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Abstract

The recent successes in applying deep learning tech-

niques to solve standard computer vision problems has as-

pired researchers to propose new computer vision prob-

lems in different domains. As previously established in

the field, training data itself plays a significant role in

the machine learning process, especially deep learning ap-

proaches which are data hungry. In order to solve each new

problem and get a decent performance, a large amount of

data needs to be captured which may in many cases pose

logistical difficulties. Therefore, the ability to generate de

novo data or expand an existing dataset, however small, in

order to satisfy data requirement of current networks may

be invaluable. Herein, we introduce a novel way to parti-

tion an action video clip into action, subject and context.

Each part is manipulated separately and reassembled with

our proposed video generation technique. Furthermore, our

novel human skeleton trajectory generation along with our

proposed video generation technique, enables us to gener-

ate unlimited action recognition training data. These tech-

niques enables us to generate video action clips from an

small set without costly and time-consuming data acqui-

sition. Lastly, we prove through extensive set of experi-

ments on two small human action recognition datasets, that

this new data generation technique can improve the perfor-

mance of current action recognition neural nets.

1. Introduction

After significant successes in face detection, face recog-

nition and object detection commonly used in our daily life,

computer vision researchers are now aiming at understand-

ing video which is one dimension more difficult. These suc-

cesses rely on advanced machine learning techniques and

training data which require computational power, mainly

deep networks. Hence, the process of data acquisition may

be as vital as the technique used. Large datasets, such as

a million object and animal photos [26], hundreds of thou-

sands of faces [22] or millions of scenes [29], enables com-

*Equal contribution.

Figure 1: Our algorithm takes as input an action label, a set of

reference images and an arbitrary background. The output is a

generated video of the person in the reference image performing a

given action. We approached this problem in two stages. Firstly

(left side) a generative model trained on a small labeled dataset

of skeleton trajectories of human actions, generates a sequence of

human skeletons conditioned on the action label. Secondly (right

side), another generative mode trained on an unlabeled set of hu-

man action videos, generates a sequence of photo-realistic frames

conditioned on the given background, generated skeletons, and the

person’s appearance given in the reference frames. This produces

an arbitrary number of human action videos.

plex neural networks to train successfully. However, similar

results can never be achieved through small datasets man-

ually captured by researchers themselves. Video datasets

or specifically human action datasets are more difficult to

compile. A few common scenarios to generate a human

action dataset are as follows: (1) asking subjects to do a se-

ries of actions in front of a camera (2) collecting and label-

ing existing videos from the internet or crowd sourcing [49]

(3) 3D video synthesizing[58, 5]. The first scenario is not

scalable considering the number of subjects and the limita-

tions imposed by the capturing environment. These types

of datasets are not common anymore due to their small size.

Some examples of the second scenario are UCF 101 [51]

containing 101 actions of thousands of online clips, Holly-

wood2 [32] containing 12 actions in ˜3000 clip extracted

from movies and the kinetics [21] including 400 actions

from hundreds of thousands of YouTube videos. Although
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these datasets are very useful to benchmark the accuracy

of different algorithms, the clips or actions are not neces-

sarily useful for real world action recognition tasks such as

security surveillance cameras, sport analysis, smart home

devices, health monitoring etc, as each scenario has differ-

ent settings and sets of actions. The drawback of the last

scenario, which is more recent and seems more promising

requires MoCap data.

In this paper, we’ve introduced a novel way to partition

an action video clip into action, subject and context. We

showed that we can manipulate each part separately and as-

semble them with our proposed video generation model into

new clips. The actions are represented by a series of skele-

tons, the context is an still image or a video clip, and the

subject is represented by random images of the same per-

son. We can change an action by extracting it from an arbi-

trary video clip, generate it through our proposed skeleton

trajectory model, or by applying perspective transform on

existing skeleton. Additionally, we can change the subject

and the context using arbitrary video clips, enabling us to

arbitrarily generate action clips. This is particularly useful

for action recognition models which require large datasets

to increase their accuracy. With the use of a large unlabeled

data and a small set of labeled data, we can synthesize a

realistic set of training data for training a deep model.

We called it DIY (do it yourself) because we can even-

tually build our own dataset from a small one. Similar to

actual data collection, not only we can add a new person or

action to the dataset, but also internally expand the dataset

or capture the same data from different angles with very lit-

tle time and effort.

