
possibility of designing a practical multiplier chip which
attains these bounds remains open.

Received April 1979; revised August 1979; accepted October 1979

References
I. Abelson, H. Lower bounds on information transfer in distributed
systems. Proc. 19th IEEE Seminar Foundations Comptr. Sci., Ann
Arbor, Mich., 1978.
2. Brent, R.P., and Kung, H.T. The area-time complexity of binary
multiplication. Tech. Rep., Dept. Comptr. Sci., Carnegie-Mellon U.,
Pittsburgh, Pa., July 1979.
3. Preparata, F.P., and Vuillemin, J. The cube-connected-cycles: A
versatile network. Proc. 20th IEEE Seminar Foundations Comptr.
Sci., 1979.
4. Savage, J.E., and Swamy, S. Space-time tradeoffs for oblivious
sorting and integer multiplication. Tech. Rep. No. 37, Dept. of
Comptr. Sci., Brown U., Providence, R.I., 1978.
5. Thompson, C.D. Area-time complexity for VLSI. Proc. 1 lth
Ann. ACM Symp. Theory of Comptg., Atlanta, Ga., April-May 1979,
pp. 81-88.
6. VuiUemin, J.P. A note on the paper: Area-time complexity for
VLSI. Institute pour Recherche d'Infomatique et d'Automatique,
Rocqencourt, France, 1979 (unpublished note).
7. Wallace, C.S. A suggestion for a fast multiplier. IEEE Trans.
Electronic Comptg. EC-13 (Feb. 1964), 14-17.

Graphics and J.D. Foley
Image Processing Editor

Scan Line Methods for
Displaying
Parametrlcalb Y
Defined Surfaces
Jeffrey M. Lane
Boeing Commercial Airplane Company

Loren C. Carpenter
Boeing Computer Services

Turner Whitted
Bell Laboratories

James F. Blinn
Caltech/JPL

23

This paper presents three scan line methods for
drawing pictures of parametrically defined surfaces. A
scan line algorithm is characterized by the order in
which it generates the picture elements of the image.
These are generated left to right, top to bottom in
much the same way as a picture is scanned out on a TV
screen. Parametrically defined surfaces are those
generated by a set of bivariate functions defining the X,
Y, and Z position of points on the surface. The primary
driving mechanism behind such an algorithm is the
inversion of the functions used to define the surface. In
this paper, three different methods for doing the
numerical inversion are presented along with an
overview of scan line methods.

Key Words and Phrases: computer graphics, scan
line algorithm, shaded graphics display, parametric
surfaces

CR Categories: 5.12, 5.13, 8.1, 8.2
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Turner Whitted's work was performed at North Carolina State
University, Raleigh, N.C., and was supported in part by the National
Science Foundation under grant MCS 75-06599.

Authors' present addresses: J.F. Blinn, Jet Propulsion Laboratory,
4800 Oak Grove Dr., 125-104, Pasadena, CA 91103; L.C. Carpenter
and J.M. Lane, Mail Stop 35-02, The Boeing Company, P.O. Box 3707,
Seattle, WA 98124; T. Whitted, Bell Telephone Labs., Room 4F621,
Holmdel, NJ 07733.
© 1980 ACM 0001-0782/80/0100-0023 $00.75.

Communications January 1980
of Volume 23
the ACM Number 1

1. Introduction

Computer aided design has long been concerned with
the design of parametrically representable surfaces. Such
surfaces are those defined by three bivariate functions:

X = X(u, v)
Y = Y(u, v)
Z = Z(u, v)

As the parameters vary between 0 and 1, the functions
sweep out the surface in question. The mathematical
representation of these surfaces provides shapes with
pleasing properties of continuity and smoothness. Until
recently, the only method for drawing shaded pictures of
such a surface has been to divide it into many polygonal
facets and to apply any of several polygon drawing
algorithms. A few years ago, Catmull [3] devised one of
the first algorithms for drawing bicubic parametric sur-
faces directly from the mathematical surface formula-
tion. While this algorithm generates images of superior
quality, it still has some drawbacks. These have to do
with speed and memory requirements and the ease of
performing anti-aliasing operations. These drawbacks
are eliminated by the class of algorithms known as scan
line algorithms. Such algorithms generate the picture
elements in order from left to right, top to bottom on the
screen, much as a television might scan them out. The
algorithms described here are scan line based algorithms
for generating such images which remove some of the
difficulties of Catmull's algorithm without substantial
sacrifice in picture quality. Before presenting the new
methods, however, it will be useful to review scan line
techniques for polygonal objects.

