
possibility of designing a practical multiplier chip which 
attains these bounds remains open. 
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This paper presents three scan line methods for 
drawing pictures of parametrically defined surfaces. A 
scan line algorithm is characterized by the order in 
which it generates the picture elements of the image. 
These are generated left to right, top to bottom in 
much the same way as a picture is scanned out on a TV 
screen. Parametrically defined surfaces are those 
generated by a set of bivariate functions defining the X, 
Y, and Z position of points on the surface. The primary 
driving mechanism behind such an algorithm is the 
inversion of the functions used to define the surface. In 
this paper, three different methods for doing the 
numerical inversion are presented along with an 
overview of scan line methods. 
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1. Introduction 

Computer aided design has long been concerned with 
the design of parametrically representable surfaces. Such 
surfaces are those defined by three bivariate functions: 

X = X(u, v) 
Y = Y(u, v) 
Z = Z(u, v) 

As the parameters vary between 0 and 1, the functions 
sweep out the surface in question. The mathematical 
representation of these surfaces provides shapes with 
pleasing properties of continuity and smoothness. Until 
recently, the only method for drawing shaded pictures of  
such a surface has been to divide it into many polygonal 
facets and to apply any of several polygon drawing 
algorithms. A few years ago, Catmull [3] devised one of 
the first algorithms for drawing bicubic parametric sur- 
faces directly from the mathematical surface formula- 
tion. While this algorithm generates images of superior 
quality, it still has some drawbacks. These have to do 
with speed and memory requirements and the ease of 
performing anti-aliasing operations. These drawbacks 
are eliminated by the class of algorithms known as scan 
line algorithms. Such algorithms generate the picture 
elements in order from left to right, top to bottom on the 
screen, much as a television might scan them out. The 
algorithms described here are scan line based algorithms 
for generating such images which remove some of the 
difficulties of Catmull's algorithm without substantial 
sacrifice in picture quality. Before presenting the new 
methods, however, it will be useful to review scan line 
techniques for polygonal objects. 

2. Scan Line Algorithms 

Each of the new algorithms is a generalization of 
more conventional scan line algorithms for drawing poly- 
gonal objects. It is therefore worthwhile to examine 
conceptually what is happening during a scan line algo- 
rithm for polygons. It is assumed for both the polygonal 
case and the parametric curve case that the objects to be 
drawn have been transformed to a screen space with X 
going to the right, Y going up, and Z going into the 
screen. Furthermore, the perspective transformation is 
assumed to have been performed on all objects as de- 

Editor's Note: This is a combination of three individual papers 
previously accepted for publication in Communications of  the A CM. 
The papers were "A Scan Line Algorithm for the Computer Display 
of Parametrically Defined Surfaces" by J. Lane and L. Carpenter, "A 
Scan Line Algorithm for Displaying Parametrically Defined Surfaces" 
by J. Blinn, and "A Scan Line Algorithm for Computer Display of 
Curved Surfaces" by T. Whitted. The latter two papers were presented 
at SIGGRAPH '78. The section editor is grateful to J. Blinn for 
suggesting that the papers be merged, and to J. Lane for managing the 
production of the new paper.--J.D. Foley 
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scribed in [6, 14] so that an orthographic projection of X 
and Y onto the screen is appropriate. In the case of 
parametric curved surfaces this serves to alter the form 
of the functions somewhat but the processing performed 
upon those functions remains the same. 

A scan line algorithm basically consists of two nested 
loops, one for the Y coordinate going down the screen 
and one for the X coordinate going across each scan line 
of the current Y. For each execution of the Y loop, a 
plane is defined by the eyepoint and the scan line on the 
screen. All objects to be drawn are intersected with this 
plane. The result is a set of line segments in XZ,  one (or 
more) for each potentially visible polygon on that scan 
line. These fine segments are then processed by the X 
scan loop. For each execution of this loop a scan ray is 
defined by the eyepoint and a picture element on the 
screen. All segments are intersected with this ray to yield 
a set of points, one for each potentially visible polygon 
at that picture element. These points are then sorted by 
their Z position. The point with the smallest Z is deemed 
visible and an intensity is computed for it. The processing 
during the X scan is, then, fundamentally the same as 
the processing during the Y scan except for the change 
in dimensionality. During the Y scan, 3D polygons are 
intersected with a plane to produce 2D fine segments. 
During the X scan, 2D line segments are intersected with 
a line to produce 1D points. 

