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ABSTRACT
Single-channel speech enhancement (SE) can be described, in
its simplest terms, as learning a transformation from single-
channel noisy speech to the clean speech. To do this, we pro-
pose a simple but effective U-Net convolutional neural net-
work (CNN) based architecture with skip-connections with
a focus on real-time applications which require low-latency
processing. To that end, we choose to process relatively small
temporal windows and apply time-frequency (T-F) featur-
ization on it to achieve magnitude estimation. Two state-of-
the-art systems are picked for bench-marking: One operating
on spectral-domain [1] and the other on temporal-domain
[2]. We evaluate the performance of the systems in terms of
perceptual evaluation of speech quality (PESQ), short-time
objective intelligibility (STOI). Experimental results show
that in terms of PESQ measure the proposed method provides
around 27% and 11% relative improvement over the baseline
systems respectively and has significantly lower latency com-
pared to them. We further investigate the trade-off between
performance and overall latency of the proposed system.

Index Terms— Speech enhancement, low-latency, U-
Net, convolutional neural networks

1. INTRODUCTION

Single-channel speech enhancement (SE) is defined as the
process of suppressing the background noise with little or no
degradation on target speech so that improved sound quality
and intelligibility is achieved. The SE algorithms are gener-
ally used as a pre-processing for various speech processing
applications such as speech recognition [3, 4] and speaker
recognition [5, 1]. For many such applications, real-time
processing might be required and for this case, it has been re-
cently studied that SE systems should be performed with low
computational complexity and low-latency [6]. Traditional
methods used in SE were concentrated on signal process-
ing based methods [7, 8, 9] in order to tackle the problem,
whereas the most recent studies mainly address various neu-
ral networks based methods such as deep neural networks
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(DNN) [10, 11], deep denoising autoencoders (DAE) [12],
convolutional neural networks (CNN) [13], recurrent neural
networks (RNN) [14, 3], and generative adversarial networks
(GAN) [1, 15, 2] for the task.

Neural network based methods have gained quite an
amount of attention in recent years for many applications
(text/audio/ image processing etc.) due to its ability to learn
complex hierarchical representations from data. Generally,
the most recent state-of-the-art methods on SE can be classi-
fied as those operating on T-F domain and temporal domain.
It is claimed that phase information coming out of short-time
Fourier analysis has minor importance on SE [16]. How-
ever, further study [17] shows that phase information has
significant importance on the reconstruction of the enhanced
speech which constitutes the main motivation for the studies
operating on the temporal domain. On the other hand, our
experiments show that temporal processing requires more
processing time at inference as opposed to the spectral. And
there are also some studies [18, 19] working in complex num-
bers domain to take the phase information into consideration
for the SE processing. The studies using spectral featurization
mainly use direct mapping or masking strategy. For the ones
using former strategy the network tries to learn to transform
noisy magnitude spectra to their clean equivalents [10, 11]
and for the ones that use latter strategy to predict correspond-
ing masks such as ideal binary mask (IBM) [20], ideal ratio
mask (IRM) [21], and phase sensitive mask (PSM) [4].

In recent years generative adversarial networks (GAN)
[22] based methods have been adopted for various SE appli-
cations [1, 15, 2] operating on spectral or temporal domains.
However, it is addressed [23] that for the system that Pascual
et al. proposed [15] using the L1 loss alone performs better in
terms of objective perceptual speech quality and intelligibility
measures. Actually we observe the similar behaviour for the
study [1] which uses combined GAN and L1 losses as well.

In this paper, we propose a simple and effective CNN
based U-Net architecture [24] adopted from the generator
of Pix2Pix network which is a recent general-purpose GAN
framework proposed for image-to-image translation [25]. We
operate on T-F domain and try to have relatively low pro-
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Fig. 1: System overview. y is the input noisy signal and Y
is LPS of the signal and X̂ is estimated LPS which combined
with noisy phase YP to get estimated signal x̂.

cessing window in the temporal dimension and construct an
architecture tailored for the corresponding input. We choose
to concentrate on magnitude prediction by disregarding phase
information. Our proposed network includes encoder and de-
coder layers which fulfil the downsampling and upsampling
of the input data respectively. We try various loss function
such as L1, L2 norms and log-spectral distance (LSD) metric
out of which LSD gives the best results. We analyse the ob-
jective speech quality of the systems and further investigate
the processing time of baseline systems with respect to the
proposed system at inference time. Moreover we analyse the
performance change of the proposed system under various
latency conditions.

