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Clipping is the process of determining how much of a given line segment lies 
within the boundaries of the display screen. Homogeneous coordinates are a conveni- 
ent mathematical device for representing and transforming objects. The space repre- 
sented by homogeneous coordinates is not, however, a simple Euclidean 3-space. It 
is, in fact, analagous to a topological shape called a "projective plane". The clip- 
ping problem is usually solved without consideration for the differences between Eu- 
clidean space and the space represented by homogeneous coordinates. For some con- 
structions, this leads to errors in picture generation which show up as lines marked 
invisible when they should be visible. This paper will examine these cases and pre- 
sent techniques for correctly clipping the line segments. 

1. INTRODUCTION 

Homogeneous coordinates have long been used in 
computer graphics as a convenient mathematical dev- 
ice for representing and transforming objects [3]. 
However, in spite of the uniformity of representa- 
tion and operation afforded by homogeneous coordi- 
nates, they are not often exploited to the full. 
This is probably due to a lack of publications ex- 
plicitly directed at clarifying the use of these 
techniques. Sutherland and Hodgman [4] provide one 
of the very few discussions on this topic as an ap- 
pendix to their paper on Polygon Clipping. The 
present paper presents techniques for using homo- 
geneous coordinates to represent three dimensional 
objects, and shows how the homogeneous representa- 
tion can be carried through transformation and 
clipping in a consistent way. It is largely a re- 
iteration of the appendix of [4] and an expansion 
of the ideas presented there. 

While it is assumed ~hat the reader has some 
knowledge of homogeneous coordinate representa- 
tions, the following sections are included beth as 
a review and to introduce basic techniques and ter- 
minology used in the remainder of the paper. 

I.i Homogeneous Coordinates 

The representation and transformation of ob- 
jects in 3 dimensions is usually performed in ana- 
lysis in a Cartesian coordinate system. Tnus three 
coordinates (X,Y,Z) are sufficient to represent a 
point in three dimensions. A transformation such 
as rotation or scale is then represented by a 3x3 
matrix. Multiplication of the position vector by 
this matrix yields a transformed position vector. 
Certain points (notably points at infinity) and 
certain transformations (notably translations and 
perspective projection) are not representable in 
this scheme. The notation called "homogeneous 
coordinates" has been devised which will encompass 

all points and transformations Of interest. In 
this scheme, each point is represented in a redun- 
dant manner by 4 coordinates. These four coordi- 
nates will be named, in this discussion, as lower 
case letters (x, y, z, w). The redundancy is ex- 
pressed in the convention that any (non-zero) mul- 
tiple of all components of the homogeneous repre- 
sentation of a point is another homogeneous repre- 
sentation of the same point. To get from the homo- 
geneous representation to the more conventional re- 
presentation the redundancy is removed by dividing 
each component by w, unless w=Z. This yields a 
vector which, by the homogeneous convention, still 
represents the same point but has a w component of 
i. The first 3 components are then the convention- 
al components of the point, named with upper case 
letters (X,Y,Z). 

(x,y,z,w) -> (x/w, y/w, z/w, i) -> (x,Y,z) 

All hoi~ogeneous points with w=l are already in this 
conventional form. In fact, unless there is a good 
reason to do so, points on objects to be modelled 
are usually initially specified with w=l. Certain 
transformations performed on these objects might, 
however, generate points with w~ i. Tne division 
operation can be thought of as a projection of a 
point in 4-space onto the plane w=l by a line 
through the origin. We show this by examining a 
section of the (x,y,z,w) space where y=z=0. The 
remaining x and w coordinates appear as in figure 
i. 
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Figure 1 - A Homogeneous Point 
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All homogeneous points (x,y,z,w) which represent 
the same real point (X,Y,Z) lie on the line through 
the origin and (X,Y,Z,I). 

1.2 Homogeneous Transformations 

A point, P, represented in homogeneous coordi- 
nates (x,y,z,w) is linearly transformed into an 
image point, P'=(x',y',z',w') by multiplication by 
a 4x4 matrix M. 