Many enhancements must be added to the basic 
scheme to make it practical. Most of these are referred 
to as taking advantage of the "coherence" of the picture. 
This basically means that many of  the calculations are 
made incremental rather than absolute. The opportunity 
to do this is, indeed, much more the reason for generating 
pictures in scan line order in the first place. For example, 
the Y scan is responsible for constructing a list of all 
potentially visible segments which will be processed by 
the X scan. Rather than construct this list from scratch 
for each Y coordinate, it is usual to keep the list around 
between scan lines and update it according to how it has 
changed. Changes to this "active segment fist" take three 
forms. As the scan plane drops below a vertex of the 
polygon which represents a local maximum, a new seg- 
ment must be created and added to the list, Figure l(a). 
As the scan plane drops below a vertex which represents 
a local minimum, a segment must be deleted from the 
list, Figure l(b). Finally, for those segments which re- 
main in the fist, X Z  coordinates of the endpoints of the 
segments must be updated to reflect their new position, 
Figure l(c). 

This latter operation can also be computed incremen- 
tally. The endpoint of an active segment is generated by 
the intersection of an edge of the polygon (a straight line 
segment) with the scan plane. The amounts of change in 
X and Z for a unit step in Y are constants along the 
entirety of  the edge. The increments can be computed 
once when the edge first becomes active and just added 
to the X Z  position for each step in Y. 
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Fig. 1. Incremental scan line operations. 

(a) 

Scan line passes local maximum 

f 
(b) 

Scan line passes local minimum 

(c) 
Change in X, Z for normal update 

The computation for the Y loop then reduces to the 
following processes. All endpoints are initially sorted in 
Y to determine the order in which they will pass through 
the Y scan plane. For each new Y, the X and Z coordi- 
nates of  all existing segments are updated. If  any polygon 
vertices have been passed, new segments are created or 
old ones deleted according to the type of  vertex. The 
calculations are analogously made incremental for the X 
scan. As it proceeds, it maintains its own "active point 
list" of  intersections. We consider the X scan process in 
more detail in the next section. 

2.1 X-Z Plane Processing 
Each of  the algorithms described here, like polygon 

algorithms, generates a list of sample points in the X-Z  
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plane for every scan line. The sample points are linked 
in pairs by straight lines to form scan line segments, 
which are a piecewise linear approximation to the curve 
of intersection between the X-Z  scanning plane and the 
surface element being displayed. The ways in which 
these segments are formed varies considerably between 
the various algorithms. The further processing of these 
segments, i.e., the transformation from segments to pix- 
els, makes use of  common shading techniques which can 
be applied to any of  the algorithms. We will discuss 
shading techniques further in Section 2.2. 

The visible surface algorithm scans line segments to 
resolve the two final unknowns in the display process: 
(1) which scan line segments or portions of  segments are 
visible, and (2) what intensity value must be applied to 
each pixel along a visible segment. 

2.1.1 Z before X sorting. Conceptually, visibility is 
easy to determine: Whatever surface lies closest to the 
viewer at any given point is the visible one. One way to 
actually calculate the visibility is to sort all surfaces with 
respect to their distance from the viewer and assign a 
priority to each surface based on the order of  the sorted 
list [3]. If the priority cannot be resolved, then the 
surfaces must be subdivided until an unambiguous or- 
dering is found. Then at each point along a scan line, 
the segment belonging to the highest priority surface is 
the visible one. A simpler technique is to wait until after 
the list of  scan line segments has been generated to 
determine priority. Then the sort can be made in the X- 
Z plane with less chance of  ambiguities. 

Alternatively, an algorithm may paint each scan line 
segment into a pixel buffer, starting with the farthest 
segment and ending with the nearest. If  any segment 
overlaps another that has been previously written, it will 
overwrite the previous one. In this way the nearest 
surface will be visible in the final image. To display 
transparent surfaces, near surfaces only partially over- 
write the background. This priority technique has the 
disadvantage that each scan line segment must be 
painted whether it is visible or not. 