2. Scan Line Algorithms

Each of the new algorithms is a generalization of
more conventional scan line algorithms for drawing poly-
gonal objects. It is therefore worthwhile to examine
conceptually what is happening during a scan line algo-
rithm for polygons. It is assumed for both the polygonal
case and the parametric curve case that the objects to be
drawn have been transformed to a screen space with X
going to the right, Y going up, and Z going into the
screen. Furthermore, the perspective transformation is
assumed to have been performed on all objects as de-

Editor's Note: This is a combination of three individual papers
previously accepted for publication in Communications of the A CM.
The papers were "A Scan Line Algorithm for the Computer Display
of Parametrically Defined Surfaces" by J. Lane and L. Carpenter, "A
Scan Line Algorithm for Displaying Parametrically Defined Surfaces"
by J. Blinn, and "A Scan Line Algorithm for Computer Display of
Curved Surfaces" by T. Whitted. The latter two papers were presented
at SIGGRAPH '78. The section editor is grateful to J. Blinn for
suggesting that the papers be merged, and to J. Lane for managing the
production of the new paper.--J.D. Foley

24

scribed in [6, 14] so that an orthographic projection of X
and Y onto the screen is appropriate. In the case of
parametric curved surfaces this serves to alter the form
of the functions somewhat but the processing performed
upon those functions remains the same.

A scan line algorithm basically consists of two nested
loops, one for the Y coordinate going down the screen
and one for the X coordinate going across each scan line
of the current Y. For each execution of the Y loop, a
plane is defined by the eyepoint and the scan line on the
screen. All objects to be drawn are intersected with this
plane. The result is a set of line segments in XZ, one (or
more) for each potentially visible polygon on that scan
line. These fine segments are then processed by the X
scan loop. For each execution of this loop a scan ray is
defined by the eyepoint and a picture element on the
screen. All segments are intersected with this ray to yield
a set of points, one for each potentially visible polygon
at that picture element. These points are then sorted by
their Z position. The point with the smallest Z is deemed
visible and an intensity is computed for it. The processing
during the X scan is, then, fundamentally the same as
the processing during the Y scan except for the change
in dimensionality. During the Y scan, 3D polygons are
intersected with a plane to produce 2D fine segments.
During the X scan, 2D line segments are intersected with
a line to produce 1D points.

Many enhancements must be added to the basic
scheme to make it practical. Most of these are referred
to as taking advantage of the "coherence" of the picture.
This basically means that many of the calculations are
made incremental rather than absolute. The opportunity
to do this is, indeed, much more the reason for generating
pictures in scan line order in the first place. For example,
the Y scan is responsible for constructing a list of all
potentially visible segments which will be processed by
the X scan. Rather than construct this list from scratch
for each Y coordinate, it is usual to keep the list around
between scan lines and update it according to how it has
changed. Changes to this "active segment fist" take three
forms. As the scan plane drops below a vertex of the
polygon which represents a local maximum, a new seg-
ment must be created and added to the list, Figure l(a).
As the scan plane drops below a vertex which represents
a local minimum, a segment must be deleted from the
list, Figure l(b). Finally, for those segments which re-
main in the fist, X Z coordinates of the endpoints of the
segments must be updated to reflect their new position,
Figure l(c).

This latter operation can also be computed incremen-
tally. The endpoint of an active segment is generated by
the intersection of an edge of the polygon (a straight line
segment) with the scan plane. The amounts of change in
X and Z for a unit step in Y are constants along the
entirety of the edge. The increments can be computed
once when the edge first becomes active and just added
to the X Z position for each step in Y.

Communications January 1980
of Volume 23
the ACM Number 1

Fig. 1. Incremental scan line operations.

(a)

Scan line passes local maximum

f
(b)

Scan line passes local minimum

(c)
Change in X, Z for normal update

The computation for the Y loop then reduces to the
following processes. All endpoints are initially sorted in
Y to determine the order in which they will pass through
the Y scan plane. For each new Y, the X and Z coordi-
nates of all existing segments are updated. If any polygon
vertices have been passed, new segments are created or
old ones deleted according to the type of vertex. The
calculations are analogously made incremental for the X
scan. As it proceeds, it maintains its own "active point
list" of intersections. We consider the X scan process in
more detail in the next section.

2.1 X-Z Plane Processing
Each of the algorithms described here, like polygon

algorithms, generates a list of sample points in the X-Z

25

plane for every scan line. The sample points are linked
in pairs by straight lines to form scan line segments,
which are a piecewise linear approximation to the curve
of intersection between the X-Z scanning plane and the
surface element being displayed. The ways in which
these segments are formed varies considerably between
the various algorithms. The further processing of these
segments, i.e., the transformation from segments to pix-
els, makes use of common shading techniques which can
be applied to any of the algorithms. We will discuss
shading techniques further in Section 2.2.

The visible surface algorithm scans line segments to
resolve the two final unknowns in the display process:
(1) which scan line segments or portions of segments are
visible, and (2) what intensity value must be applied to
each pixel along a visible segment.