P' =PM 

TO interpret the effect of this matrix on the 3D 
image of the point let M be partitioned as: 

The 3x3 partition, denoted by r, represents rota- 
tion and scaling. The ix3 partition, denoted by t, 
represents translation. The 3xl partition, denoted 
by p, represents perspective. As with points, any 
(non-zero) multiple of a homogeneous transformation 
matrix represents the same transformation. 
Tnerefore the ixl partition, denoted by s, has the 
same meaning for transformations as the w component 
does for points. 

1.3 Line Segments 

Line segments will be represented here in a 
parametric form as the weighted sum of the two end- 
points P~=(x,,y,,z4,w,) and P,=(x~,y,,z~,w,). 

P = (l-a) P, + a Pz 

0 <= a <= 1 

As the parameter "a" varies from 0 to 1 the gener- 
ated point moves linearly from P, to Pz. To find 
the conventional coordinates of points on this seg- 
ment, each point on the line is projected onto the 
w=l plane. This is illustrated in figure 2. 
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Figure 2 - A Homogeneous Line Segment 

For segments defined with both endpoints having w=l 
all the interpolated w values are 1 and the line 
segment and its projection are the same. For seg- 
ments defined with each endpoint having a positive 
value of w (as in figure 2) a similar line appears. 
However for segments defined with opposite signs of 
w on each endpoint a more unusual situation occurs. 
The segment generated by the linear interpolation 
in 4-space is quite ordinary. The segment generat- 
ed by projecting each point of this onto w=l must 
pass through infinity at the point where the 
4-space segment passes through w=~. This is illus- 

trated below with the points P, and -P~. The end- 
points represent the same projected points as those 
in figure 2. The projected line segment, however, 
starts at P, and goes in the direction away from 
P~, passes through infinity and comes back to meet 
P~ from the other side. This is illustrated in 
figure 3. 
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Figure 3 -An External Line Segment 

This line segment consists of the cfm~plement of th 
set of points in the example of figure 2. It il 
lustrates an alternative way of connecting point 
(X,,Y,,Z,) and (X2,Yj,Zz). It will be called a 
"external line segment" in contrast to the "inter 
nal line segment" of figure 2. These types o 
lines can show up in practical applications as 
result of perspective transformations and as a re 
sult of some co,mPnly used methods for definin 
curves. It is these external line segments whic 
can cause trouble in clipping algorithms. 

2. CLIPPING 

Clipping is the operation of removing portion 
of a line segment which are outside the scree 
boundaries. We will begin by examining a simpl 
clipping algorithm. This algorithm will work cot 
rectly only for the region w>0 so we will initiall 
concern ourselves with this region. 

TO simplify the arithmetic, it is convenier 
to clip to the boundaries -I<X<+I and -I<Y<+I. T~ 
viewing transformation can be adjusted to map ar 
desired object window to this region. Tne clippir 
boundaries are thus the planes 

X=-I (left) 
X=+I (right) 
Y=-I (bottom) 
Y=+I (top) 

In the homogeneous representation these become: 

x/w=-i 
x/w=+l 
y/w-~l 
y/w=+l 

or the four homogeneous planes 

W+X=0 
W-X--0 
W+y=0 
W-y=0 
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Looking at the left and right boundaries in the 
plane we have figure 4. 
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Figure 4 - The Visible Screen Region 
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The region on the w=l plane between x=-i and x=+l 
represents the visible region in X after the homo- 
geneous division has been performed. Any points in 
the cross hatched area will project onto this re- 
gion and are thus visible. A point is visible if 

w+x > 
and w-x > 

Note that all points within the cross-hatched area 
satisfy this condition. 

If a line segment lies partly inside and part- 
ly outside the screen it will penetrate one of the 
homogeneous clipping planes. We need to find the 
point of intersection. Tnis can be expressed as a 
value for "a" in the parametric definition of the 
line segment. 