This paper is organized as follows: We first describe the
overview of the system and the details of the proposed net-
work architecture in Section 2. And in Section 3 experi-
mental details are explained as well as the information about
the dataset and baseline methods. We present the results and
some analysis in Section 4 and Section 5 concludes the paper.

2. PROPOSED SYSTEM

2.1. System Overview

The transformation function from noisy to clean feature space
can be learned by means of a DNN which is trained on a
dataset of parallel noisy and clean speech files. As an input to
the network we use log-power spectrogram (LPS), Y which
can be obtained after applying a short-time Fourier transform
(STFT) to the input noisy waveform, y to get magnitude, YM
and phase, YP and then calculated as Y = log(|YM |2).

Within the scope of this study, at inference time, we only
forward propagate the Y features through the network and re-
construct the enhanced signal x̂ by applying the inverse STFT
with estimated magnitude, X̂M and noisy phase, YP as shown
in Figure 1.

2.2. Network Architecture

The proposed network architecture is illustrated in Figure
2. To encode the input features we deploy 8 2-dimensional
convolution (conv2d) layers named as (e1-e8) and to de-
code we apply 8 2-dimensional sub-pixel convolution (sub-

conv2d) layers named as (d1-d8). The sub-pixel convolution
layers are first introduced in [26] for an image and video
super-resolution task and it is proved useful in speech super-
resolution task [27] as well. The main idea is to compute more
feature channels on the convolution layer and resize them into
the target upsample dimension. To each layer we apply leaky
rectified linear unit (LReLU) activation function followed by
batch normalization. The stride values that applied for down-
sampling are (1, 2) for first 4 layers and (2, 2) for the other
4 layers, kernel sizes are (5, 7), (5, 7), (5, 7), (5, 5), (5, 5) for
first 5 layers and (3, 3) for the rest (e6-e8), and number of
output feature channels are 64, 128, 256 for the first 3 layers
and 512 for the rest (e4-e8), respectively. All stride, kernel,
and channel values are symmetric for the subconv2d layers.
At each downsampling step, the number of channels dou-
bles up to 512 and reduces gradually down to 1 at the end
of the upsampling steps. For the decoder layers (d1-d7) we
apply skip-connections with corresponding encoder layers in
reverse order which are (e7-e1), respectively. Moreover we
apply dropout to the first 3 layers (d1-d3) with a probability
rate of 0.5.

For the training loss, we experiment three type of func-
tions, namely L1, L2 norms and log-spectral distance (LSD),
our overall testing shows that LSD yields slightly better re-
sults for SE task. In general terms, LSD measures the dis-
tance between two spectrograms in decibels, and it is defined
as follows:

lossLSD =
1

T

T∑
i=1

√√√√ 1

S

S∑
j=1

[X(i, j)− X̂(i, j)]2 (1)

whereX and X̂ are the clean and estimated LPS, respectively
and T is the number of frames and S is the number of spectral
bins.

3. EXPERIMENTS

3.1. Dataset

To benchmark our proposed system we resort to the dataset
presented by Valentini et al. [28], which is publicly available1

and also used by various recent studies [2, 15, 29, 30].
The dataset includes clean and noisy audio data at 48 kHz

sampling frequency. The clean dataset is composed of 30
speakers (gender-balanced) selected from the voice bank cor-
pus [31], 28 of which reserved for training and 2 intended for
the test. The noisy dataset is created with 10 types of noise (2
artificial and 8 real obtained from the Demand database [32])
with varying signal-to-noise ratio (SNR) values of 15, 10, 5,
and 0 dB. The total number of conditions for the training set
sums up to 40 and total duration of the train set is around 10

1https://datashare.is.ed.ac.uk/handle/10283/2791
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Fig. 2: Proposed network architecture.

hours. For the test set, 5 types of noise are also chosen from
the Demand database and mixed with SNR values of 17.5,
12.5, 7.5, and 2.5 dB which gives rise to 20 different condi-
tions and total duration of test is around 30 mins. It has to be
stressed out that all the noise types and speakers are mutually
exclusive between training and test conditions.