When displaying opaque surfaces, it is not necessary 
to know the entire ordering of segments; it is sufficient 
to know just which one has the highest priority. A simple 
way of determining this uses a "z-buffer" (an array 
containing as many locations as the scan line does pixels) 
[1, 4]. The z-buffer is initialized to the depth of  the far 
clipping plane. Then as each segment is processed, its 
depth is compared to the value stored in the z-buffer. If 
the new depth is greater than the currently visible one, 
the new segment is not visible at that point. If the new 
depth is less than the currently visible one, the new depth 
value is written into the z-buffer and the intensity value 
calculated for the current segment at that point over- 
writes the previous value. In this manner the nearest 
segment will always be visible regardless of  the order in 
which segments were processed. 
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2.1.2 X before Z sorting. Instead of  sorting segments 
according to depth (Z dimension), it is sometimes more 
convenient to sort according to the X value of  the left- 
most endpoint and let the processing move from left to 
right along the scan line. The shading processor will add 
a segment to its actiye list as soon as the X value of  its 
left endpoint is less than the X value of the current pixel. 
If  the new segment is in front of the currently visible 
segment, then the new one is declared visible. It remains 
visible until it intersects another active segment or is 
obscured by a newly active segment. By processing seg- 
ments in this order, the shader considers only the visible 
surfaces and saves a considerable amount of  time. 

2.1.3 Scan line coherence. An alternative to sorting 
in X and Z is to simply write each segment into a scan 
line z-buffer, where a pixel is overwritten only if the new 
z value is in front of  the old z value as in [10]. X before 
Z sorting is employed in the first algorithm below, Z 
before X is employed in the second, and the third algo- 
rithm uses the scanline z-buffer technique. 

The above discussion refers to the order of  processing, 
and to visibility calculations. The remaining processing, 
called shading, will assign an intensity value to each 
point once it is declared visible. 

2.2 Intensity Computation 
It is known that the reflected light received by an 

observer from any point on an object depends on the 
angle between the direction of  sight and the reflected 
light vector at that point. This dependency may be 
modeled in many different ways in synthetic images. 
Gouraud [5] determined intensity at a point on a surface 
by 

(2.2. l) Intensity = s(L.  N )  

where s is a reflectance factor, L is the unit light source 
vector, N is the unit normal vector, and • denotes the 
vector "dot" product. Phong [7] improved this model to 
approximate highlights 

(2.2.2) Intensity = s ( L . N )  + g ( V . N )  n 

where V is a unit virtual light source direction, g is a 
measure of  the glossiness, and n > 1. Further work on 
mathematical models for intensity calculation has been 
done by Blinn [1]. 

Blinn noted that the proportion of  specular reflection 
g varies with the direction of the light source, and the 
direction of maximum reflection is not always exactly 
along V. In his model Blinn assumes the surface being 
simulated is composed of a collection of highly reflective 
microfacets oriented randomly on the surface. His math- 
ematical model for intensity then becomes 

(2.2.3) Intensity = s ( L . N )  + g( l  - s) 

where 
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DGF 

g -  ( N . E ) '  
D is the distribution function of  the directions of  the 

microfacets of  the surface, 
G is the amount by which the facets shadow and mask 

each other, 
E is the eye direction, and 
F is the Fresnel reflection law. 

The Gouraud model was used in shading the figures in 
Section 5, the Phong model was used in Section 4, and 
the Blinn model in Section 3. 

3. Blinn Algorithm 

This algorithm generalizes the concept of  scanning a 
polygon to scanning a surface patch. The relevant prop- 
erties of polygons which make them scannable are: 

(a) We can determine Y-maxima/minima from the cor- 
ner points and sort on Y coordinate. 

(b) We can track edges as functions of  Y. 
(c) Each scan line segment is scannable in Z as a func- 

tion of  X. 

Parametric surfaces have none of  these properties. The 
Y-maxima/minima can occur on the boundary or the 
interior of  the patch, and we need to distinguish between 
local and global maxima/minima. Not  only do we need 
to track the boundary edges, but we need to track 
silhouette edges as well. For  smooth surfaces the silhou- 
ette edges correspond to curves in the surface where the 
Z-component of the normal is zero. (See Figure 2.) These 
curves may or may not intersect the boundary of  the 
patch. Neither the boundary nor the silhouette edges 
need be monotonic in Y, or representable as a function 
of Y. Similar problems exist for each X scan. 

Although for parametric surface patches the Y-max- 
ima/minima and edge information is not readily avail- 
able, one can approximate this data with iterative tech- 
niques [14]. The relevant systems of  equations are: 

For determining boundary curve interactions with 
the current scan line (Y scan): 

(a) Y(0, v) = Yscan, 
(b) Y(1, v) = Yscan, 
(c) r (u ,  0) -- Yscan, 
(d) Y(u, 1)=  Yscan. 

For determining silhouette edge intersections with 
the current scan line: 

Y (u, v) = Yscan 
Zn(u, v) = 0 

where Zn(u, v) is the Z component of  the normal equa- 
tion of  the patch. 

