase function used in the 
above models. The form of the phase function 
depends on the physical structure of the 
individual particles. Several functions have been 
proposed in the literature. The simplest are 
motivated more due to their mathematical 
simplicity than for physical reasons. 

3.1 Constant Function 

The simplest function used in the earliest of 
models assumes isotropic scattering [4] and is 
simply a constant. 

~(a) = 1 

This function corresponds to the situation where 
the size of the scattering particles is 
substantially less than the wavelength of the 
I ight. 

3.2 Anisotropic 

The next most complex form takes account of the 
fact that more light should be reflected back 
toward the light source than forward. Its form has 
been chosen to be simple algebraically and of 
roughly the correct shape for this effect. 

~(a) = F(a) = 1 + x cos(a) 

where x = adjustable property of material. 

3.3 Lambert surfaces 

The first really physically motivated function 
assumes each sphere to reflect light according to 
Lambert's Law. Integrating the brightness of the 
visible disk of a particle for a given viewing 
direction yields [4] 

~0(a) = L(a) = (8/3~r) (sin(a) + (17"-a) cos(a)) 

3.4 Rayleigh Scattering 

For particles which are small compared to the 
wavelength of the light, diffraction effects 
predominate. This situation was first discussed by 
Lord Rayleigh [7] yielding the function 

2 
~0(a) = 3/4 (i + cos a) 

Note that with this function, as much light is 
scattered in the forward direction as in the 
backward direction. 
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3.5 Henyey-Greenstein 

The analytic function which see~s most popular in 
the literature is due to Henyey and Greenstein [9] 

2 2 3/2 
~(a) = HG(g,a) = (l-g) / (l+g -2 g cos(a)) 

This is just the equation of an ellipse in polar 
coordinates, centered at one focus. The parameter 
g is the eccentricity of the ellipse and is a 
property of the material. It can be used to 
generate a primarily forward scattering function 
(g<0) or a primarily backward scattering function 
(g>0) or an isotropic function (9=0). The physical 
relevance of this function is confirmed by its 
very good fit, using a value of g=.325, to 
empirical data of dark rough surfaces such as 
furnace slag [16]. 

3.6 Empirical Measurements 

Some surfaces have been empirically measured and 
the resulting phase function tabulated. One 
example is measurements of the surfaces of the two 
moons of mars, Deimos and Phobos. The results are 
listed in [12] 

3.7 Sums of Functions 

Some approximate simulation can be made of clouds 
of non-equal-sized particles by using a net phase 
function that is a weighted average of several 
functions, each applicable to a different size of 
particle. This was done originally by Hapke in 
approximating the phase function for particles on 
the surface of the moon. He added a forward 
scattering function to a Lambert function to get: 

(a) = wl L(a) + w2 F(a) 

The first term accounts for the back scattering of 
the rough particles and the second term accounts 
for the forward scattering of glass-like spherical 
particles. 

This technique was later employed by Esposito and 
Lumme [4] for the rings of Saturn, using two 
Henyey-Greenstein functions 

~(a) = wl HG(gl,a) + w2 HG(g2,a) 

They achieved a fair match to earth based 
observations with 

wl = .596 gl = .5 
w2 = .404 g2 = -.5 

The first term accounts for the back-scattering of 
the large particles, the second term accounts for 
the forward scattering of the smaller particles. 

4. RESULTS OF SINGLE SCATFERING MODEL 

4.1 Variation with Incident/Emission Angle 

Figure 8 shows a plot of the amount of light 
reflected from a surface as a result of an 
incident ray at four different angles from the 

surface normal (36, 72, 108, and 144 degrees). 
Note that the brightness function for an incident 
angle of 144 degrees is the same as the function 
at 36 degrees viewed from the other side of the 
cloud layer. 

The rectangular shape represents the cloud layer 
and has two embedded coordinate axes to emphasize 
the location of the incident ray, coming from the 
right. The distance from this point to the surface 
in a given direction represents the amount of 
light scattered in that direction. This is the 
value of the brightness function, omitting the 
division by the viewing angle term N.E. In 
addition, to minimize confusion, the phase 
function is taken to be unity. Any given phase 
function will be symmetrical about the incident 
ray and will scale the brightness values plotted 
here. 