2.1.1 Z before X sorting. Conceptually, visibility is
easy to determine: Whatever surface lies closest to the
viewer at any given point is the visible one. One way to
actually calculate the visibility is to sort all surfaces with
respect to their distance from the viewer and assign a
priority to each surface based on the order of the sorted
list [3]. If the priority cannot be resolved, then the
surfaces must be subdivided until an unambiguous or-
dering is found. Then at each point along a scan line,
the segment belonging to the highest priority surface is
the visible one. A simpler technique is to wait until after
the list of scan line segments has been generated to
determine priority. Then the sort can be made in the X-
Z plane with less chance of ambiguities.

Alternatively, an algorithm may paint each scan line
segment into a pixel buffer, starting with the farthest
segment and ending with the nearest. If any segment
overlaps another that has been previously written, it will
overwrite the previous one. In this way the nearest
surface will be visible in the final image. To display
transparent surfaces, near surfaces only partially over-
write the background. This priority technique has the
disadvantage that each scan line segment must be
painted whether it is visible or not.

When displaying opaque surfaces, it is not necessary
to know the entire ordering of segments; it is sufficient
to know just which one has the highest priority. A simple
way of determining this uses a "z-buffer" (an array
containing as many locations as the scan line does pixels)
[1, 4]. The z-buffer is initialized to the depth of the far
clipping plane. Then as each segment is processed, its
depth is compared to the value stored in the z-buffer. If
the new depth is greater than the currently visible one,
the new segment is not visible at that point. If the new
depth is less than the currently visible one, the new depth
value is written into the z-buffer and the intensity value
calculated for the current segment at that point over-
writes the previous value. In this manner the nearest
segment will always be visible regardless of the order in
which segments were processed.

Communications January 1980
of Volume 23
the ACM Number 1

2.1.2 X before Z sorting. Instead of sorting segments
according to depth (Z dimension), it is sometimes more
convenient to sort according to the X value of the left-
most endpoint and let the processing move from left to
right along the scan line. The shading processor will add
a segment to its actiye list as soon as the X value of its
left endpoint is less than the X value of the current pixel.
If the new segment is in front of the currently visible
segment, then the new one is declared visible. It remains
visible until it intersects another active segment or is
obscured by a newly active segment. By processing seg-
ments in this order, the shader considers only the visible
surfaces and saves a considerable amount of time.

2.1.3 Scan line coherence. An alternative to sorting
in X and Z is to simply write each segment into a scan
line z-buffer, where a pixel is overwritten only if the new
z value is in front of the old z value as in [10]. X before
Z sorting is employed in the first algorithm below, Z
before X is employed in the second, and the third algo-
rithm uses the scanline z-buffer technique.

The above discussion refers to the order of processing,
and to visibility calculations. The remaining processing,
called shading, will assign an intensity value to each
point once it is declared visible.

2.2 Intensity Computation
It is known that the reflected light received by an

observer from any point on an object depends on the
angle between the direction of sight and the reflected
light vector at that point. This dependency may be
modeled in many different ways in synthetic images.
Gouraud [5] determined intensity at a point on a surface
by

(2.2. l) Intensity = s(L. N)

where s is a reflectance factor, L is the unit light source
vector, N is the unit normal vector, and • denotes the
vector "dot" product. Phong [7] improved this model to
approximate highlights

(2.2.2) Intensity = s (L . N) + g (V . N) n

where V is a unit virtual light source direction, g is a
measure of the glossiness, and n > 1. Further work on
mathematical models for intensity calculation has been
done by Blinn [1].

Blinn noted that the proportion of specular reflection
g varies with the direction of the light source, and the
direction of maximum reflection is not always exactly
along V. In his model Blinn assumes the surface being
simulated is composed of a collection of highly reflective
microfacets oriented randomly on the surface. His math-
ematical model for intensity then becomes

(2.2.3) Intensity = s (L . N) + g(l - s)

where

26

DGF

g - (N . E) '
D is the distribution function of the directions of the

microfacets of the surface,
G is the amount by which the facets shadow and mask

each other,
E is the eye direction, and
F is the Fresnel reflection law.

The Gouraud model was used in shading the figures in
Section 5, the Phong model was used in Section 4, and
the Blinn model in Section 3.

3. Blinn Algorithm

This algorithm generalizes the concept of scanning a
polygon to scanning a surface patch. The relevant prop-
erties of polygons which make them scannable are:

(a) We can determine Y-maxima/minima from the cor-
ner points and sort on Y coordinate.

(b) We can track edges as functions of Y.
(c) Each scan line segment is scannable in Z as a func-

tion of X.

Parametric surfaces have none of these properties. The
Y-maxima/minima can occur on the boundary or the
interior of the patch, and we need to distinguish between
local and global maxima/minima. Not only do we need
to track the boundary edges, but we need to track
silhouette edges as well. For smooth surfaces the silhou-
ette edges correspond to curves in the surface where the
Z-component of the normal is zero. (See Figure 2.) These
curves may or may not intersect the boundary of the
patch. Neither the boundary nor the silhouette edges
need be monotonic in Y, or representable as a function
of Y. Similar problems exist for each X scan.