For determining local Y maxima/minima: 

Yu(u, v) = 0 
Yv(u, v) = 0 
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Fig. 2. Two Types of  Edges for Curved Surfaces. 
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where Yu and Yv are the partials with respect to u 
and v. 

For determining segments of  the x scan: 

Y(u, v) - Yscan = 0 
X(u, v) - Xscan = 0. 

Newton iteration is a useful technique for solving each 
of these systems [14]. In particular, since Newton itera- 
tion requires an initial guess at a solution, a type of  
coherence can be built into the tracking mechanism if 
we use the previous (u, v) solution as a guess for the 
current scan line. As with polygons, edges are created at 
Y maxima and at the intersection of boundary and 
silhouette edges. Similarly, edges are deleted at Y minima 
and intersections with boundary edges. By inserting sil- 
houette edges and partitioning all edges with Y maxima/  
minima, we have effectively partitioned the surface patch 
itself into pieces which are monotonic decreasing in Y 
and singularly valued in Z. This information is used 
during the X scan to produce the front most point on the 
surface for any (X scan, Y scan) point. 

Problems with this approach would appear to be 
numerous. Singularities or cusps in the patch and its 
derivatives can occur even though the surface is analytic 
as a function of  (u, v). For these cases Newton iteration 
is not appropriate and other iterative or heuristic ap- 
proaches have to be used. There can be many types of  Y 
maxima/minima such as saddle points, which induce the 
creation of  additional edges, and the problem of  resolv- 
ing multiple condition points, such as a silhouette edge 
starting at a boundary point where a maxima also occurs, 
are always present. More details on special cases can be 
found in [1]. However, for most models of three-dimen- 
sional shapes the surface pieces tend to be well-behaved, 
and for these surfaces this algorithm has proven robust 
and relevant. 
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4. Whitted Algorithm 

A second algorithm for surface display is also a 
generalization of  polygon type algorithms. In it, patches 
are described in terms of  edges, which in this case are 
cubic curves instead of  straight lines. These edges are 
intersected by successive scanning planes to form the 
endpoints of  scan line segments that are passed to the 
shader. 

This approach fails naturally, if the surface element 
contains a silhouette on its interior or if it is excessively 
curved. To circumvent this problem the processor that 
generates edges also detects silhouettes and divides the 
patch along the silhouette curve. If  a patch is excessively 
curved, the edge generator can produce additional curves 
on the interior of  the patch to improve the accuracy of  
the image. 

4.1 Edge Description of Patches 
Bicubic surface patches have four natural edge 

curves: E0 = f (u ,  0), E1 = F(O, v), E2 = f (u ,  1), and 
E3 = f ( l ,  v), each of  which is cubic in one variable. If, as 
in the case of  excessively curved patches, it is necessary 
to specify additional "edges" on the interior of the patch, 
these edges (parametric curves on the surface) are also 
cubic curves of one variable, defined by either E~ = 
f ( k , ,  v) or E~ =f(u ,  ku). The addition of  two such interior 
edges, specified by ku = 0.5 and kv = 0.5, has the effect 
of dividing the patch into four subpatches, as shown in 
Figure 3. 

A third type of  edge is the patch silhouette, i.e., the 
curve on the surface for which the z component of  the 
normal vector is zero. In general, the order of the silhou- 
ette curve is greater than the cubic, but it is approximated 
here by a piecewise cubic interpolant so that the silhou- 
ette can be treated the same as any other edge. If the 
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E3 
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by: 

p(x) = [t 3 t 2 t 1] M P 

where 

M =  3 - 2  
0 1 
0 0 

silhouette curve passes through a pa t ch , f  (u, v), there are 
two points (ua, va) and (ub, Vb), each on an edge of  the 
patch such that Nz(ua, va) = 0 and Nz(Ub, Vb) = 0 where 
Nz is the z component of  the normal vector. At each of 
these points a plane tangent to the surface is defined by 
the two vectors df/du and df/dv. Since any vector tangent 
to the surface must lie in this plane, the derivative of the 
silhouette curve can be expressed as a linear combination 
of  the two vectors that define the plane. Then a hermite 
interpolant joining the two endpoints can be specified 

and 

p =  

28 

il 
f(Ua, Vo) ] 
f(ub, v~) 