3.2. Preprocessing and Training Setup

We generally adopt the preprocessing from [1] with slight
changes. The audio signals are downsampled from 48 kHz to
16 kHz. The spectral representation is obtained by applying
512-point STFT with a Hanning window of size 32 ms and a
hop size of 16 ms (256 samples). Only the 257-point STFT
magnitudes are considered by removing the symmetric half.
We remove the last STFT point as well which covers the high-
est 31.25 Hz band of the signal and has slight importance. By
doing so, a power-of-2 dimensional input is achieved which is
instrumental in our hierarchical encoder-decoder network as
described in Section 2.2. In order to achieve a fixed dimen-
sion for the processing of both train and test sets, we use 16
frames of clips which in turn creates an input dimension of 16
× 256 × 1 processing window. We choose relatively small,
16 frame-window (0.256 sec), on the temporal domain in or-
der to meet our low-latency constraint. Inputs to the network
are normalized to have zero mean and unit variance.

The network is trained with the Adam optimizer [33] with
a batch size of 64 and learning rate of 0.0001 for 30 epochs.
The decay rates of optimizer are β1 = 0.5 and β2 = 0.9.
The weights of the network are initialized from the normal
distribution with zero mean and 0.02 standard deviation [25].

3.3. Baseline Methods and Evaluation Metric

We compare the results of our proposed approach with two
state-of-the-art methods both using the GAN based networks

that we refer one, operating on the spectral domain [1], as
SPcGAN and the other as SERGAN which operates on the
temporal domain [2]. These two systems are retrained with
the dataset described in Section 3.1 and by following the cor-
responding experimental configuration that they proposed.

The first baseline SPcGAN uses a network adopted from
a general-purpose conditional GAN (cGAN) framework. We
follow the proposed preprocessing procedure to create clean
and noisy input data [1]. Then noisy input is fed to the gener-
ator (G) to get an estimate of clean spectra and discriminator
(D) gets the combination of estimate/clean and noisy spectra
as an input. Here G has U-Net architecture with skip connec-
tions [24]. General GAN training procedure and architecture
are followed as described in [25] but 5 × 5 filters are used in
2-dimensional convolutional layers and single sigmoid output
generated after the last layer of D flatten out. The Adam opti-
mizer is used at the training for 10 epochs with a learning rate
of 0.0002 and a batch size of 1. L1 loss has been added to the
GAN loss with a scaling factor of 100 as suggested in [25].

The SERGAN system also uses a cGAN framework
which is similar architecture used in SPcGAN system but
operates on input raw waveform instead of spectral domain.
The model uses 16384-sample processing windows with 50%
overlap. Regular cGAN training procedure is followed as
described in the SPcGAN system, specifically relativistic
standard GAN implementation is adopted and the gradient
penalty is applied in the D network [34] to stabilize the train-
ing. The system trained with the Adam optimizer for 80
epochs with a learning rate of 0.0002 and batch size of 100.
Here L1 loss is also added to GAN loss with a penalty term
of 200 with an additional gradient penalty term of 10.

The performance comparison of the systems is evaluated
in terms of PESQ [35] and STOI [36] measures. These ob-
jective speech quality measures are generally the most well-
known and used metrics by the SE community. The imple-
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mentations used in this paper come from [37] for PESQ and
[38] for STOI. In order to evaluate latency and processing
time of the systems, the length of the processing window and
real-time factor (RTF) are used respectively. We define the
latency (L) as the summation of the shift length of the pro-
cessing window (W) and the duration of time needed to pro-
cess it. RTF is the most common speed performance metric
for speech processing applications and defined as the ratio of
processing time of the input over the actual duration of the
input. Any application is considered real-time if its RTF is
less than 1. The computer that is used for all latency and RTF
calculations has an Intel Xeon Gold 6130 CPU @ 2.10GHz
and a GeForce 2080 RTX Ti, 24GB GPU.