Note that most of the light is reflected in 
directions perpendicular to the cloud layer. This 
is to be expected since this represents the 
shortest emission path and thus the least 
likelihood of encountering a blocking particle. 
Also note that the reflected light diminishes with 
increasing incidence angle since this represents a 
longer incident path and thus a greater likelihood 
of encountering a blocking particle. 

4.2 Variations With Optical Depth 

Figure 8 also shows the function for four 
different values of "~= i000, 2., 0.5 and 0.I. 

For light reflected from the top of the cloud the 
brightness increases as 9" increases since there 
are more and more scattering particles. The 
brightness reaches a finite limit (the 
Hapke-Irvine function) as ";~approaches infinity. 

Light scattered through the cloud appears as a 

blob on the opposite side of the rectangle than 
the incident light ray. Note that for low values 
of "r an appreciable amount of light comes out the 
bottom of the cloud. As "Y increases the scattered 
brightness reaches a maximtun and then begins to 
decreased as the shadowing and blocking effect 
predominates. In the limit of~=infinity the cloud 
layer is opaque and no light gets through. 

4.3 Application to the rings of Saturn 

The rings of Saturn consist of a cloud of 
reflective ice particles in orbit about the 
planet. The optical depth, albedo and size 
distribution of scattering particles in the rings 
varies with radius from the planet. A phase 
function which can account for this is 

w(r) ~(a,r) = wl(r) L(a) + w2(r) HG(-.5,a) 

Note that we have merged the albedo and phase 
function proportions into just the two 
coefficients wl and w2. Tabulated values for 
wl(r), w2(r), and T(r) were derived from Voyager 1 
photographs taken at a few known viewing 
geometries by substituting observed brightnesses 
into the above equations and solving for wl,w2, 
and q~. The database was then used to synthesize 
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Figure 8 - Brightness Function 

i = 144 

views of the rings at other viewing geometries. 
Figures 9a and 9b show t~D synthesized views of 
Saturn's rings looking down on the sunlit side and 
up at the unlit side respectively. 

4.4 Atmosphere Simulation 

Figure i0 shows a simple usage of the cloud 
function to simulate a cloud layer over a 
hypothetical planet. For ease of interpretation, 
the surface feature map on the planet is a 
collection of randomly colored squares seen 
unclouded in the image on the left. The overlying 
cloud layer is modelled with a random texture 
pattern specifying the value of "I". The image in 
the center shows this in front of a uniformly 
colored background to illustrate the brightness 
and opacity variations. Note the increase in 
brightness and opacity on the left limb. The image 
on the right shows the combined planet and cloud 
layer. 

5. EXTENSIONS TO THE MODEL 

Extensions to the classical single scattering 
model generally consist of finding ways to correct 
for the various simplifying assumptions made 
above, thus making the model applicable to a wider 
range of situations. 

5.1 Extension to Greater Density. 

Tne probability of finding zero particles in 
volume V was taken to be due to a Poisson process, 
exp(-nV). This, however, admits to the possibility 
of more than one particle occupying the same 
vol~ne. Esposito [6] derived a fairly simple 
correction term by using a somewhat altered number 
density 

n' = n/(l-D) 
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Figure 9a - Saturn Rings (Illuminated side) Figure 9b - Saturn Rings (Un-Illuminated side) 

This results in an effective optical depth 

t' = t/(l-D) 

~br the very small values of D for which the 
approximation was valid this reduces to the 
classical result. When D approaches 1 (i.e. a 
solid packing of scattering particles) the 
effective optical depth approaches infinity, as 
would be expected. Note that this extension is 
particularly nice in that it only alters the value 
of the input parameter to the brightness function 
but does not otherwise alter the properties of 
that function. 

