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ABSTRACT

Hormpgeneous coor di nat es have | ong been a
standard tool of conputer graphics. They afford
a conveni ent representationfor various geometric
quantitiesin tw and three di nensi ons. The

representationof lines in three di nensi ons has,
however, never been fully described. Thi s paper
presents a honogeneous fornulation for lines in

3 di mensi ons as an anti-symmetric 4x4 mat ri x which
transforms as a tensor. This tensor actually

exi sts in both covariant and contravari ant forms,
both of which are useful in different situations.
The derivation of these forns and their use in

sol ving vari ous geonetrical problens is descri bed.
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I NTRODUCTI ON

Ve will assume the reader is sonmewhat famil-
iar with the honpgeneous representationof points
and pl anes in 3 space. A good introductionmay
be found in [1]. Briefly, a point is represented
as a four conponent vector, usually wittenas

{(x v z w

Any non-zero nultipleof this rowvector rep-
resents the sane point. The "real" conponents
of the point may be di scovered by dividing by
the fourth conponent to obtain the three conpo-
nents:

(x/w  y/w  z/w)

A plane is representedas a four conmponent
col utm vector:

20 o

Any non-zero mul tiple of this col um vector rep-
resents the same plane. The first three conpo-
nents describe a vector normal to the plane and
the fourth is related to its distance fromthe
origin.

Permission to make digital or hard copies of part or al of this work or
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citaion on thefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or afee.

Siggraph 77, July 20-22 San Jose, California

237

Blinn

Ut ah

The dot product of a point (row vector and
a plane (col um)vector is proportional to the
di stance fromthe point to the plane.

(xyzw) = ax + by + cz + dw « D

oo

A special case of this is the fact that, if the
dot product is zero, the point lies in the plane.
If the dot product is non-zero, We can find the
actual distance by the follow ngnmeans. Construct
a three di mensi onal vector of unit |ength per-
endi cul ar to the plane. (AB QO = (abc)/

ia +b2 + ¢. Scale it up by D and add it to
the positionof the point. W should t hen have

a poi nt on the plane.

(x v Z] = ( (x/w)+DA (y/w)+DB (z/w)+DC )

Since this point is on the plane, its dot product
with the plane vector will be zero. W& now have
an equati on whi ch can be sol ved for D

0={(xvz1 = (x+DAw y+DBw 2+DZw w)

a
b
c
d

o0 oo

D= - ax+by+cz+dw
w/a2+bl+c2

The sign of D indicates which side of the plane
t he poi nt was on. It can be ignored if only the
di stance is required.

An obj ect defined in terns of honpgeneous
poi nts may be transformed by multiplicati onof its
points by a 4x4 matriXx.

(xyzw)T:(x' y'oz' w')

Any conbi nation of scaling, transl ation, rotation,
and perspective distortionmay be represent ed by
the matrix T. To deternine the coordinates of a
pl ane after it has undergone the sane transfor ma-
tion we nust pre-multiplyby the inverse of T.

— ,

T a = a
b b'
c c'
d c'

Thus the dot product of the transforned poi nt and
pl ane is the sanme as the dot pr oduct of the orig-
i nal point and plane. The relationshi pof a



point lying on a plane is preserved.

Suppose we are given three points and we w sh
to determine the conponents of the plane vector
through them That is, we wish to solve for
a, b, ¢, din the equation:

X1 Y1 21 W)
X2 Y2 22 W2
X3 Y3 23 W3

o0 o p
[ eNe]

Consider a fourthpoint not in the plane of the
other three. |Its dot product with the desired
pl ane vector will then be non-zero. W will call
it g. The resultingequationis then:

X1 y1 21 wi| [a] = M al = {0
X2 Y2 22 w2| |b b 0
X3 Y3 23 w3} |c c 0
Xy Y4 2y Wy} |d 4 q,

Thi's equation may be sol ved by mul tiplying both
sides by the adjoint of M The adjoint is the
transpose of the matrix forned fromthe co-factors
of the original matrix. The co-factor of an

el ement of amatrix is found by erasing the row
and col um contai ni ng the el enent and conputi ng
the determ nant of the renmmining smaller matri x,
finally flipping the sign if the sumof the row
and colum indices of the el ement is odd. Thus
the co-factor of the x4 termof M is:

Y1 21 W1
cof (xy) = -det |y2 z2 w2
Y3 Z3 W3

The product of a matrix and its adjoint is the
identity matrix tines the determ nant of the
original matrix. The product of the adjoint with
the right side of the equationis just q tines
the right hand colum. Qur equation is now

det M [a) =g [cof (xy)
b cof (yu)
c cof (zy)
d cof (wy)