a,df(ua, Va)/du + avdf(ua, v,,)/dv 
Lfudf(ub, Vb)/du + flodf(ub, Vb)/dv_l 

The accuracy of  the resulting silhouette curve de- 
pends on the number of  cubic segments used in the 
piecewise approximation and on the choice of  a and ft. 
Since each cubic segment spans the area between end- 
points on the edges of  a patch, the specification of  
additional edges on the interior of  the patch containing 
the silhouette will improve the result. After the patch is 
subdivided by adding internal edges, the silhouette gen- 
erator examines each subpatch in turn to see if its edges 
are intersected by the silhouette and produces an ap- 
proximating segment that spans the two endpoints. This 
approach to approximating the silhouette is similar to 
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the one described in [9]. If  the silhouette crosses the 
boundaries of a subpatch just once, or more than twice, 
or crosses any one boundary more than once, or if it is 
contained entirely within the subpatch, then the silhou- 
ette generator defaults and an error occurs on the visible 
portion of  that subpatch. 

The choice of  a and fl terms in the interpolation 
formula determine both the direction and magnitude of  
the endpoint derivative vector. Since excessively curved 
patches are typically subdivided by the insertion of  in- 
ternal edges, one may assume that each subpatch ex- 
amined by the silhouette generator is reasonably close to 
planar. Then a very simple approximation will suffice 
for a and ft. First let 

al ogl (I , , I / I  ol) = ( lu~ - u , I / I v ~  - vi i )  

with 

Og 1 I~1= 1 - 1  ul 

Then the first expression can be rewritten as 

I~11 = 1 / ( 1  + Iv2 - -  v , I / l . 2  - u ,I )  

To adjust for the arclength of  the interpolant 

l a . I  = l a~l 4(u2 - u,)  ~ + (v2 - v,)  2 
lavl = laLI . / (u2 - u , )  ~ + (v~ - P 1 )  2 

with signs given by 

sgn(a,) = sgn(u2 - ul) 

and 

sgn(ao) = sgn(v2 - Va) 

Finally, let flu = au and fly = av. Figure 4 shows the 
resulting silhouette approximation superimposed on a 
set of  sectional curves. 

The definition of  a cubic edge requires 12 coefficients: 
four each for the x, y, and z components. In addition, 
surface normal information along each edge must be 
provided for use by both the shader and the silhouette 
detector. If  only an orthogonal view is required in the 

Fig. 4. 
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Fig. 5. 

(a) " ~  I 

final display, all of the required information can be 
obtained from the coefficients of the derivative with 
respect to the constant parameter along each edge. 1 The 
derivative with respect to the variable parameter (the 
curve's tangent vector) can be derived readily from the 
curve coefficients. The cross-product of these two deriv- 
atives yields an exact normal at each point on the edge. 

Ordinarily a perspective view is required. A tech- 
nique described by Catmull [3] uses a bicubic equation 
to approximate the cubic normal function along each 
edge. The perspective view of the surface is generated by 
transforming the control points for the surface and using 
the resulting control points to form an approximation to 
the transformed bicubic surface. The bicubic normal 
approximation is not passed through the perspective 
transform since proper shading depends on preserving 
the object space illumination direction. Use of the ap- 
proximate normal function has the added advantage of 
speeding the scan conversion process since it is not 
necessary to calculate cross-products at every intersection 
point on the edge to find the surface normal. 

Edges are stored in a y-sorted list of modules, each 
containing 24 coefficients (12 for the edge curve and 12 
for the cubic normal approximation). As noted before, 
the inclusion of interior edges effectively subdivides the 
surface into smaller and more nearly planar subpatches. 

There are interesting differences between this ap- 
proach and the subdivision of patches for approximation 
by polygons. Figure 5 shows a polygonal approximation 
of a bicubic patch created by evaluating the patch equa- 
tion at 25 equally spaced vertex points. Assuming that 
the patch is surrounded by four neighbors with which it 
shares vertices and edges, the number of vertices per 
patch is 16 and the number of edges is 32. Each vertex 

On the edge Eu =f(u k,,), df/dv is a cubic function with respect 
to u. 
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is defined by six coefficients (three for position and three 
for the surface normal) and each edge description re- 
quires two pointers (one to each of the endpoint vertices). 
The total number of words required per patch is 160. 
Figure 5 shows the same patch in terms of its boundary 
curves and six internal edges. Assuming that the bound- 
aries are shared, the total number of edges per patch is 
eight, requiring 192 words of memory. In general, if a 
patch is subdivided M times in the u direction and N 
times in the v direction and represented by quadrilateral 
polygons, the number of edges required is 2 M N  per 
patch. For the approach given here only M + N cubic 
edges are required. (In Figure 5, M = 4 and N = 4). 
Furthermore, every cubic edge lies entirely on the surface 
(except for the silhouette approximation) whereas if a 
polygonal approximation is used, the edges coincide with 
the surface only at the vertices. 

