Research in Focus: Using ML to Troubleshoot and Improve Real Time Systems
- Behnaz Arzani, Debadeepta Dey, Besmira Nushi | Microsoft Research
As systems become increasingly complicated, cater to large geographical areas, have to seamlessly utilize an incredibly diverse array of computational resources and serve real-time, safety and mission-critical applications there is an emerging need for them to be self-aware or self-tuning in nature. Advances in machine learning and artificial intelligence have recently led to algorithms which can learn high-performance policies over extremely large state spaces (e.g. solving games like Ms. Pacman, Go, Poker or learn self-driving policies for autonomous cars, drones, etc). Just as the growth of cheap abundant computing and specialized systems (e.g. dedicated accelerators for deep learning) have led to rapid advances in machine learning and artificial intelligence, there is an emerging opportunity for machine learning to help systems back. In this session we want to explore the technical opportunities and unique challenges that surface when applying machine learning to optimize large scale distributed systems. Specifically, we want to explore challenges in developing systems which are self-tunable, resource-aware and use machine learning to dynamically optimize a running system to achieve desired latency, throughput and other system-dependent utility functions. Making significant progress in this area requires multiple disciplines coming together, namely: machine learning, decision-making, distributed systems and optimization.
-
-
Behnaz Arzani
Principal Researcher
-
Besmira Nushi
Senior Principal Research Manager
-
Debadeepta Dey
Principal Researcher
-
-
Taille: Microsoft Research Faculty Summit
-
-
-
Cars, Computing and the Future of Work: Specific topics of mutual interest
- Linda Boyle,
- Ed Doran,
- John Lee
-
-
-
Crowd, Cloud and the Future of Work: Updates from human AI computation
- Pietro Michelucci,
- Lucy Fortson,
- Franco Pestilli
-
-
Cars, Computing and the Future of Work: A UW & MSR Workshop: Welcome and Overview of Projects
- Linda Boyle,
- Ed Doran,
- Eric Horvitz
-
-
Crowd, Cloud and the Future of Work: Welcome and Updates
- Besmira Nushi,
- Ece Kamar,
- Kori Inkpen
-
Empowering People to Achieve More: How Useful a Concept is Productivity?
- Brendan Murphy,
- Yvonne Rogers,
- Steve Whittaker
-
Keynote - The Future of Work And the Power of Data
- Johannes Gehrke
-
Productivity in Software Development
- Neel Sundaresan,
- Margaret-Anne Storey,
- Prem Kumar Devanbu
-
Artificial Emotional Intelligence, Social Systems, and the Future of Collaboration
- Mary Czerwinski,
- Mark Ackerman,
- Gloria Mark
-
Workers of the World, Connect! Tech Innovations and Organizational Change for the Future of Work(ers)
- Mary Gray,
- Jamie Woodcock,
- Louise Hickman
-
Increasing AI Programmer Productivity
- Markus Weimer,
- Sarah Bird,
- Ce Zhang
-
Human-AI Collaboration for Decision-Making
- Besmira Nushi,
- Ayanna Howard,
- Jon Kleinberg
-
Future of Spreadsheeting
- Ben Zorn,
- Felienne Hermans,
- Daniel Barowy
-
Program Synthesis meets Notebooks
- Sumit Gulwani
-
Accessible Virtual Reality
- Eyal Ofek
-
Calendar.help: A Virtual Meeting Scheduling Assistant
- Pamela Bhattacharya
-
Visual Studio IntelliCode
- Mark Wilson-Thomas
-
Microsoft Teams: Collaborate with Any Researcher Anywhere
- Jethro Seghers
-
Project Alava: Programming Webs of Microcontrollers
- James Devine,
- Teddy Seyed
-
AI in PowerPoint
- Kostas Seleskerov