Although for parametric surface patches the Y-max-
ima/minima and edge information is not readily avail-
able, one can approximate this data with iterative tech-
niques [14]. The relevant systems of equations are:

For determining boundary curve interactions with
the current scan line (Y scan):

(a) Y(0, v) = Yscan,
(b) Y(1, v) = Yscan,
(c) r (u , 0) -- Yscan,
(d) Y(u, 1)= Yscan.

For determining silhouette edge intersections with
the current scan line:

Y (u, v) = Yscan
Zn(u, v) = 0

where Zn(u, v) is the Z component of the normal equa-
tion of the patch.

For determining local Y maxima/minima:

Yu(u, v) = 0
Yv(u, v) = 0

Communications January 1980
of Volume 23
the ACM Number 1

Fig. 2. Two Types of Edges for Curved Surfaces.

. . . .

SILHOUETTE---~

(a) (b)

~'~I~J~BOUNDARV

~ BOUNDARY

l~x

where Yu and Yv are the partials with respect to u
and v.

For determining segments of the x scan:

Y(u, v) - Yscan = 0
X(u, v) - Xscan = 0.

Newton iteration is a useful technique for solving each
of these systems [14]. In particular, since Newton itera-
tion requires an initial guess at a solution, a type of
coherence can be built into the tracking mechanism if
we use the previous (u, v) solution as a guess for the
current scan line. As with polygons, edges are created at
Y maxima and at the intersection of boundary and
silhouette edges. Similarly, edges are deleted at Y minima
and intersections with boundary edges. By inserting sil-
houette edges and partitioning all edges with Y maxima/
minima, we have effectively partitioned the surface patch
itself into pieces which are monotonic decreasing in Y
and singularly valued in Z. This information is used
during the X scan to produce the front most point on the
surface for any (X scan, Y scan) point.

Problems with this approach would appear to be
numerous. Singularities or cusps in the patch and its
derivatives can occur even though the surface is analytic
as a function of (u, v). For these cases Newton iteration
is not appropriate and other iterative or heuristic ap-
proaches have to be used. There can be many types of Y
maxima/minima such as saddle points, which induce the
creation of additional edges, and the problem of resolv-
ing multiple condition points, such as a silhouette edge
starting at a boundary point where a maxima also occurs,
are always present. More details on special cases can be
found in [1]. However, for most models of three-dimen-
sional shapes the surface pieces tend to be well-behaved,
and for these surfaces this algorithm has proven robust
and relevant.

27

4. Whitted Algorithm

A second algorithm for surface display is also a
generalization of polygon type algorithms. In it, patches
are described in terms of edges, which in this case are
cubic curves instead of straight lines. These edges are
intersected by successive scanning planes to form the
endpoints of scan line segments that are passed to the
shader.

This approach fails naturally, if the surface element
contains a silhouette on its interior or if it is excessively
curved. To circumvent this problem the processor that
generates edges also detects silhouettes and divides the
patch along the silhouette curve. If a patch is excessively
curved, the edge generator can produce additional curves
on the interior of the patch to improve the accuracy of
the image.

4.1 Edge Description of Patches
Bicubic surface patches have four natural edge

curves: E0 = f (u , 0), E1 = F(O, v), E2 = f (u , 1), and
E3 = f (l , v), each of which is cubic in one variable. If, as
in the case of excessively curved patches, it is necessary
to specify additional "edges" on the interior of the patch,
these edges (parametric curves on the surface) are also
cubic curves of one variable, defined by either E~ =
f (k , , v) or E~ =f(u , ku). The addition of two such interior
edges, specified by ku = 0.5 and kv = 0.5, has the effect
of dividing the patch into four subpatches, as shown in
Figure 3.

A third type of edge is the patch silhouette, i.e., the
curve on the surface for which the z component of the
normal vector is zero. In general, the order of the silhou-
ette curve is greater than the cubic, but it is approximated
here by a piecewise cubic interpolant so that the silhou-
ette can be treated the same as any other edge. If the

Communications January 1980
of Volume 23
the ACM Number 1

E3

_/

by:

p(x) = [t 3 t 2 t 1] M P

where

M = 3 - 2
0 1
0 0

silhouette curve passes through a pa t ch , f (u, v), there are
two points (ua, va) and (ub, Vb), each on an edge of the
patch such that Nz(ua, va) = 0 and Nz(Ub, Vb) = 0 where
Nz is the z component of the normal vector. At each of
these points a plane tangent to the surface is defined by
the two vectors df/du and df/dv. Since any vector tangent
to the surface must lie in this plane, the derivative of the
silhouette curve can be expressed as a linear combination
of the two vectors that define the plane. Then a hermite
interpolant joining the two endpoints can be specified

and

p =

28

il
f(Ua, Vo)]
f(ub, v~)

a,df(ua, Va)/du + avdf(ua, v,,)/dv
Lfudf(ub, Vb)/du + flodf(ub, Vb)/dv_l

The accuracy of the resulting silhouette curve de-
pends on the number of cubic segments used in the
piecewise approximation and on the choice of a and ft.
Since each cubic segment spans the area between end-
points on the edges of a patch, the specification of
additional edges on the interior of the patch containing
the silhouette will improve the result. After the patch is
subdivided by adding internal edges, the silhouette gen-
erator examines each subpatch in turn to see if its edges
are intersected by the silhouette and produces an ap-
proximating segment that spans the two endpoints. This
approach to approximating the silhouette is similar to