P = (l-a) P, + a Pz 

Suppose the line Segment crosses the w+x=~ plane. 
The value of "a" at which this occurs is 

((l-a)w,+(a)wz] + [(l-a)x,+(a)xz] = 

or 
a = (w,+x.) I ((w.+x,J - (w,+x,)) 

The quantity w1+x , is proportional to the distance 
from the point P, to the plane x+w=0. Therefore it 
may be interpreted as a transformed coordinate of 
P~ relative to the boundary x+w=~. For this reason 
it will be called a "Boundary Coordinate". For any 
point there is a boundary coordinate for each clip- 
ping boundary. 

BL = w+x (left) 
BR = w-x (right) 
BB = w+y (bottom) 
BT = w-y (top) 

These are defined so that a positive value indi- 
cates that a point is on the visible side of the 
clipping plane. If a line (l-a)P,+aP, crosses, for 
example, the left boundary it does so at 
a=BL,/(BL,-BLz). A similar expression holds for 
the other boundaries. 

3. THE HOMOGENEOUS PERSPECTIVE TRANSFOIgM 

External line segments first appear when using 
the perspective transformation. A perspective pro- 
jection essentially causes division of X and Y by 
the Z distance in front of the eye. The homogene- 

ous perspective transformation makes clever use of 
the homogeneous division (which must be done any- 
way) by merging the Z division with it. The sim- 
plest form models the eye at (0,0,-i). To achieve 
a perspective projection the X and Y should then be 
divided by Z+I. In homogeneous terms x/w and y/w 
should be divided by z/w+l=(z+w)/w, becoming 
x/(z+w) and y/(z+w). This can be expressed in ma- 
trix form as 

The effect of thistransformation is to change the 
boundaries of a "view cone" radiating from the eye 
into the same parallel clipping boundaries that 
were used for' orthographic projections. Points 
with z/w=0 are unchanged. Points with z/w>0 are 
scaled down while points with -l<z/w<0 are scaled 
up. See figure 5. 
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Figure 5 - Perspective Transform in XZ 

The process of effectively clipping to the view 
cone for perspective pictures is performed by first 
applying the homogeneous perspective transformation 
and then clipping to the same boundaries defined 
previously. Indeed, this interpretation of the 
perspective transformation explains the use of 
post-perspective transformations to achieve special 
viewing effects such as projection onto an oblique 
viewing plane. Such a projection can be considered 
as a conventional perspective projection followed 
by a translation of the required part of the pro- 
jection to the clipping region. It may be verified 
that composition of two such transformations yields 
one which correctly maps the boundaries of the ob- 
lique viewing cone into the sane clipping planes 
used above. 

Although the Z coordinate of a point might not 
seem immediately useful after perspective projec- 
tion, it is necessary for hidden line/surface com- 
putations and for depth cueing. This transform has 
the important property that it includes z such that 
straight lines romain straight. Examining the zw 
plane we see that the transformation is merely a 
skew along the w axis, figure 6. 

Note that objects originally defined in the w=l 
plane become distorted when, after transformation, 
they are projected back into the new w=l plane. 
The eyepoint transforms into (0 0 -I 4), a point 
infinitely distant in the minus z direction. 
Points infinitely far away in the positive z direc- 
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Figure 6 - Perspective Transform in zw 

tion transform into z/w=l. Note the effect of the 
transformation on the three cross-hatched regions 
of figure 6. In general the following transforma- 
tions of regions in z have taken place 

before after 
-~< z/w < -I 1 < z/w < +~ 
-i < z/w < 0 -~< z/w < 0 
0 < z/w < +~ 0 < z/w < +i 

Points that were behind the eye have "wrapped ac- 
ound" through - and are now at z/w > i. 

Let us now consider the effect of the perspec- 
tive transformation on line segments and how they 
are clipped. For segments which are totally in 
front of the eye nothing very unusual happens. 
Consider, however, a segment from a point in front 
of the eye to a point behind the eye (a perfectly 
reasonable occurrence when arbitrary viewing posi- 
tions are allowed). After the perspective trans- 
formation this becomes an external line segment. 
It starts out at some Z<I, proceeds in the negative 
Z direction past the eye (at -~in Z), wraps around 
to positive Z and ends at some Z>I, see figure 7. 

t w 
I 

/ / _ z  " < "  

I p~+, h, re. 