Now, since any non-zero nmultiple of a plane
vector represents the same plane, we can negl ect
the q and det M terns above. Finally, note
that the co-factors do not contain any conpo-
nents of the arbitrarilychosen fourth poi nt .
Thi's whol e process can be representedin a short-
hand not ati on:

> > > >

a i 3 k 1

b=det X1 Y1 21 W)

c X2 Y2 22 W2

d X3 Y3 23 W3

where

0
R A L L
*T ol 7 o = h 0
0 o] 0 1

This is sinply a generalizationof the nmore famil -
iar shorthand notation of the cross product of two

vectors in ordinary three space. The only problem

that could arise is if the matrix M were si ngul ar .
This only occurs if the three original points are
co-linear, whereuponthere is no solution. In
this case, the four co-factors are all zero. W
can take the appearance of four zeros when

I ooking for a plane through three points as an
indicationthat the three points were co-Iinear.

There is a sinmilar mechani smfor deternining
the point of intersectionof three planes. That
is, the honobgeneous coordi nates of the point of
intersectionijs:

a; az a3 1

_ by bz b3z J
(xyzw)—det C1CZC31_<
d; d; d3 1

where, here:
1 = (1000) 3 = (0100) % = (oo10) T = (ooo01)

Agai n, the appearance of four zeros when sol ving
for the point of intersectionindicates that the
three planes to not have a single comon poi nt .
They, in fact, intersect on a line.

THE HOMOGENEQUS LI NE REPRESENTATI ON

Ve shall now construct a honogeneous rep-
resentationof lines in 3D taking the formof a
4x4 matrix we shall call L. It will have the
property that any scalar nultiple of it represents
the same line. In addition, if a point vector is
multipliedby L, a result of four zeros indicates
that the point is on the Iine. The inspiration
for this fornul ation conmes fromthe G assmann
coordi nate systens describedin [2].

First re-consider the probl emof finding the
pl ane through three points. If the four co-
factors in the solution are all zero then the
three points were co-linear. W can re-interpret
this as a condition upon a third point which will
meke it co-linear with two others. Thus for two
given points P1 and P2, a third point is co-
linear if:

- - -

i3 k% I 0
X1 Y1 Z1 W) (6]
det X2 Y2 Z2 W2 0
X Yy 2z Ww o]
That is, we must have
z1 Y1 w1 Y1 Zl] -
- + t -w det =0
y det [Zz ] z de [Yz wz] [Yz z2
z1 - XL Wil get|*! 21| = 0o
X det [zz ] z det[x2 wz] W X2 22
Y1 x1 Wi gee [ y:] -0
-x det [y2 J+y det[x2 Wz] X2 2
get |¥? 21 det | X! 214z get|™? YI} =0
x ae Y2 Y X2 22 X2 Y2

Now defining the six new coordinates:



— zy W Y1 w1 Y1 21

det =det =
o e BT LR ]
s=det:[xl wl] t=det(x1 Zl] u=det[m Y1]
X2 W2 X2 22 X2 Y2

we can wite the four equations in matrix form

(xyzw) 0p-qr=(0000)
-p 0 s -t
g-s 0 u
-r t-u 0

The above anti-synmetricmatrix is then our
desired line representation, L. Any non-zero
multipleof L will still represent the same

line. If a point is nultipliedby L and four
zeros result then the point is on the line.
Furthernore, if the point is not on the line,

the four coordinates obtainedw |l be the sane
val ues obtainedif all three points were solved
for their common plane. That is, they will be the
conmponent s of the pl ane common to the point and
the line:

(xyzw)L = (abcd)
W need only to transpose the rowvector to get
the plane vector in its nmore familiar colum
format.

There is an anal agous process for generating
the matrix representingthe line formed by inter-

secting two pl anes. G ven planes 1 and 2, the
conditionthat a third plane containstheir line
of intersectionis:
aj «az a E
b1 ba b 3
det 2] =
¢ c1 c2 € k (0 00 0]
d; dz 4 1
That is, the four equations nmust be satisfied:
c) C2 b; b2 b; by
b det -c det +d d =
[dl dz] cde [dl dz] d et[cl c2 °
C C2 a] az aj; az
-a det + t - =
[dl dz] c de {dl dz] d det[c1 Cz] 0
b; b2 ay az a) az
a det -b t + =
(dl dz] de [dl s 4 det by bs 0
by b2 ay as ay az
~a det +b t - =
[01 cz] de [c Cy c det by ba 0

These can be witten in matrix form

a0 o
1]
[~NeReia]

The matrix K is an anti-symretricmatrix which is
a honpgeneous representationof the line of inter-
section of the two planes. Any non-zeronultiple
of K represents the sane |ine. The product of K
and any ot her plane vector will yield four zeros
if the line is containedin the plane. |If the line
is not containedin the plane then the product will
yi el d the honpbgeneous coordi nates of the point of
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intersectionof the line with the plane:

