PR-Join: A Non-Blocking Join Achieving Higher Early Result Rate with Statistical Guarantees
- Shimin Chen ,
- Phillip B. Gibbons ,
- Suman Nath
SIGMOD '10: Proceedings of the 2010 ACM SIGMOD international conference on Management of data |
Published by Association for Computing Machinery, Inc.
Online aggregation is a promising solution to achieving fast early responses for interactive ad-hoc queries that compute aggregates on a large amount of data. Essential to the success of online aggregation is a good non-blocking join algorithm that enables both (i) high early result rates with statistical guarantees and (ii) fast end-to-end query times. We analyze existing non-blocking join algorithms and find that they all provide sub-optimal early result rates, and those with fast end-to-end times achieve them only by further sacrificing their early result rates. We propose a new non-blocking join algorithm, Partitioned expanding Ripple Join (PR-Join), which achieves considerably higher early result rates than previous non-blocking joins, while also delivering fast end-to-end query times. PR-Join performs separate, ripple-like join operations on individual hash partitions, where the width of a ripple expands multiplicatively over time. This contrasts with the non-partitioned, fixed-width ripples of Block Ripple Join. Assuming, as in previous non-blocking join studies, that the input relations are in random order, PR-Join ensures representative early results that are amenable to statistical guarantees. We show both analytically and with real-machine experiments that PR-Join achieves over an order of magnitude higher early result rates than previous non-blocking joins. We also discuss the benefits of using a flash-based SSD for temporary storage, showing that PR-Join can then achieve close to optimal end-to-end performance. Finally, we consider the joining of finite data streams that arrive over time, and find that PR-Join achieves similar or higher result rates than RPJ, the state-of-the-art algorithm specialized for that domain.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.