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Abstract
This paper proposes an online dual-microphone system for di-
rectional speech enhancement, which employs geometrically
constrained independent vector analysis (IVA) based on the
auxiliary function approach and vectorwise coordinate descent.
Its offline version has recently been proposed and shown to
outperform the conventional auxiliary function approach-based
IVA (AuxIVA) thanks to the properly designed spatial con-
straints. We extend the offline algorithm to online by incorpo-
rating the autoregressive approximation of an auxiliary variable.
Experimental evaluations revealed that the proposed online al-
gorithm could work in real-time and achieved superior speech
enhancement performance to online AuxIVA in both situations
where a fixed target was interfered by a spatially stationary or
dynamic interference.
Index Terms: multichannel speech enhancement, geometric
constraint, independent vector analysis (IVA), online, real-time

1. Introduction
With the fast spread of voice-controlled applications, speech
enhancement technology for extracting the target speech from
recorded noisy signals becomes more important since the pres-
ence of noise and interference can significantly degrade the per-
formance of those speech processing applications. Especially
for real-time applications, e.g., real-time speech recognition in-
terfaces, hearing-aid devices, and teleconference systems, it is
necessary to develop speech enhancement systems that not only
perform well but also function in real-time.

Several techniques extended from non-real-time offline ver-
sions of independent component analysis (ICA) are such meth-
ods, which can be categorized into online and blockwise ap-
proaches [1, 2, 3]. Online approaches update the separation pa-
rameters, i.e., demixing matrices, each time a new frequency
analysis frame arrives, while blockwise approaches update the
parameters for every block containing multiple frames arrives.
Online approaches are usually preferred in low-delay scenar-
ios since the estimation delay increases with larger block sizes.
However, the separation performance of online approaches
tends to be inferior to those of blockwise approaches due to
insufficient statistics [2, 3]. One promising approach to take
both advantages is the online blockwise approach, which com-
putes statistics using the arrived current frame and several past
frames.

Both offline and online ICA-based approaches suffer from
the permutation problem. Namely, the order of the separated
signals in each frequency bin has ambiguity. Independent vec-
tor analysis (IVA) [4, 5] is one promising method that solves
source separation and permutation problem simultaneously by
modeling the whole frequency components as a multivariate
variable following a spherical multivariate distribution. Owing
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to the high separation performance, IVA has attracted much at-
tention, which promotes the study and practicability of the ap-
proach in various scenarios, including online algorithms [6, 7].
In [7], an online version of IVA based on auxiliary function ap-
proach (AuxIVA) [8] has been proposed and shown to perform
stably in both spatially stationary and nonstationary conditions.
Moreover, taking advantage of the auxiliary function approach
[9], AuxIVA is notable in its convergence speed and no require-
ment of the step-size parameter, which makes it more suitable
for practical applications. However, when considering speech
enhancement applications, an additional process is necessary
for selecting the target speech after the ICA-/IVA-based sepa-
ration, which is typically performed by utilizing the spatial in-
formation, i.e., the direction of arrival (DOA) of the target [10].
Furthermore, it is reported that block permutation occasionally
occurs between the low- and high-frequency bands in AuxIVA
[11], which results in performance degradation. To address the
drawback of AuxIVA and preserve the benefit of auxiliary func-
tion approach, we have recently proposed a geometrically con-
strained IVA method that uses the auxiliary function approach
and vectorwise coordinate descent (VCD), which we refer to as
“GCAV-IVA” [12]. GCAV-IVA exploits spatial information to
guide the target channel and avoid block permutation by con-
sidering a joint optimization problem, which combines linear
constraints restricting far-field responses [13] of demixing ma-
trices with the objective function of IVA. By adopting the idea
of VCD [14], a fast algorithm has been successfully derived
based on the auxiliary function approach.

Towards practical applications, in this paper, we propose
an online version of GCAV-IVA by approximating the auxiliary
variables in the auxiliary function with an autoregressive esti-
mation of related statistics. This extension has been adopted in
online AuxIVA [7], where the derived online algorithm outper-
formed the blockwise algorithm, which motivates us to believe
the proposed method could perform reasonably well even in an
online update manner. We investigate a dual-microphone sys-
tem that employs the proposed online algorithm and evaluate
the speech enhancement performance of the system in the situ-
ation where a fixed target was interfered by a spatially fixed or
moving interference.