Figure 7 - Perspective Transform of Line Segment 

If the two endpoints are projected back onto the 
w=l plane both endpoints could quite possibly lie 
within the visible region of the screen in X and y. 
This is despite the fact that the point behind the 
eye is quite obviously invisible. Furthermore, 
these points should be connected by an external 
line segment rather than an internal one. This 
case is difficult to distinguish from the case of 
two ordinary visible points which started out in 

front of the eye. (It can be detected by noting 
that the endpoints of external line segments strad- 
dle the z/w=l plane). These problems can be re- 
solved by clipping all segments in the homogeneous 
space prior to projectingback onto w=l. In the 
present case, the line passing by the eye would be 
clipped at the X edge of the screen before it even 
passed the eye, see figure 8. 

w 

Figure 8 - Clipping of External Segment 

The portions of the external segment which give 
trouble are clipped off by one of the left, right, 
bottom or top planes. 

The X,Y clipping process is sometimes augment- 
ed by a clipping operation in Z. This is done pri- 
marily for the purpose of restricting the range of 
the Z coordinate. Points between the eye and the 
Z=0 plane (i.e. the screen) take up a small por- 
tion of the real world, but after perspective 
transformation they stretch from -~ to 0. To avoid 
the need to represent points with infinite Z coor- 
dinates we can clip away those with z/w less than 
some amount using a "near" clipping plane. In ad- 
dition, to further restrict the range of Z values a 
"far" clipping plane is sometimes included. Z 
clipping can be standardized just as X,Y clipping 
by defining the visible region in Z to be 0<Z<+I. 
The actually desired locations of the near and far 
boundaries can be incorporated into the transforma- 
tion matrix as a scale and translation of the z 
coordinate. ThUS we have two now clipping planes 
and two boundary coordinates. 

BN = z (near) 
BF = w-z (far) 

A point is visible with respect to the z clipping 
planes if both these quantities are positive. 

The main point of this section is, then, that 
for our first exposure to external line segments, 
those formed by the perspective transform, the ori- 
ginal clipping algorithm still works. We have seen 
that the clipping algorithm works correctly for 
lines which r~nain in the w>0 region and for those 
which dip into the w<0 region due to the perspec- 
tive transformation. The clipping should be per- 
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formed before the homogeneous division, however. 
The addition of Z clipping is useful to restrict 
the range of Z values after the perspective trans- 
form, but is not necessary to the correct elimina- 
tion of line segments behind the eye. 

5. RATIONAL PARAMETRIC CUI~VES 

Tnis section introduces a standard modelling 
technique which happens to generate lines which are 
not correctly clipped. This is the technique of 
modelling curved lines parametrically with rational 
polynomial functions. To illustrate the problem it 
is only necessary to consider two dimensional pla- 
nar curves. We will therefore assume the Z coordi- 
nate is always zero and not include it in subse- 
quent matrix equations. 

The simplest, non-linear, parametric curves 
are the conic sections. It is possible to repre- 
sent any conic section by 

or 

X = P(ti/R(t) 
Y = Q(t)/R(t) 

x = P(t) 
y = Q(t) 
w = R(t) 

where P(t), R(t) and S(t) are quadratic polynomi- 
als. To prove this we start with the simple para- 
bola X=Y . This can be represented parametrically 
in homogeneous coordinates as 

(x y w) = (t ~ t i) 

By the homogeneous convention, any non-zero scalar 
multiple of each point on the parabola also lies on 
the parabola. The locus of all such points in hom- 
ogeneous space is the cone (x/w)= (y/w) 2 . The para- 
bola is the intersection of this cone with the w=l 
plane. This cone, incidentally, is an elliptic 
cone rather than a circular cone, as shown in fig- 
ure 9. 
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Figure 9 - Elliptic Cone 

~X 

Note that this matches the classical defenition of 
a parabola as the intersection of a cone with a 
plane parallel to one of its sides. Now by various 
rotations of the parabola (and thus the cone) about 
the origin (representable by a 3x3 matrix) we can 
change the relative orientation of the plane of in- 
tersection and thus generate different conic sec- 
tions. The multiplication of the vector (t 2 t i) 
by a 3x3 matrix yields 3 general quadratic polyno- 
mials. 