Lastly, to quantitatively evaluate our data generation

technique, we applied it to UT Kinects [65] a human ac-

tion dataset comprised of 10 actions in 200 video clips. We

generated new video clip types by adding new subjects or

actions or by expanding current action and subjects. It is

shown that generated data along with the existing data, can

improve the performance of well-performed video represen-

tation networks: I3D [4] and C3D [54] on action recogni-

tion task. For further investigation, we applied our method

and action recognition task to actions with two persons in

SUB interact [69] datasets. The outline of this paper is

as follows. In §2 we’ve described related works in ac-

tion recognition, data augmentation and video generative

model. Section 3 introduces our video generation methods

as well as skeleton trajectory generation methods with sam-

ples and use cases. In §4, we’ve discussed the datasets and

action recognition methods used to evaluate our work. In

§5 we’ve presented the extensive experimental data back-

ing our claims. Our paper is concluded in §6.

2. Related Works

2.1. Action Recognition

Human action recognition has drawn attention for some

time. Before deep learning era of computer vision, many re-

searchers tried to inflate successful 2D features or descrip-

tors in order to solve this problem such as 3d SIFT [47],

3d bag of features [27], dense trajectories [62], track-

ing [41, 40], and automatic target recognition [42]. Please

refer to [36] for a comprehensive survey of these types of

algorithms.

Deep learning networks significantly outperformed tran-

sitional approaches and are therefore the focus of this paper.

Unlike image representation network architecture, the video

representation networks haven’t had satisfactory advances.

There have been different approaches to this problem. Some

used the convolution and layers in 2D (image-based) [8, 68]

while some used 3D (video-based) kernels [16, 54, 4]. In-

put to the networks could be just RGB video [54] while

optical flow could be used as an additional input [10, 4].

Information could propagate across frames either through

LSTMs [8, 68] or feature aggregation [19].

Data Augmentation Using synthetic data or data warp-

ing for training classifiers has been proven effective [26, 71,

50]. Sato et al. [45] proposes a method for training a neural

network classifier using augmented data. Wong et al. [64]

thoroughly investigated the benefits of data augmentation

for classification tasks. In action recognition tasks, data is

usually very limited [24], since collecting and annotating

videos [23] is difficult. Although one can use our algorithm

for data augmentation by generating videos varying in back-

ground, human appearance, and type of actions, this is not

the purpose of our work. Unlike data augmentation that is

limited to manipulating data, our method is capable of gen-

erating new data with new content and visual features.

2.2. Video Generative Models

Video generation has posed as a challenge for a number

of years. The early work in the field focused on generat-

ing texture [9, 53, 63]. In recent years with the success of

generative models in image generation such as GANs [12],

VAEs [25, 38], Plug&Play Generative Networks [34], Mo-

ment Matching Networks [28], and. PixelCNNs [57], a

new window of opportunity has opened towards generat-

ing videos using generative models. In this paper, we use

GANs to generate human skeleton trajectories and real-

istic video sequences. GAN consists of a discriminator

and a generator, trained in a 2-player zero-sum game. Al-

though GANs have shown promising results on image gen-

eration [7, 37, 70, 31, 30], they have proven to be difficult

to train. To address this issue, Arjovsky et al. [1] proposed

Wassertein GAN to combat mode collapse with more stabil-

ity. Salimans et al. [44] introduced several tricks for training
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Figure 2: Structure of the network. On the left side ”generator network” takes as input background, target skeleton, and the transformed

reference images to the target skeleton along with their masks. On the right side ”discriminator” takes as input generated image or ground

truth and outputs ”fake” or ”real”.

GANs. Karras et al. [20] proposed a novel method for train-

ing GANs through progressively adding new layers. Ron-

neberger et al. [39] proposed U-Net, a convolutional net-

work for segmentation.

GANs have previously been used for video generation.

There are two lines of work in video generation. First is

video prediction where given the first few frames of a video,

the goal is to predict the future frames. Several papers focus

on producing pixel values conditioned on the past observed

frames [67, 52, 35, 33, 18, 66, 59]. Another group of papers

aimed at reordering the pixels from the previous frames to

generate the new ones [56, 11].

In the second line of work, the goal is to generate a se-

quence of video frames conditioned on label, single frame,

etc. Early attempts assumed video clips to be fixed length

and embedded in a latent space [60, 43]. Tulyakov et

al. [55] proposed to decompose motion from content and

generate videos using a recurrent neural net. Our work is

different from [55] where their model learns motion and

content in the same network whereas we separated them

completely.Furthermore, [55] is not capable of generating

complex human motions. Also filling gaps in the back-

ground initially blocked by the person in the input video

is a difficult task for this method. On the other hand, our

method handles these challenges by completely separating

appearance, background, and motion. Our work is some-

what similar to [61], which does video forecasting using

pose estimation, by modeling the movement of human us-

ing a VAE and then using a GAN to predict the pixel value

of the future frames.