2. Offline GCAV-IVA method
2.1. Problem formulation

Let us consider a determined situation where I sources are ob-
served by I microphones. Let xi(ω, t) and yj(ω, t) denote the
short-time Fourier transform (STFT) coefficients of the signal
observed at the i-th microphone and the j-th estimated sources,
respectively. Here ω and t are the frequency and time indices,
respectively. We denote the frequency-wise vector representa-
tion of the observations and the estimated sources by

x(ω, t) = [x1(ω, t), . . . , xI(ω, t)]
T ∈ CI , (1)

y(ω, t) = [y1(ω, t), . . . , yJ(ω, t)]T ∈ CJ , (2)
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where J = I and (·)T denotes the transpose. When the STFT
window length is sufficiently longer than the impulse responses
between sources and microphones, the relationship between the
observations and the estimated sources can be expressed with
the time-invariant instantaneous mixture model as:

y(ω, t) = W (ω)x(ω, t), (3)

where W (ω) = [w1(ω), . . . ,wI(ω)]H is an I × I demixing
matrix and (·)H denotes Hermitian transpose.

IVA assumes that sources follow a multivariate distribution
and thus dependencies over frequency components can be ex-
ploited to avoid the permutation problem. The demixing matri-
cesW = {W (ω)}ω are estimated by minimizing the following
objective function

JIVA(W) =

J∑
j=1

E[G(yj(t))]−
Ω∑
ω=1

log | detW (ω)|, (4)

where Ω denotes the number of frequency bins. E[·] denotes the
expectation operator and yj(t) is the source-wise vector repre-
sentation defined as

yj(t) = [yj(1, t), . . . , yj(Ω, t)]
T ∈ CΩ. (5)

Here, G(yj(t)) is the contrast function having a relationship of
G(yj(t)) = − log p(yj(t)), where p(yj(t)) represents a mul-
tivariate probability density function of the j-th source. One
typical choice of the contrast function is using spherical multi-
variate distribution [4, 5, 8], which is expressed as

G(yj(t)) = GR(rj(t)), (6)

rj(t) = ||yj(t)||2 =

√∑
ω

|yj(ω, t)|2

=

√∑
ω

|wH
j (ω)x(ω, t)|2. (7)

Here, || · ||2 denotes L2 norm of a vector.

Now, let us consider a geometric constraint [13, 15] that re-
stricts the far-field response of the j-th demixing filter estimated
by IVA at the direction θ, which is described as

Jc(W) =

J∑
j=1

λj

Ω∑
ω=1

|wH
j (ω)dj(ω, θ)− cj |2. (8)

Here, dj(ω, θ) is the steering vector pointing to the direction θ,
cj is a nonnegative-valued constraint, and λj ≥ 0 is a param-
eter weighing the importance of the constraint. This concept
is used in the linearly constrained minimum variance (LCMV)
beamformer [16]. Note that (8) with cj = 1 forces the spatial
filter to form a conventional delay-and-sum beamformer steer-
ing at the direction θ to preserve the target source while a small
value of cj essentially creates a spatial null towards the target
direction θ aiming at suppressing the target source and preserv-
ing all other sources. The null constraint on the target direction
can also serve as a blocking matrix (BM) [17], so that the corre-
sponding channel can produce good estimate of interference and
noise. Such estimate would have potential benefit of better han-
dling under/overdetermined cases compared to traditional BSS
methods. The objective function of GCAV-IVA is summarized
as

J(W) = JIVA(W) + Jc(W). (9)

2.2. Update rules of GCAV-IVA

To explore the benefits of fast convergence and no requirement
of step-size parameter, the inference algorithm of GCAV-IVA
is derived based on the auxiliary function approach [9]. In the
approach, an auxiliary function J+(W,V) is designed in such
a way that J(W) = minV J

+(W,V) is satisfied. Then, in-
stead of directly optimizing the original objective function (9),
which is difficult to be analytically solved, the auxiliary func-
tion J+(W,V) is minimized in terms ofW and V alternatingly.