Communications
of
the ACM

the one described in [9]. If the silhouette crosses the
boundaries of a subpatch just once, or more than twice,
or crosses any one boundary more than once, or if it is
contained entirely within the subpatch, then the silhou-
ette generator defaults and an error occurs on the visible
portion of that subpatch.

The choice of a and fl terms in the interpolation
formula determine both the direction and magnitude of
the endpoint derivative vector. Since excessively curved
patches are typically subdivided by the insertion of in-
ternal edges, one may assume that each subpatch ex-
amined by the silhouette generator is reasonably close to
planar. Then a very simple approximation will suffice
for a and ft. First let

al ogl (I , , I / I ol) = (lu~ - u , I / I v ~ - vi i)

with

Og 1 I~1= 1 - 1 ul

Then the first expression can be rewritten as

I~11 = 1 / (1 + Iv2 - - v , I / l . 2 - u ,I)

To adjust for the arclength of the interpolant

l a . I = l a~l 4(u2 - u,) ~ + (v2 - v,) 2
lavl = laLI . / (u2 - u ,) ~ + (v~ - P 1) 2

with signs given by

sgn(a,) = sgn(u2 - ul)

and

sgn(ao) = sgn(v2 - Va)

Finally, let flu = au and fly = av. Figure 4 shows the
resulting silhouette approximation superimposed on a
set of sectional curves.

The definition of a cubic edge requires 12 coefficients:
four each for the x, y, and z components. In addition,
surface normal information along each edge must be
provided for use by both the shader and the silhouette
detector. If only an orthogonal view is required in the

Fig. 4.

January 1980
Volume 23
Number 1

Fig. 3.

E2

Fig. 5.

(a) " ~ I

final display, all of the required information can be
obtained from the coefficients of the derivative with
respect to the constant parameter along each edge. 1 The
derivative with respect to the variable parameter (the
curve's tangent vector) can be derived readily from the
curve coefficients. The cross-product of these two deriv-
atives yields an exact normal at each point on the edge.

Ordinarily a perspective view is required. A tech-
nique described by Catmull [3] uses a bicubic equation
to approximate the cubic normal function along each
edge. The perspective view of the surface is generated by
transforming the control points for the surface and using
the resulting control points to form an approximation to
the transformed bicubic surface. The bicubic normal
approximation is not passed through the perspective
transform since proper shading depends on preserving
the object space illumination direction. Use of the ap-
proximate normal function has the added advantage of
speeding the scan conversion process since it is not
necessary to calculate cross-products at every intersection
point on the edge to find the surface normal.

Edges are stored in a y-sorted list of modules, each
containing 24 coefficients (12 for the edge curve and 12
for the cubic normal approximation). As noted before,
the inclusion of interior edges effectively subdivides the
surface into smaller and more nearly planar subpatches.

There are interesting differences between this ap-
proach and the subdivision of patches for approximation
by polygons. Figure 5 shows a polygonal approximation
of a bicubic patch created by evaluating the patch equa-
tion at 25 equally spaced vertex points. Assuming that
the patch is surrounded by four neighbors with which it
shares vertices and edges, the number of vertices per
patch is 16 and the number of edges is 32. Each vertex

On the edge Eu =f(u k,,), df/dv is a cubic function with respect
to u.

29

is defined by six coefficients (three for position and three
for the surface normal) and each edge description re-
quires two pointers (one to each of the endpoint vertices).
The total number of words required per patch is 160.
Figure 5 shows the same patch in terms of its boundary
curves and six internal edges. Assuming that the bound-
aries are shared, the total number of edges per patch is
eight, requiring 192 words of memory. In general, if a
patch is subdivided M times in the u direction and N
times in the v direction and represented by quadrilateral
polygons, the number of edges required is 2 M N per
patch. For the approach given here only M + N cubic
edges are required. (In Figure 5, M = 4 and N = 4).
Furthermore, every cubic edge lies entirely on the surface
(except for the silhouette approximation) whereas if a
polygonal approximation is used, the edges coincide with
the surface only at the vertices.

4.2 Intersection Processor
The intersection (scan conversion) processor is the

heart of this algorithm; it operates on the edge list and
outputs scan line segments in reverse order of visibility.

The first stage of the procedure examines each edge
to insure that it is monotonic in y, segmenting those that
are not, and avoiding the problem of finding multiple
intersections of the edge with a single scan line. The
presence of extrema along an edge can be detected
rapidly by examining the coefficients of the y component
of the edge curve, and since the derivative of the curve
is quadratic, their location is found using the quadratic
formula to solve for zeros of the derivative.