(x y w) = (tz t i) M = (P(t) Q(t) R(t)) 

For example, by rotating 45 degrees around the 
y axis we can make the axis of the cone perpendicu- 
lar to the intersecting plane (w=l) and generate an 
ellipse (since the cone is elliptic). Then, by 
scaling by 3~ in y the ellipse turns into a cir- 
cle. 

(X y W) = { t  2 t 1) 

I': ':1 
l - * / /7  o ~//~J 

X = (ti-l)/(t i kl) 
Y = ( 2t )/(t~+l) 

The reader can verify that X~+Y2=I independent of 
the value of t. 

Alternatively, by rotating -45 degrees around 
y, the axis of the cone will become parallel to 
w=l. Such an intersection yields a hyperbola. 

{x y w) = It 2 t i) 1/,/-2 o -1/d~ I 
0 i 0 

X = (t ~ + l)/(l-t ~) 
Y = (t r~- )/(l-t') 

How does the clipping process work when ap- 
plied to this hyperbola? This curve happens to lie 
wholly outside the standard clipping region so we 
will scale it down by a factor of 2 to make the 
problem interesting. When projected onto the w=l 
plane, it appears as in figure 10. 
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Figure 10 - Parametric Hyperbola 

Thus, two brandles should be visible on the resul- 
tant display. To draw the curve we evaluate the x, 
y, and w ft~ctioD~ at equal steps in t and connect 
the points with straight line segments. This 
traces out the rotated and scaled parabola in homo- 
geneous space. This parabola appears as in figure 
ii. 
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Figure ii .- Side View of Rotated Parabola 

Note that only one branch falls within the visible 
region in the sense we have defined it so far. The 
clipping algorithm will remove an entire branch of 
the hyperbola which should have been visible. 

6. CLIPPING WITH N~GATIVE W 

To p~operly clip such objects we must 
re-examine the definition of the "visible" region. 
For example, for the left clipping boundary a point 
is visible if X = x/w > -I. This implies two pos- 
sible sets of conditions for visibility. That is 

w>0 and w+x>0 

or 

w<0 and w+x<0 

A point must be tested against two planes, w+x=0 
and w--0. Two planes are necessary because of the 
topological properties of the space represented by 
homogeneous coordinates. Riesenfeld [2] points out 
that this space is not the usual Euclidean 3-Space. 
It is, in fact, a space whose properites are anala- 
gous to a shape known as a "projective plane". The 
important difference is that, for a projective 
space, a single (infinitely extended) flat plane 
does not divide space into two distinct regions. 
Just placing a plane between two points does not 
separate them. There is always an alternate path 
(perhaps through infinity) connecting them. In 
order to separate two regions in homogeneous space 
it is necessary to use two dividing planes. Tnis 
is shown very nicely in Bare [i]. 

The complete visible region in the x dimension 
is formed by the intersection of the newly defined 
left and right visible regions. Note that each 
point in the new visible region, when projected 
onto the w=l plane falls within the -I<X<+I region. 
The two visible regions are shown labelled A and C 
in figure 13. Points in region C would all be 
marked invisible by the original algorithm because 
they occur on the "invisible" side of both the 
w-x=0 and w+x=0 planes. It is in just this region 
that the points lie for the missing branch of the 
hyperbola, see figure 12. 
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Figure 12 - Complete Visible Region In xw 

One interesting case that can occur is when an 
external line segment has one endpoint in region A 
and the other in region C, as shown in figure 13. 
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Figure 13 - Multiple Visible Segments 