4.2 Intersection Processor 
The intersection (scan conversion) processor is the 

heart of this algorithm; it operates on the edge list and 
outputs scan line segments in reverse order of visibility. 

The first stage of the procedure examines each edge 
to insure that it is monotonic in y, segmenting those that 
are not, and avoiding the problem of finding multiple 
intersections of the edge with a single scan line. The 
presence of extrema along an edge can be detected 
rapidly by examining the coefficients of the y component 
of the edge curve, and since the derivative of the curve 
is quadratic, their location is found using the quadratic 
formula to solve for zeros of the derivative. 

The equation Ey(t) = yn where yn is the y value of 
scan line number and Ey(t) is the y component of the 
edge curve is solved using Newton's iteration to yield tn. 
In turn, Ex(tn), Ez(tn), and the components of the normal 
vector at that point on the edge are computed. Making 
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use of scan line coherence, a first order estimate of the 
solution for the next scan line, 

tn+l ~ tn - (yn - f ln+l) /El( tn)  

results in rapid convergence of the next solution, usually 
in the first iteration. Because it is restricted to the (0, 1) 
interval, Newton's method will occasionally fail to con- 
verge. In this case the scan conversion routine resorts to 
a brute force binary search for the solution. 

Because the internal edges and concavities lead to 
multiple pairs of intersection points, edges of a given 
patch must be sorted into ascending x order to insure 
the generation of proper segments. Note that this is a 
relatively cheap sort since a patch is typically intersected 
only a few times on any given scan line. As each segment 
is formed, it is inserted into a depth ordered list of all 
segments for the current scan line. In the interest of high 
speed processing, the depth separator test is limited to 
comparing the average depth of segment endpoints to 
establish the priority of segments. The test is performed 
in two dimensions instead of three and involves only 
scan line segments rather than entire objects or patches. 
Z ordering of the segments is included to enable the 
simulation of transparency, but it can be eliminated if 
only opaque surfaces are considered, since final visibility 
is established by z-buffer comparisons that are incorpo- 
rated into the shader. 

5. Lane -Carpenter  A l gor i thm 

In this section we present a scan line algorithm for 
the computer display of curved surfaces which makes 
use of a subdivision technique similar to that of Catmull 
[3] combined with a polygon display algorithm. The 
approach is quite simple: 

The Display Algorithm 

Step I. Patches are sorted by m ax i mum possible Y value. 
Step 2. As each scan line is processed, patches with this m a x i m u m  

possible Y value are subdivided until: 
(a) Any one piece no longer overlaps the scan line and there- 

fore is placed in the inactive patch list; or 
(b) The patch is within a set tolerance of  being a four-sided 

planar polygon, at which time it may be processed as with 
a polygon scan line algorithm. 

The algorithm is essentially a polygon algorithm in which 
the  active list of displayable elements consists of four- 
sided polygons, while the inactive list now has parametric 
patches as elements. However, the active elements are 
also parametric patches, and full use of the information 
in the definition can be used to blend adjoining sub- 
patches with arbitrary smoothness in intensity. Step l 
can be done with a radix sort which runs in linear time. 
Note: If  in 2b we set the tolerance to be less than one 
raster, the silhouette is guaranteed to be smooth in 
appearance. 

A brief discussion of the Catmull subdivision algo- 
rithm for parametric bicubic patches will make this 
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algorithm more readily understood. A parametric cubic 
curve may be defined as: 

3 

P(t) = Y~ f i( t)Pi 
i=o 

for t in [0, 1] and Pi in R 3, where {fi(t)} is a basis for 
cubic polynomial functions. Typically f i (0 = ti, the 
power basis. Surfaces are defined by taking the tensor 
product of the curve methods. For bicubics we have 

3 3 

P(u, v) = 2 • fij(u, v)e/j, 
i~0 j=0 

for (u, v) in [0, 1] x [0, 1],fij(u, v) =fi(u)f j(v) ,  and P/J in 
R 3. The subdivision problem for curves is to determine 
for tO in [0, 1], the sets of coefficients Q0, QI, Q2, Q3 
and R0, R1, R2, R3 such that 