]

a X
k |°]=|Y
c z
d \

We need only to transpose the point vector to get
it in the more famliar rowform There is one
somewhat surprising fact, however. For a given
line, the matrix L formed by two points on the
line is not the sane as the matrix K formed by
two pl anes intersectingon the line. W wll
show t hi s.

now

THE DUAL LI NE REPRESENTATI ON

We first take note of another interpretation
of the matrix L. Since each colum yields a zero
when nul tiplied by a point oh the Iine we can
think of it as a plane containingthe line.
Sinmilarly each rowof K can be thought of as a
point on the line which it represents. Thus L
consi sts of four planes containingthe line rep-
resented by L and K consi sts of four points on the
line represented by K Let us take any three

pl anes of L and attenpt to find the point common
to them Since we knowthat the planes intersect,
not at a single point, but at a line we expect to
get four zeros.
0 p-q 1
-p 0 s j
det = =
qg-s O E
-r  t -u 1
+ -p 0 s . 0 p «
ixdet| g -s O -jXdet{ q ~s 0
-r t -u -r t -u
N 0 p-q > 0 p-q
+kXdet|-p O s -ixdet|{-p 0 s
-r t -u qg-s 0
X -s
- Y] = _ -q
Z pu-gt+sr -
w 0

In order to make x=y=z=w=0, as we know nust be the
case, we are forced to the conclusionthat either
s=q=p=0 or pu-qt+sr=0. By a simlar operation on
ot her choices of columms of L we find that the
l|atter choice is correct, Thus, to reiterate, for
any matrix L constructedfromtwo point vectors to
represent the |ine connectingthem the six
coordi nates will always satisfy the relation:

pu - gt + sr = 0 (*)
G ven this relationwe can construct the follow ng
mat ri x product:

0 -u -t -s 0 p-g r 0000
u 0 -r —q -p 0 s -t 0000
t r O0-p g-s 0 ufl |oooo0
s g p O -r t -u O 00O0¢OC

The middle matrix is just L.
zeros either identically or by virtue of

The product is all
rel ation



(*). How can we interpret the left hand matrix?
Since each rownmultipliedby L yields four

zeros each row nmust be a point on the line. The
left hand matrix nust then be the same as K, that

is, four points on the line stacked into a 4x4
matrix. The matrix K thus contains the sane
nunbers as the matrix L, they are just arranged
differently. W can now match the nanes of the
coordinateswith their values if cal cul ated as

the intersectionof two planes:
cy C2 b1 b2 b1 bs
=-det t=d =
u [dl dz] et[dl dz} s det['::1 c2
aj] az a) az aiy az
=-det = det =~
P [bl bz] o [01 Cz] i det[dl d2]

Thus t he honbgeneous representationof a line
exists in two dual forns generatedby joiningtwo
points and by intersectingtwo planes. The six
coordi nat e poi nts generated in each case satisfy
equation (*).

DI STANCE MEASUREMENTS

To further increase intuitive feel for the
nmeani ng of these six coordinates |let us see where
a given line intersects the plane at infinity.

We multiplythe K formof the line with the plane
at infinity and get:

g -u -t -s o] -s
u 0 -r -q ol _ |-q
t r o-p{ |lo] [|-p
s g p O 1 0

The intersectionis the point at infinity
(-s-q -p 0). That neans that the 3D vector
(sq p) points parallel to the line. Nowlet
us determ ne the plane containingthe line and
the origin. W nmultiplythe L formof the line
with the origin and get:

(0o0o01)r = (-rt-uo
This neans that the 3D vector (-r t -u) points
perpendi cul ar to this plane. The dot product
of these two vectors is zero: this is just
relation (*). Thus (s q p) lies in the plane
containingthe line and the origin. [If we
conmpute the cross product of the two vectors

we will get a third vector which is perpendic-
ular to the line and pointing directly toward
it.

(tp+uq rp-us —rq—st) =T

By maki ng use of (*) it can be shown that

the length of T is

|| = V(x2+t2+u?) (s%+q2+p?)

We can now conput e the perpendi cul ar di stance, D,
fromthe originto the line. Place the normalized
T at the originand scale it up by the factor D.
We shoul d now be at the point on the |ine which

is closest to the origin.

1%!- (D(tp+uq) D(rptus) D(~rg-st) l) L=20
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Mul ti pl yi ng out and solving for D we get:

P
D = / r24t24y?
vV s2+q2+p?

This is the perpendicul ar di stance fromthe
originto the line L.