Since the geometric constraints are linear, the auxiliary
function that upper-bounds (9) can be easily obtained by com-
bining the original AuxIVA’s auxiliary function [8] with the
constraint terms:

J+(W,V)
c
=

J∑
j=1

Ω∑
ω=1

{1

2

∑
j

wH
j (ω)V j(ω)wj(ω)

− log | detW (ω)|
}

+ Jc(W), (10)

where V j(ω) is the weighted covariances expressed as

V j(ω) = E
[G′

R(rj(t))

rj(t)
x(ω)xH(ω)

]
(11)

and =c denotes equality up to constant terms. Here, (·)′ denotes
the derivative operator. When using source modelGR(rj(t)) =

rj(t), the V j(ω) can be expressed as E[xxH/rj(t)].
The update rule for V is obtained straightforwardly by ap-

plying (7) into (11) whereas the update rule forW is derived by
embracing the idea adopted in vectorwise coordinate descent
(VCD) that arranges the term log | detW | with the property of
cofactor expansion [14]. With omitting the indices of ω and θ
for notation simplicity, the derived update rules are summarized
as follow:

uj = D−1
j W−1ej , (12)

ûj = λjcjD
−1
j dj , (13)

hj = uH
jDjuj , (14)

ĥj = uH
jDjûj , (15)

wj =


1√
hj

uj + ûj (if ĥj = 0),

ĥj

2hj

[
− 1 +

√
1 +

4hj

|ĥj |2

]
uj + ûj (o.w.).

(16)

Here, Dj = V j + λjdjd
H
j and ej is the j-th column of the

I × I identity matrix. Note these update rules are equivalent to
those employed in AuxIVA when λj = 0.

3. Proposed online algorithm and
dual-microphone system

3.1. Online GCAV-IVA

In the offline GCAV-IVA, only (11) requires all the observed
samples over time t = 1, . . . , T so this equation is the point of
formulation for the online algorithm. We can modify the update
rule of V j to online blockwise version as

V j(ω, t) =
1

L

t∑
τ=t−L+1

[G′
R(rj(t))

rj(t)
x(ω, t)xH(ω, t)

]
, (17)

where V j(ω, t) denotes the calculated V j(ω) at time t, L
denotes the block size, and rj(t) is calculated by (7) with
wj(ω) = wj(ω, t). If we directly employ (17) to obtain
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Figure 1: Structure of proposed system with DOA estimation
(system (c)).

sufficient statistics V j(ω, t), the past observation with rela-
tively large L needs to be retained and the summation must
be calculated at every new frame arrives, which is highly cost-
consuming. On the other hand, if we set a small value to L for
reducing the complexity, the insufficient statistics may lead to
severe performance degradation.

To reduce computational cost and properly compute the
statistics, we propose applying autoregressive calculation of
V j(ω, t) [7] that uses the previously calculated V j(ω, t − L)
as follows:

V j(ω, t) = αV j(ω, t− L)+

(1− α)
1

L

t∑
τ=t−L+1

[G′
R(rj(t))

rj(t)
x(ω, t)xH(ω, t)

]
. (18)

Here, 0 ≤ α < 1 is a forgetting factor, which controls how
much statistics of past signals is considered. Sufficient statis-
tics can then be computed with a small value of L. Note (18)
reduces to (17) when α = 0. Since a longer interval of past
samples is considered through the recursion, it is expected that
this approximation can improve separation performance in the
fixed source situation with a large α. In contrast, separation
performance in moving source situation is expected to improve
with a small α, where any change in source positions can be
reflected quickly via the blockwise term.

3.2. Dual-microphone system

In this paper, we develop a dual-microphone system to inves-
tigate the proposed online algorithm, which takes accounts of
following conditions:

• DOA of the target speaker θt is known;
• DOA of the interference speaker θi is (a) unknown where

no constraint is adopted to the target channel; (b) known
or (c) to be estimated, which are corresponding to the
three systems, respectively.

• Null constraints are employed, i.e. cj = 0 or close to
zero. It is a practical choice since only two microphones
are available.