4. RESULTS AND DISCUSSION

We first analyze the perceptual speech quality/intelligibility
and processing time performance comparison of the baseline
methods and proposed method on the test data as shown in
Table 1. We also include some results from the state-of-the-
art papers that use the same train and test dataset. The SPc-
GAN system is the least performing system in terms of speech
quality/intelligibility but has the best RTF score which makes
it a good candidate for the offline systems working on the en-
hancement of a huge amount of data at a time. Because of the
wide processing window (4096 ms) of the SPcGAN has the
highest latency which makes it almost impossible to operate
in a real-time scenario. The SERGAN system has relatively
better PESQ/STOI measure and latency value but on the other
hand, has around 4× higher RTF value as opposed to the SPc-
GAN system, our further experimentation shows that opera-
tion on the temporal domain is computationally more costly
than the spectral domain. The proposed system has clearly
the best PESQ value and has a comparable STOI measure as
opposed to the baseline systems. By reducing the processing
window considerably as compared to the baseline systems we
compromise the RTF value a little bit but we achieve rela-
tively good performance in terms of speech quality and intel-
ligibility with the proposed simple but effective DNN archi-
tecture. Moreover, low latency and moderate RTF value make
the proposed system a good candidate for the low-latency re-
quired systems. We have to note that for the SPcGAN and the
proposed system both operate on the spectral domain and the
latency calculation includes the sum of the duration of spec-
tral featurization and reconstruction which does not exist in
the SERGAN system because of the time-domain operation.

Clearly, it is always an option to further improve the la-
tency by applying some processing tricks at inference time as
long as RTF value stays less than 1 (real-time constraint). To
achieve this we make some analysis on the speech quality per-
formance trade-off with the latency by applying sliding shift
on the processing window. As it is shown in Table 2 the first
row includes the performance result of the system that uses
256 ms (16 frames) block-by-block processing and at follow-

Table 1: Performance comparison of the systems. W: Win-
dow Length, L: Latency, RTF: Real-time Factor

Systems PESQ STOI W / L (ms) RTF

Unprocessed 1.96 0.9211 - -

SEGAN [15] 2.16 - 1024/- -
Wave-U-Net [30] 2.40 - 1024/- -
MMSE-GAN [39] 2.53 - 70/- -
RaLSGAN-GP [2] 2.62 0.9400 1024/- -
MDPhD [40] 2.70 - 1024/- -
D+M [41] 2.73 - 1024/- -

SPcGAN 2.28 0.9285 4096/4174 0.019
SERGAN 2.59 0.9380 1024/1122 0.096
Proposed* 2.90 0.9378 256/272 0.059

*CSIG, CBAK, and COVL [37] performance metric values of the
proposed system are 4.22, 3.32, and 3.58, respectively for future ref-
erence.

ing rows we keep reducing the shift size and lower the latency
concurrently while observing RTF of the systems. Although
the proposed network always processes 256 ms of the full in-
put window and produces the corresponding prediction, only
the last shift-size portion of the prediction is actually used for
the output. Note that, in the initial few frames where there is
not enough input data available to reach the input buffer size,
it is filled by repeating the very first shift-size portion of the
input. It can be observed that our proposed system is able to
operate at real-time with a very low latency duration as little
as 31 ms and with a tolerable degradation on speech quality.

Table 2: Latency (L) vs. performance analysis of proposed
system with using various shifted processing windows. The
first row shows the full window (16 frames) shift case.

Shift (ms) PESQ STOI W / L (ms) RTF

256 2.90 0.9378 256/272 0.059
128 2.88 0.9355 256/144 0.113
64 2.84 0.9323 256/81 0.230
32 2.80 0.9299 256/47 0.459
16 2.75 0.9240 256/31 0.915

5. CONCLUSION

In this paper we propose simple but effective U-Net CNN ar-
chitecture specifically for the SE systems working under low-
latency condition. We achieve superior results as opposed to
the two GAN based baseline systems operating on spectral
and temporal domains. And it has been shown that the pro-
posed system has a real-time operation under extreme low-
latency conditions while maintaining performance quality of
the system to some extend.
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