Toward Algorithmic Accountability in Public Services: A Qualitative Study of Affected Community Perspectives on Algorithmic Decision-making in Child Welfare Services

2019 Human Factors in Computing Systems |

Published by ACM

PDF

Algorithmic decision-making systems are increasingly being adopted by government public service agencies. Researchers, policy experts, and civil rights groups have all voiced concerns that such systems are being deployed without adequate consideration of potential harms, disparate impacts, and public accountability practices. Yet little is known about the concerns of those most likely to be affected by these systems. We report on workshops conducted to learn about the concerns of affected communities in the context of child welfare services. The workshops involved 83 study participants including families involved in the child welfare system, employees of child welfare agencies, and service providers. Our findings indicate that general distrust in the existing system contributes significantly to low comfort in algorithmic decision-making. We identify strategies for improving comfort through greater transparency and improved communication strategies. We discuss the implications of our study for accountable algorithm design for child welfare applications.