TRANSFORM NGLI NES

A honogeneous poi nt is transforned by post-
mul tiplyingby a 4x4 matrix. A honpbgeneous pl ane
is transfornmedby pre-nultiplyingby the inverse
of the point'transformati onmatrix. W shall now
derive the process whereby a honpgeneous line is
transformed. This procedure should preserve dot
products just as the plane transfornmation does.
That is, given the relationship:

(xyzw) L = (abcd)
we wi sh the transforned quantitiesto also
satisfy the rel ationshi p:

(X' yl z! le L' = (al b c! dl)

We can express the prinmed point and plane in
ternms of the unprined by

(xyzw)T = (x'y'z'w')

(abca) ()"

]

(a' b' c' d')
Conbi ni ng t hese

[xyzw]T L' = (abcd) (T_I)t

(xyzw)'l‘ L' Tt =

(abcd)
Conparingthis with the original point, line,
plane rel ati on we can state that a solution is:

t

L = T L' T

ox
oL () = o

Mat ri ces whi ch represent quantities which trans-
formin this way are called tensors. |In addition,
since the transformationmatrix used is the
inverse of the point transformationmatrix, it

is a contra-variant tensor.

By appl yi ng the anal agous process to the K
formof the line we get

T K T = K'
This is another tensor. This tinme the trans-

formation matrix is the sane as the point trans-
formation matrix so it is a covariant tensor.

| NTERSECTI NG LI NES

We have so far exami ned the probl emof
whet her a point is on a line and whether a line
is in a plane. There renains the question of
whet her two lines intersect, and, if so, where.



Thi s can be sol ved by taking the point formof
one line and multiplying it by the plane form of
t he ot her.

Ky L, = N

Each row of K; being a point of line 1, wll
generate a pl ane through that point and through
line 2. If the two |lines intersect, each of these
will be the same plane. The plane containing

the two lines. Likew seeach colum of L2, being
a plane containingline 2, will generate a point
at the intersectionof that plane and line 1. If
the two lines intersect, each of these will be the
same poi nt, the point of intersection of the
lines. Thus each rowof N is a plane vector for
the pl ane commonto the lines. Each colum of N
is a point vector for the intersectionof the

lines. N is the outer product of the point and
t he pl ane:
N=x(abcd)=axbxcxdx

Y ay by cy dy

z az bz cz dz

w aw bw cw dw
Since the point of intersectionalways lies in
the plane of intersectionthe inner product will
be zero. This can be calcul ated as the trace of

N. In terms of the conponents of K; and L, the
trace of N has the val ue

trace N = pjuz-qita2+sirz + paui-qgz2ti+sar)
Note the similarity to relation (*).

For |ines which do not intersect (skewlines)
the trace of N wll be proportional to the
per pendi cul ar di stance between them This can
be seen in the foll owi ng manner. First consider
the cross product of the directionvectors of the
two |ines.

(s1 a1 p1) % (s2 g2 p2) = (s3 a3 p3)

This vector will be perpendicul ar to both lines.
A pl ane having (s3 g3 pa] as its (ab c) conpo-
nents will be parallel to both line 1 and line 2.
We can find the particul ar such pl ane which
contains line 1 by solving for d; in

S3 0
Kk, |22] = [©
P3 0
d 0

Thi s yi el ds four equations all of which can be
shown to have the common sol ution

d; = -pi1uz + itz - sir2

Sinmilarly, the plane parallel to line 1 which
contains line 2 has

d, = pau; - Q2t; + sory

The per pendi cul ar di stance of each of these pl anes
to the originis
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d, ds

D) = ——— Dy = ———22

/537+q5+ps” Vs324+qa+ps’
The per pendi cul ar di st ance between the two pl anes
and the perpendi cul ar di stance between the |ines
is
D;-Dy = di-da _ _trace N

Vs32+qa24p,? VsaZ+qsZeps?

If the trace is zero, the lines intersect. |If

the trace is non-zero, the perpendicul ar di stance
is as shown.

What, then, are the six honbgeneous coordi nates
for the line along which this distance is

neasur ed? We al ready have the direction of the
line as (s3 q3 3)- It remains to findr3, t3

and usz. This can be acconplishedby using the
three facts that line 3 intersects line 1, line 3
intersects line 2, and the coordinates of line 3

nmust satisfy relation (*).

0

trace (K3 Lg2)

trace (K; L3) (o]

psus - g3tz + s3r3 = 0

These three equations may then be solved for rj,
t;, and us.

CONCLUSI ON

The line representationdevel oped here can
be used to solve many geonetric problens in three
di mensions. Its form however, does |ead to nuch
redundant cal cul ati on for many probl ens of
interest. Its main use may therefore be as a
conceptual tool to generate fornulas for desired
geonetrical quantitieswhich are then sinplified
based on ot her know edge of the problem
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