5.2 Shadowing Effect 

The scattering function was derived from 
considering the volume of two cylinders for 
entering and exiting rays of light. At that time 
is was mentioned that there was a small overlap 
between the cylinders Vin and Vout which was 
neglected. This overlap actually becomes quite 
significant when L=E (p=p0). The two cylinders, in 
fact, coincide and the entire volume is 
erroneously counted twice. This geometrical 
situation will yield a brighter observed intensity 
than that predicted by the simple model. The 
correct value will be produced by counting only 

Planet Surface Cloud Layer Cloud Covered Planet 

Figure i0 - Simulation of Cloudy Atmosphere 
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Vin (=Vout). Substituting ~=p0 into the old 
expression 

Iold = w ~(a) .5(1 - e ) 

Substituting V=Vin into the original integral 
equation and re-integrating 

Inew = w ~(a) (i - e ) 

The overlap for more general values of a is a bit 
more tricky. Solutions to this problem have been 
given by HaFke [8], Irvine [i0], and Esposito [6]. 
They each conclude that the correction to 
compensate for this overlap effect depends on both 
the phase angle, a, and on the volt, he density, D. 
The mathematical form of these various corrections 
is complex. We can, however, generate a correcton 
factor with approximately the right shape in a 
more simple manner. At a=0 the factor is 
Inew/Io!d. As a increases the effect of the 
overlap becomes more and more unimportant and the 
correction factor drops back to 1.0. The rate of 
decrease of the correction is a function of D; for 
small values of D the correction drops off 
quickly, for larger values it drops off slowly. 
Such a function can be constructed in a similar 
manner to the bt~np functions of [i]. 

5.3 Multiple Scattering 

If the individual particles have an appreciable 
albedo the effects of second and higher order 
scattering cannot be ignored. Veverka [16] has 
shown experimentally that this happens at values 
of w above 0.3. Above this value, multiple 
scattering effects must be accounted for. The 
basic idea of simulations of this effect is to 
expand the net intensity in what is called a 
Neumann series. 

o~ 
I (q',N,E, L) = ~-- 

n 
w In ('r,N, E, L) 

where 
w = single 
I (~,N,E, L) = 

In (~',N, E, L) = 

scattering albedo 
intensity at optical depth 
in direction E 
intensity of photons scattered 
exactly n times 

With the single scattering theory we have 
effectively calculated only Ii ('<,N, E, L). 

Various approaches have been used to find the 
total intensity I. Chandrasekhar [3] has reduced 
the solution to 

I o<H(i,a) H(e,a) 

where the H functions are defined by some quite 
complex simultaneous integral equations. Another 
approach [6] uses Markov chains to nt~nerically 
simulate the possible random scattering sequences. 
Yet another approach, called the doubling method, 
constructs a total picture of reflected intensity 
by building up layers of increasing optical depth. 

The intensity is discretized over a finite namber 
of angular directions. Tne intensity for a layer 
of depth 2~'is found from two layers of depth q'. 
This is done by processing all sets of 
interactions for all possible combinations of the 
discretized directions between the two layers. 
This algorithm is described more fully in [7]. 

As might be inferred from the above discussion, 
the accurate simulation of multiple scattering 
requires a substantial amount of computation time, 
certainly more than would be practical on a pixel 
by pixel basis for the purposes of image 
synthesis. About the only practical approach would 
be to pre-evaluate such a function for various 
input parameters and generate a large look-up 
table for use in graphics applications. Certainly 
more work needs to be done here. 

The importance of multiple scattering is alluded 
to by Veverka when he points out that in the limit 
the multiple scattering law should provide a 
physical basis for the, so far, purely empirical 
Lambert's law. In fact, the surface of Jupiter, 
which is all clouds, follows the ideal Lambert law 
very closely. 

6. CONCLUSIONS 

Computer graphics can benefit greatly from 
examination of the existing literature on light 
interacting with matter. Early models used for 
image synthesis, crude but effective, are being 
replaced by more accurate models. Earlier efforts 
in this regard have done extremely well for 
specular reflection. The models presented here are 
the beginnings of a more complete simulation of 
diffuse reflection. 

~he problem of clouds is still not solved. The 
extension of this model to the simulation of an 
arbitrarily varying spatial density function of 
scatterers, with multiple reflections and 
different amotmts of shadowing from any direction 
is not straightforward. The models provided here 
do, however, represent some initial steps in that 
direction. 
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