The equation Ey(t) = yn where yn is the y value of
scan line number and Ey(t) is the y component of the
edge curve is solved using Newton's iteration to yield tn.
In turn, Ex(tn), Ez(tn), and the components of the normal
vector at that point on the edge are computed. Making

Communica t ions January 1980
of Volume 23
the ACM N u m b e r 1

use of scan line coherence, a first order estimate of the
solution for the next scan line,

tn+l ~ tn - (yn - f ln+l) /El(tn)

results in rapid convergence of the next solution, usually
in the first iteration. Because it is restricted to the (0, 1)
interval, Newton's method will occasionally fail to con-
verge. In this case the scan conversion routine resorts to
a brute force binary search for the solution.

Because the internal edges and concavities lead to
multiple pairs of intersection points, edges of a given
patch must be sorted into ascending x order to insure
the generation of proper segments. Note that this is a
relatively cheap sort since a patch is typically intersected
only a few times on any given scan line. As each segment
is formed, it is inserted into a depth ordered list of all
segments for the current scan line. In the interest of high
speed processing, the depth separator test is limited to
comparing the average depth of segment endpoints to
establish the priority of segments. The test is performed
in two dimensions instead of three and involves only
scan line segments rather than entire objects or patches.
Z ordering of the segments is included to enable the
simulation of transparency, but it can be eliminated if
only opaque surfaces are considered, since final visibility
is established by z-buffer comparisons that are incorpo-
rated into the shader.

5. Lane -Carpenter A l gor i thm

In this section we present a scan line algorithm for
the computer display of curved surfaces which makes
use of a subdivision technique similar to that of Catmull
[3] combined with a polygon display algorithm. The
approach is quite simple:

The Display Algorithm

Step I. Patches are sorted by m ax i mum possible Y value.
Step 2. As each scan line is processed, patches with this m a x i m u m

possible Y value are subdivided until:
(a) Any one piece no longer overlaps the scan line and there-

fore is placed in the inactive patch list; or
(b) The patch is within a set tolerance of being a four-sided

planar polygon, at which time it may be processed as with
a polygon scan line algorithm.

The algorithm is essentially a polygon algorithm in which
the active list of displayable elements consists of four-
sided polygons, while the inactive list now has parametric
patches as elements. However, the active elements are
also parametric patches, and full use of the information
in the definition can be used to blend adjoining sub-
patches with arbitrary smoothness in intensity. Step l
can be done with a radix sort which runs in linear time.
Note: If in 2b we set the tolerance to be less than one
raster, the silhouette is guaranteed to be smooth in
appearance.

A brief discussion of the Catmull subdivision algo-
rithm for parametric bicubic patches will make this

30

algorithm more readily understood. A parametric cubic
curve may be defined as:

3

P(t) = Y~ f i(t)Pi
i=o

for t in [0, 1] and Pi in R 3, where {fi(t)} is a basis for
cubic polynomial functions. Typically f i (0 = ti, the
power basis. Surfaces are defined by taking the tensor
product of the curve methods. For bicubics we have

3 3

P(u, v) = 2 • fij(u, v)e/j,
i~0 j=0

for (u, v) in [0, 1] x [0, 1],fij(u, v) =fi(u)f j(v) , and P/J in
R 3. The subdivision problem for curves is to determine
for tO in [0, 1], the sets of coefficients Q0, QI, Q2, Q3
and R0, R1, R2, R3 such that

3

e(t . tO) = Y~ f i (t)Qi
i=0

and

3

P((1 - t0)t + to) = ~ f i(t)Ri,
i=0

for t in [0, 1]. The analogous problem for surfaces is, for
(u0, v0) in [0, 1] x [0, 1], determine sequences {Q/j},
{R/J}, {Sij}, and (Tij} such that

3 3

P(u.uO, v.vO) = ~ ~. fij(u, v)O/j,
i = o j = 0

3 3

P(u.uO, (1 - vO)v + vO)) = ~ ~, fij(u, v)Rij,
i = 0 j = O

3 3
e((1 - uO)u + uO), v.vO) = E Y, fij(u, v)si j ,

i = 0 j = 0

and

P((1 - uO)u + uO), (1 - vO)v + vO))
3 3

= 2 2 fij(u, v)T/j
i = O j = O

for (u, v) in [0, t] x [0, 1]. Since the subdivision of
bicubic patches is a direct extension of the method for
cubic curves, we can direct our attention to the curve
methods here.