To obtain interference DOAs in the system (c), we employ a
separate online AuxIVA system. Since a BSS system can be
interpreted as a set of adaptive null-beamformers [18], the di-
rectional nulls, which can be identified from the directivity pat-
terns, usually point out the directions where the sources come
from [19, 20]. In the system, the DOA of the j-ch output
sources is given as

θ̂j = argmin
θ

Ω/2∑
ω=1

|wH
j (ω)d(ω, θ)|. (19)

The interference DOA θ̂i can then be obtained by selecting the
one far away from the target DOA θt:

θ̂i = argmax
θ̂j

[
|θ̂j − θt|

]
, j = 1, 2 (20)

An overview of the proposed system with estimating the inter-
ference DOA is shown in Fig. 1.

4. Experimental evaluations
4.1. Data and settings

To evaluate the effectiveness of the proposed online GCAV-IVA
method in the dual-microphone system, we conducted speech
enhancement experiments in two situations: 2 spatially fixed
sources and 1 fixed target source with 1 moving interference
source.

We used speech samples of 4 speakers (2 females and
2 males) excerpted from Voice Conversion Challenge 2018
(VCC2018) database [21], which included 81 sentences for
each speaker. The audio files were about 3-7 seconds long.
Clean signals for the simulation were generated by concate-
nating utterances spoken by a single speaker in random order,
whose length was about 30 seconds long. For 2 spatially fixed
sources, the mixture signals were created by simulating two-
channel recordings of two sources where the room impulse re-
sponses (RIRs) were synthesized using the image method [22].
Fig. 2 shows the positions of microphones and a pair of sources.
The interval of microphones was set at 5 cm. We tested 5 pairs
of DOA settings involving (30◦, 110◦), (70◦, 100◦), (150◦,
60◦), (40◦, 90◦), (90◦, 150◦), where the former and latter an-
gles are target and interference positions, respectively. For the
spatially nonstationary situation, we first generated reverberant
signals of moving interference sources using “signal genera-
tor” 1. Then we mixed the generated signals with the reverber-
ant target signals. 4 positions of the target signal were tested,
namely, 30◦, 90◦, 140◦, and 150◦. More configuration details
are available in Fig. 3. We tested two different reverberant con-
ditions. To meet the instantaneous mixing model assumption,
the reverberation times (RT60) were set at 78 ms and 200 ms,
which were controlled by setting the reflection coefficient of
the walls at 0.2 and 0.4, respectively. To simulate the realis-
tic background noise, 4 types of diffuse noise excerpted from
DEMAND database [23], including park, office, cafeteria, and
metro, were also added to reverberant speech signals to gener-
ate “noisy” datasets. We refer to the dataset without/with diffuse
noise as “S+I” and “S+I+N”, respectively. The energy ratio of
target-to-interference was set at 0 dB and the input signal-to-
distortion ratio (SDR) [24] of noisy speech was about [-3, 0]
dB.

All the speech signals were sampled at 16 kHz. The STFT
was computed using a Hanning window whose length was set
at 32 ms, and the window shift was 16 ms. We compared
the proposed online GCAV-IVA (oGCAV-IVA) method using
L = 1 with online AuxIVA (oAuxIVA) that also adopts (18)
with L = 1. We run these two algorithms for 5 iterations
with the first 5 frames to initialize demixing matrices. To up-
date demixing matrices every frame, we run the algorithms for
2 iterations. The forgetting factor α was set at 0.96 for both
oAuxIVA and oGCAV-IVA. λ was set at 1 for both channels or
only the interference channel in the system (a). We set c at 0.5
for the target channel and 0.2 for the interference channel. For
DOA estimation, the range was set at [0◦, 180◦] with an interval
of 5◦. Besides SDR, source-to-interferences ratios (SIR) and

1https://www.audiolabs-erlangen.de/fau/professor/habets/software/signal-
generator
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Figure 2: Configurations of microphones and a pair of fixed
sources, where red and blue marks denote target and interfer-
ence positions, respectively
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Figure 3: Configurations of sources and microphones. Red
mark and blue line denote fixed target source and the trace of
moving interference, respectively.

sources-to-artifacts ratios (SAR) [24] were computed to evalu-
ate the enhancement performance. For each concatenated ut-
terance, we evaluated signals every second, then computed the
average scores over 30 seconds as the results. For GCAV-IVA,
we evaluated the output from the target channel, whereas for
AuxIVA, we evaluated outputs from all the channels and took
the best score as a result.