3 

e(t . tO) = Y~ f i ( t )Qi  
i=0 

and 

3 

P((1 - t0)t + to) = ~ f i( t)Ri,  
i=0 

for t in [0, 1]. The analogous problem for surfaces is, for 
(u0, v0) in [0, 1] x [0, 1], determine sequences {Q/j}, 
{R/J}, {Sij}, and (Tij} such that 

3 3 

P(u.uO, v.vO) = ~ ~. fij(u, v)O/j, 
i = o j = 0  

3 3 

P(u.uO, (1 - vO)v + vO)) = ~ ~, fij(u, v)Rij, 
i = 0 j = O  

3 3 
e((1 - uO)u + uO), v.vO) = E Y, fij(u, v)si j ,  

i = 0 j = 0  

and 

P((1 - uO)u + uO), (1 - vO)v + vO)) 
3 3 

= 2 2 fij(u, v)T/j 
i = O j = O  

for (u, v) in [0, t] x [0, 1]. Since the subdivision of 
bicubic patches is a direct extension of the method for 
cubic curves, we can direct our attention to the curve 
methods here. 

Because subdivision in Catmull's algorithm proceeds 
until patches are pixel size, high speed is essential. The 
choice of basis {fi(t)} is therefore important. Catmull 
derived the following basis which allowed him to com- 
pute the new coefficients for a cubic split at tO = ½ with 
only three adds (assuming fLxed shifts can be hardwired): 

fO( t )  = 1 - t 
f l ( t )  = t3/3 + t z -- 2t/3 
f2( t )  = t3/3 -- t /3 
f3( t )  = t 

In matrix notation for the curve we have 
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± 0 P0  P(t)  = [tat2t 1] 0 -½ a 
0 1 0 P1  
1 - 3  -½ P 2  

1 0 0 P 3  

Note P(0) = P0 and P(1) = P3. It is easily verified for 
the choice tO = ½ that 

Q 0 = P 0  , R 0 = Q 3 ,  
Ol  = e l / 4  , R I  -- 02 ,  
0 2 = ( P I + P 2 ) / 8  , R 2 = P 2 / 4 ,  
0 3 = ( P 0 + P 3 ) / 2 - ( P l + P 2 ) / 8  , R 3 = P 3 .  

To the authors' knowledge there is no faster method to 
subdivide a parametric cubic polynomial at t = ½ than 
with the Catmull basis. However, the subdivision algo- 
rithm for display requires a subdivision of  the patch and 
test for convergence. There does not seem to be a quick 
and accurate test for convergence with the Catmull basis 
which does not nullify the speed of the subdivision. For 
this reason we chose to use the Bernstein basis [31 for 
representing parametric cubics and bicubics. 

The cubic Bernstein basis is given by 

fO( t )  = (1 - t) a 
f l ( t )  = 3t(1 - t) z 
f2 ( t )  = 3(1 - t)t z 
f3 ( t )  = t 3 

In matrix notation for the curve we have 

As with Catmull's basis, P(0) = P0 and P(I) = P3. It can 
be verified for the choice tO = ½ that 

Q0---P0 , R 0 = Q 3  
Q1 = ( P 0 + P 1 ) / 2  , R1 = (P1  + P 2 ) / 4  

+ R 2 / 2  
Q 2 = Q I / 2 + ( P 1  + P 2 ) / 4  , R 2 = ( P 2 + P 3 ) / 2  
Q3 = (02  + R1)/2 , R3 = P3 

Thus with the Bernstein basis, subdivision of  a cubic 
requires 6 adds. However, a very accurate and rapid 
convergence test is possible with this basis. Note that the 
basis functionsfi(t) are positive and sum identically to l, 
i.e., 

3 

f i ( t )  >_ O, for all i and ~ f i ( t )  = 1, 
i=o 

for t in [0, 1]. That is, every point of  the curve lies within 
the convex hull of  the coefficients Pi  (see Figure 6). Thus 
the maximum Y of  the curve (surface) is bounded by the 
maximum Y of  the Pi  (Pij) .  From [l l] we know that the 
sequence of  new coefficients converges to the curve 
(surface) as we continue to subdivide. Therefore we can 
use the length (area) of  the convex hull of  these'points to 
bound the length (area) of  the curve (surface) segment 
(see Figure 7). 
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Fig. 6. Subdivision of  cubic Bernstein polynomial.  