The segment in homogeneous space intersects the x 
clipping surface at two points. Two disjoint poe- 
tions of the segment will be mapped into the visi- 
ble screen region. This is precisely what happens 
with the hyperbola for the line segment between 
parameter values t =.9 and t=l.l. At t =.9 one 
branch is just approaching its asymptote going to 
infinity towards the upper right. At t=l the point 
on the curve passes through infinity. At t=l.l it 
has wrapped around and is coming in from the lower 
left. See figure 14. Any complete clipping algor- 
ithm which works in homogeneous coordinates must, 
therefore, be able to generate two output segments 
for one input segment. 
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Figure 14 - Multiple Segments of Hyperbola 
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One effect of the inclusion of the visible re- 
gion at negative w is that the z clip is no longer 
optional in order to remove objects behind the eye. 
Before, when using only the region for positive w, 
a line passing behind the eye was correctly clipped 
off where it left the screen. With the complete 
visible region, if it extends far enough behind the 
eye it may penetrate the negative w visible region 
and re-appear on the screen in the same manner as 
multiple segments of a hyperbola. This problem is 
solved by including a "far" clip bounded by the 
planes w=0 and w-z=0, keeping points with Z<I. 
This just states that the perspective view cone 
must be closed off by the plane at infinity, which 
transforms to the plane z/w=l after the perspective 
transform. See figure 15. 

Figure 15 - Complete Visible Region In xzw 

7. ALGORITHMS 

Given the new definition of the visible re- 
gion, we turn to the question of how, algorithmi- 
cally, we can clip to this region. The big problem 
is that two output segments may be generated from 
one input segment. The basic control structure of 
most clipping algorithms allows only one output 
segment. Sutherland and Hodgman solved the problem 
of two disjoint clipping regions by transforming 
and clipping each object twice, once the transfor- 
mation matrix intact and a second time after multi- 
plying the matrix by -i. This effectively uses 
only the positive w clipping region but mirrors the 
line segments about the w--4 plane to generate the 
missing lines. This approach, while not complicat- 
ing the control structure, requires each point to 
be transformed twice. We would like to avoid this. 

The next step up from this would not require 
doubly transforming the object but would place a 
processor between the transformation and clipping 
stages. It would do a simple test against the w=0 
plane. If a segment was totally above it would be 
passed directly to the clipper. If it was com- 
pletely below it would be mirrored and passed to 
the clipper. If it straddled the w=0 plane it 
would be passed to the clipper twice, once mirrored 
and once not. In this case also, the clipper it- 
self works only with the positive w portion of the 
clipping region. Double output segments come from 
two calls to the clipper. 

A general solution to the problem would be to 
invent a clipper which actually handles disjoint 
clipping regions. The first step necessary is to 
redefine the boundary coordinates to accurately re- 
flect the visibility of points. Each is formed as 
the product of the equations of the two planes de- 
fining that boundary. These would be 

BL = w(w+x) 
BR = w(w+x) 
BB = w(w+y) 
ST = w(w-y) 
BN--wz 

BF = w(w-z) 

They are, again, chosen so that they are positive 
in both visible regions. Clipping is then per- 
formed one boundary at a time with the surviving 
portions of the segment being passed on to the next 
boundary. This requires two plane intersection 
tests for each boundary. For reasons of economy we 
can merge the left and right clipping regions into 
one global x clipping surface by definining 

BX = (w+x) (w-x| 

An incoming line segment would be tested against 
each of these component planes. If it intersected 
only one, the visible portion would be retained and 
passed to the y clip. If it interrsected both, the 
signs of (w+x) and (w-x) would determine if it was 
the center section or the two end sections that was 
visible. The y and z visible regions are similarly 
defined by 

BY = (w+y) (w-y) 
BZ = w (w-z) 

It is not clear whether a disjoint clipper 
would be superior to the simpler mechanism of mir- 
roring the line segments. 

8. CONCIDSIONS 

This paper has shown that, under certain cir- 
cumstances the clipping r6~jion traditionally used 
in cGmputer graphics is incomplete. There is an 
additonal such region mirrored about the w--0 plane. 
Points are generated in this region usually only 
for certain modelling techniques, such as rational 
polynomial par~eteric curves. In order to proper- 
ly clip such curves the clipper must be capable of 
generating two output segments for one input seg- 
ment. 
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