4.2. Results of spatially fixed sources

Table 1 shows speech enhancement results. The proposed al-
gorithm significantly outperformed oAuxIVA without regard to
diffuse noise. Comparing with the GCAV-IVA system using
true DOA of the interference, system (c) that adopts DOA es-
timation achieved a further improvement of more than 4 dB,
which was impressive. One possible reason is that, since the
DOA estimate coming from the separate AuxIVA points out
the direction involving the most statistically independent com-
ponents, suppressing that direction can result in a higher SIR.
Moreover, we found the proposed method was also able to im-
prove the performance in the “noisy” situation, where the de-
termined condition did not hold. oAuxIVA almost failed to
enhance the speech with only achieving SDR score of 1.7 dB,
whereas the proposed method exploiting geometric information
still achieved SDR score of about 6.8 dB.

4.3. Results of spatially moving sources

Table 2 shows the results of enhancing signals against mov-
ing sources. As with the fixed source case, the proposed
method outperformed oAuxIVA, where oGCAV-IVA achieved
more than 1.5 dB and 2.9 dB improvement in the situation with-
out/with diffuse noise, respectively. These results confirmed
the effectiveness of geometric constraints in improving speech
enhancement performance. The system adopting no constraint
outperformed the one using DOA estimation in terms of SDR

Table 1: SDR, SIR, SAR scores [dB] obtained in spatially sta-
tionary condition.

Method
S+I S+I+N

SDR SIR SAR SDR SIR SAR
oAuxIVA 8.37 12.57 12.06 1.70 4.06 8.81
oGCAV-IVA (a) 11.77 15.72 14.51 6.07 8.48 12.06
oGCAV-IVA (b) 10.03 12.50 14.96 4.29 5.81 12.86
oGCAV-IVA (c) 14.19 18.40 16.73 6.86 9.18 13.60

Table 2: SDR, SIR, SAR scores [dB] obtained in spatially non-
stationary condition.

Method
S+I S+I+N

SDR SIR SAR SDR SIR SAR
oAuxIVA 3.77 6.51 9.34 0.12 1.96 8.13
oGCAV-IVA (a) 6.83 9.21 11.66 3.51 5.33 10.50
oGCAV-IVA (c) 5.36 6.90 12.33 3.05 4.42 11.41

Figure 4: Examples of estimated DOA for moving source.

and SIR, which was different from the fixed source case. One
possible reason is the accuracy of DOA estimation.

The trace of the moving source was designed to move with
a uniform speed from 120◦ to about 80◦, which was controlled
by setting the positions of the start and endpoint, as shown in
Fig. 3. Fig. 4 shows examples of the estimated interference
DOA. The left figure shows an example of successful interfer-
ence DOA estimation by oAuxIVA, while an example of failure
cases can be seen in the right figure. In situations where oAux-
IVA fails to estimate the interference DOA, the inappropriate
constraint may degrade the performance.

All the experiments were run using an Intel (R) Core i7-
7800X CPU@3.5 GHz. The measured average computational
time was less than 16 ms, which was the length of window shift,
namely, about 5 ms for the system (a) and (b), and about 15 ms
for the system (c). These results indicated that the proposed
algorithm could work in a real-time manner.

5. Conclusions
In this paper, we proposed an online speech enhancement algo-
rithm, which is an extension of the offline version of GCAV-IVA
with an autoregressive estimation of variables. GCAV-IVA is a
geometrically constrained IVA algorithm that is derived based
on the auxiliary function approach and VCD to solve a joint
optimization problem that combines beamforming-based linear
constraints with the objective function of IVA. We investigated
the proposed online algorithm and compared it with online Aux-
IVA using a dual-microphone system. The results revealed that
the proposed method could perform in real-time and was su-
perior to online AuxIVA in both spatially static and dynamic
conditions.
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