Because subdivision in Catmull's algorithm proceeds
until patches are pixel size, high speed is essential. The
choice of basis {fi(t)} is therefore important. Catmull
derived the following basis which allowed him to com-
pute the new coefficients for a cubic split at tO = ½ with
only three adds (assuming fLxed shifts can be hardwired):

fO(t) = 1 - t
f l (t) = t3/3 + t z -- 2t/3
f2(t) = t3/3 -- t /3
f3(t) = t

In matrix notation for the curve we have

Communica t ions January 1980
of Volume 23
the ACM Number 1

± 0 P0 P(t) = [tat2t 1] 0 -½ a
0 1 0 P1
1 - 3 -½ P 2

1 0 0 P 3

Note P(0) = P0 and P(1) = P3. It is easily verified for
the choice tO = ½ that

Q 0 = P 0 , R 0 = Q 3 ,
Ol = e l / 4 , R I -- 02 ,
0 2 = (P I + P 2) / 8 , R 2 = P 2 / 4 ,
0 3 = (P 0 + P 3) / 2 - (P l + P 2) / 8 , R 3 = P 3 .

To the authors' knowledge there is no faster method to
subdivide a parametric cubic polynomial at t = ½ than
with the Catmull basis. However, the subdivision algo-
rithm for display requires a subdivision of the patch and
test for convergence. There does not seem to be a quick
and accurate test for convergence with the Catmull basis
which does not nullify the speed of the subdivision. For
this reason we chose to use the Bernstein basis [31 for
representing parametric cubics and bicubics.

The cubic Bernstein basis is given by

fO(t) = (1 - t) a
f l (t) = 3t(1 - t) z
f2 (t) = 3(1 - t)t z
f3 (t) = t 3

In matrix notation for the curve we have

As with Catmull's basis, P(0) = P0 and P(I) = P3. It can
be verified for the choice tO = ½ that

Q0---P0 , R 0 = Q 3
Q1 = (P 0 + P 1) / 2 , R1 = (P1 + P 2) / 4

+ R 2 / 2
Q 2 = Q I / 2 + (P 1 + P 2) / 4 , R 2 = (P 2 + P 3) / 2
Q3 = (02 + R1)/2 , R3 = P3

Thus with the Bernstein basis, subdivision of a cubic
requires 6 adds. However, a very accurate and rapid
convergence test is possible with this basis. Note that the
basis functionsfi(t) are positive and sum identically to l,
i.e.,

3

f i (t) >_ O, for all i and ~ f i (t) = 1,
i=o

for t in [0, 1]. That is, every point of the curve lies within
the convex hull of the coefficients Pi (see Figure 6). Thus
the maximum Y of the curve (surface) is bounded by the
maximum Y of the Pi (Pij) . From [l l] we know that the
sequence of new coefficients converges to the curve
(surface) as we continue to subdivide. Therefore we can
use the length (area) of the convex hull of these'points to
bound the length (area) of the curve (surface) segment
(see Figure 7).

31

Fig. 6. Subdivision of cubic Bernstein polynomial.

I' 2

I' 3

We are now ready to discuss the implementation of
the Display Algorithm. All surface patches are repre-
sented in terms of the appropriate tensor product Bern-
stein basis. Then Steps 1 and 2(a) are easily accomplished
by testing the subpatch coefficients. The "flatness" test
in Step 2(b) reduces to testing the "flatness" of the
enclosing convex hull, both for the boundary curves
being linear and the patch interior being planar. Lane
and Riesenfeld have shown in [l l] that this convergence
to linear polynomial form must take place. A simple
flatness test for curve boundaries is to measure the
distance of interior points on the convex hull to the line
segment joining the end points. A similar test for surface
flatness is to compute the distance of the convex hull
points to the plane of any three corner points.

When the convex hull of the coefficients is planar
within a given tolerance, the patch Y maxima and min-
ima occur at corner points and the edges may be treated
as linear. In short, the geometry of the patch may be
treated as a four-sided polygon, yet we still have the true
coefficients of the patch. These can be used to calculate
the correct intensities for each point of the patch.

This algorithm produces smooth looking pictures
while offering distinct advantages over previously pub-
lished methods. The pictures have smoother silhouettes
than can be generated with a priori polygon approxi-
mation, while the time and memory requirements are
comparable to that of the polygon scan line algorithms.
Numerical and heuristic methods are avoided by em-
ploying the subdivision techniques and theorems of
[Ill. By orienting the initial surfaces and maintaining
the same orientation on the subpatches, we are able to
cull back facing patches, thereby saving considerable
processing time. Due to the independent splitting of
subpatches, it is possible that cracks in the surface can
occur during the scanning process. This problem can be
effectively controlled by lowering the tolerance of the
approximation to less than one raster.

6. Summary

Each of the hidden surface algorithms presented here
has its advantages, which are directly related to the type
of polygon algorithm generalization which has been
made.

Communica t ions January 1980
o f Volume 23
the ACM N u m b e r l

Fig. 7. Successive Subdivision Showing Convergence to Surface.

The Whitted algorithm generalizes the technique for
handling surface pieces bounded by straight line seg-
ments to a method for handling surface pieces bounded
by cubic curve segments. If a bicubic patch is a priori
represented as curved polygon elements, this algorithm
produces images void of polygonal silhouettes, a distinct
advantage. Disadvantages are the inability to pick up
internal silhouettes and the use of numerical techniques
for tracking edges, although for polynomials these can
be made to always converge [12]. Figure 9 was produced
with this algorithm.