I' 2 

I' 3 

We are now ready to discuss the implementation of  
the Display Algorithm. All surface patches are repre- 
sented in terms of  the appropriate tensor product Bern- 
stein basis. Then Steps 1 and 2(a) are easily accomplished 
by testing the subpatch coefficients. The "flatness" test 
in Step 2(b) reduces to testing the "flatness" of  the 
enclosing convex hull, both for the boundary curves 
being linear and the patch interior being planar. Lane 
and Riesenfeld have shown in [l l]  that this convergence 
to linear polynomial form must take place. A simple 
flatness test for curve boundaries is to measure the 
distance of interior points on the convex hull to the line 
segment joining the end points. A similar test for surface 
flatness is to compute the distance of  the convex hull 
points to the plane of  any three corner points. 

When the convex hull of  the coefficients is planar 
within a given tolerance, the patch Y maxima and min- 
ima occur at corner points and the edges may be treated 
as linear. In short, the geometry of  the patch may be 
treated as a four-sided polygon, yet we still have the true 
coefficients of the patch. These can be used to calculate 
the correct intensities for each point of  the patch. 

This algorithm produces smooth looking pictures 
while offering distinct advantages over previously pub- 
lished methods. The pictures have smoother silhouettes 
than can be generated with a priori polygon approxi- 
mation, while the time and memory requirements are 
comparable to that of the polygon scan line algorithms. 
Numerical and heuristic methods are avoided by em- 
ploying the subdivision techniques and theorems of  
[Ill. By orienting the initial surfaces and maintaining 
the same orientation on the subpatches, we are able to 
cull back facing patches, thereby saving considerable 
processing time. Due to the independent splitting of 
subpatches, it is possible that cracks in the surface can 
occur during the scanning process. This problem can be 
effectively controlled by lowering the tolerance of  the 
approximation to less than one raster. 

6. Summary 

Each of  the hidden surface algorithms presented here 
has its advantages, which are directly related to the type 
of polygon algorithm generalization which has been 
made. 
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Fig. 7. Successive Subdivision Showing Convergence to Surface. 

The Whitted algorithm generalizes the technique for 
handling surface pieces bounded by straight line seg- 
ments to a method for handling surface pieces bounded 
by cubic curve segments. If a bicubic patch is a priori 
represented as curved polygon elements, this algorithm 
produces images void of polygonal silhouettes, a distinct 
advantage. Disadvantages are the inability to pick up 
internal silhouettes and the use of numerical techniques 
for tracking edges, although for polynomials these can 
be made to always converge [12]. Figure 9 was produced 
with this algorithm. 

The Carpenter/Lane algorithm approximates curved 
surface patches with surface pieces bounded by straight 
line segments, where the approximation is made only as 
good as the view necessitates. Further, the approximation 
is not made a priori, but as the image is being scanned 
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out, thus minimizing the amount of storage necessary to 
represent the scene. The algorithm depends upon recur- 
sive subdivision which yields easy access to the bounds 
and flatness properties of the subpatches. A disadvantage 
of the algorithm are the "holes" that can occur in the 
image generated due to the representation of the bound- 
aries of "tileable" patches by straight lines. Figure l0 
was made with the Carpenter/Lane algorithm. 

Figure 8 was produced with the Blinn algorithm. The 
Blinn algorithm is more general than either of the pre- 
vious two, in that no priori fit with polynomial surface 
patches need be made to nonpolynomial surfaces. Fur- 
ther, shading can be accomplished by working with 
numerical techniques on the original function, thus the 
continuous tone image may be more faithful. A disad- 
vantage of the Blinn technique is its dependence on 
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Fig. 8. Blinn Algorithm. 

Fig. 9. Whitted Algorithm. 
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Fig. 10. Lane/Carpenter Algorithm. 

Teapot (28 bicubic patches) Knot (1 bicubic patch) 

heuristics and numerical techniques, which can possibly 
fail. 

A new algorithm, derived from insights gained in 
writing this paper, combines the advantages of each of 
the above algorithms while avoiding their disadvantages. 
The algorithm is essentially a Carpenter/Lane algorithm, 
except that active elements are now surface elements 
with curved edges (polynomial), as in the Whitted algo- 
rithm, and the inactive list iscomposed of surface pieces, 
where the surface pieces are represented procedurally 
[16], in terms of the parameter range of, and pointer to, 
the initial surface. The necessary information to generate 
and place subpatches is then derived procedurally from 
the initial surface as in the Blinn algorithm. The new 
algorithm is currently being implemented by two of the 
authors, Carpenter and Lane. 
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