The Carpenter/Lane algorithm approximates curved
surface patches with surface pieces bounded by straight
line segments, where the approximation is made only as
good as the view necessitates. Further, the approximation
is not made a priori, but as the image is being scanned

32

out, thus minimizing the amount of storage necessary to
represent the scene. The algorithm depends upon recur-
sive subdivision which yields easy access to the bounds
and flatness properties of the subpatches. A disadvantage
of the algorithm are the "holes" that can occur in the
image generated due to the representation of the bound-
aries of "tileable" patches by straight lines. Figure l0
was made with the Carpenter/Lane algorithm.

Figure 8 was produced with the Blinn algorithm. The
Blinn algorithm is more general than either of the pre-
vious two, in that no priori fit with polynomial surface
patches need be made to nonpolynomial surfaces. Fur-
ther, shading can be accomplished by working with
numerical techniques on the original function, thus the
continuous tone image may be more faithful. A disad-
vantage of the Blinn technique is its dependence on

Communications January 1980
of Volume 23
the ACM Number I

Fig. 8. Blinn Algorithm.

Fig. 9. Whitted Algorithm.

33 Communicat ions
of
the ACM

January 1980
Volume 23
Number 1

Fig. 10. Lane/Carpenter Algorithm.

Teapot (28 bicubic patches) Knot (1 bicubic patch)

heuristics and numerical techniques, which can possibly
fail.

A new algorithm, derived from insights gained in
writing this paper, combines the advantages of each of
the above algorithms while avoiding their disadvantages.
The algorithm is essentially a Carpenter/Lane algorithm,
except that active elements are now surface elements
with curved edges (polynomial), as in the Whitted algo-
rithm, and the inactive list iscomposed of surface pieces,
where the surface pieces are represented procedurally
[16], in terms of the parameter range of, and pointer to,
the initial surface. The necessary information to generate
and place subpatches is then derived procedurally from
the initial surface as in the Blinn algorithm. The new
algorithm is currently being implemented by two of the
authors, Carpenter and Lane.

Acknowledgments. The authors wish to thank the
referees for the care with which they reviewed the paper
and for their constructive comments and suggestions.
L.C. Carpenter and J.M. Lane would like to especially
thank R. Lovestedt for software support and the Univer-
sity of Utah Computer Graphics group for the use of
their excellent graphics laboratory.

Received June 1979; accepted October 1979; revised November 1979

References
1. Blinn, J.F. Computer display of curved surfaces. Th., Comptr.
Sci. Dept., U. of Utah, Salt Lake City, Utah, 1978.
2. Blinn, J.F. Simulation of wrinkled surfaces. Proc. 5th Conf.
Computer Graphics and Interactive Techniques, Atlanta, Ga., 1978,
pp. 286-292.
3. Catmull, E.E. Computer display of curved surfaces. Proc. IEEE
Conf. Computer Graphics, Pattern Recognition and Data Structures,
Los Angeles, Calif., May 1975, p. 11.
4. Dahlquist, G., Bjorck, A., and Anderson, T. Numerical Methods.
Prentice-Hall, Englewood Cliffs, N.J., 1974.
5. Gouraud, H. Continuous shading of curved surfaces. IEEE
Trans. Comptrs. C-20 (June 1971), 623.
6. Newman, W.M., and Sproull, R.F. Principles oflnteractive
Computer Graphics. McGraw-Hill, New York, 1973.
7. Phong, B-T. Illumination for computer generated pictures.
Comm. ACM 18, 6 (June 1975), 311.
8. Whitted, J.T. A scan line algorithm for computer display of
curved surfaces. Proc. 5th Conf. Computer Graphics and Interactive
Techniques, Atlanta, Ga., 1978, p. 26.
9. Yoshimura, S., Tsuda, J., and Hirano, C. A computer animation
technique for 3-D objects with curved surfaces. Proc. of the 10th
Ann. UAIDE Meeting, Stromberg Datagraphix, 1971, pp, 3.140-
3.161.
10. Myers, A.J. An efficient visible surface algorithm. Rep. to NSF,
DCR 74-00768 AOI, 1975.
11. Lane, J.M., and Riesenfeld, R.F. A theoretical development for
the computer generation and display of piecewise polynomial
surfaces. To appear in IEEE Trans. on Pattern Analysis and Machine
Intell.
12. Lane, J.M., Riesenfeld, R.F. Bounds on a polynomial. Submitted
for publication.
13. Prenter, P.M. Splines and Variational Methods. Wiley
Interscience, New York, 1975.
14. Ortega, J.M., and Rheinboldt, W.C. Interactive Solution of
Nonlinear Equations in Several Variables. Academic Press, London
and New York, 1971.

34 Communications January 1980
of Volume 23
the ACM Number 1