Figure 3: Architecture of the discriminator, D.

Our work lies in the ”video generation” category where

we focus on employing video generation techniques to gen-

erate human action videos. In our proposed method we

completely separate background, skeleton motion, and ap-

pearance, allowing us to model frame generation and skele-

ton trajectory independently. So, one would require labeled

data and the other can benefit from unlimited unlabeled hu-

man action videos available on internet, respectively.

3. Method

We define problem as follows; given an action label l a

small set of reference images I = {I1, ...Ik} each contain-

ing a human subject from which a sequence of video frames

is generated featuring a human with the same appearance

as the human in the reference image set I performing an

action l. Modeling the (human/camera) motion and gener-

ating photo-realistic video frames may be challenging but

knowing the location/motion of human skeletons in each

frame would simplify it. Hence, we subdivided the prob-

lem into two simpler tasks (inspired by [55, 59]).

• The first task comprised of the reference images I ,

background image B, and a sequence of target skele-

tons S = [S1, S2, ..., Sn] employed to render photo-

realistic video frames of the person in I moving ac-

cording to S on background.

• The second task produced the target skeleton se-

quences for the first part. In another words, given ac-

tion label l, a sequence of skeletons of a random person

performing action l was generated.

By combining the two tasks, we created a novel algo-

rithm that can generate arbitrary number of human action

videos with varying backgrounds, human appearances, ac-

tions, and ways each action is performed.

3.1. Video Generation from Skeleton and Reference
Appearance

In this section, we explain our algorithm used to gener-

ate a video sequence of a person based on given appear-
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ance (I) and a series of target skeletons (S) in an arbi-

trary background(B). In our proposed model, we use GAN

conditioned on the appearance, the target skeleton, and the

background. Our proposed generator network works in a

frame-by-frame fashion, where each frame is generated in-

dependently from others. We have tried using LSTMs and

RNNs to take into account smoothness of the videos. How-

ever, our experiments show frames that are generated sep-

arately are sharper as RNNs/LSTMS may introduce blurri-

ness to the generated frames.

Generator Input. Our generator network needs a refer-

ence image of the person in order to generate images of the

same person with arbitrary poses/backgrounds. However,

one reference image may not have all the appearance infor-

mation due to occlusions in some poses (e.g. face is not

visible when the person is not facing the camera). To over-

come this issue to some extent, we provided multiple refer-

ence images of the person to the network. In both training

and testing, these images were selected completely at ran-

dom, so that network would be responsible for choosing the

right pieces of appearance features from the set of input im-

ages. These images could be selected with a better heuristic

to produce better results though this is not in the scope of

this work.

The reference images were pre-processed before incor-

poration into the network. First we extracted the human

skeleton from each reference image Ii (using [3]), then used

an offline transform to map the RGB pixel values of each

skeleton part from the image to the target skeleton. Also,

a binary mask of where the transformed skeleton is located

was created. All these images, It = {It1, ..., I
t
k}, along with

the background, B, and the target skeleton, Si were stacked.

Conditional GAN. Inspired by pix2pix [15], we used a

U-net style conditional GAN. The generator G(C), is con-

ditioned on the set of transformed images and correspond-

ing masks, along with the background and target skeleton.

The generator, G, maps C = {It1, ..., I
t
k, B, Si} to the tar-

get frame Y , such that it fools the discriminator, D(C, Y ).
The discriminator, D(C, Y ), on the other hand is trained

to discriminate between real images and the fake images

generated by G. The architecture of the discriminator is

illustrated in Fig. 3. The pipeline and architecture of the

generator G is illustrated in Fig. 2. Fig. 4a illustrates some

of the results.

The objective function of GAN is expressed as:

LGAN (G,D) = Ec,y∼Pdata(c,y)[logD (c, y)]

+ Ec∼Pdata(c),z∼Pz(z)[1− logD
(

c,G (c, z)
)

]

Following [15] we added an L1 loss to the objective func-

tion, which resulted in sharper generated frames.

LL1(G) = Ec,y∼Pdata(c,y),z∼Pz(z)[||y −G(c, z)||]

In initial experiments, we noticed that using only L1 loss

(a) UT dataset. Subjects from the same dataset.

(b) SBU dataset. None of the subjects exist in this dataset.

Figure 4: Generated images on two different datasets.

and GAN loss is not enough as the output background

would be sharp but the region that the target person is sup-

posed to be was blurry. Subsequently, we introduced a ”Re-

gional L1 loss” with a larger weight as following,

LR(G) =Ec,y∼Pdata(c,y),z∼Pz(z)

[||masked(y)− masked(G(c, z))||]

where ”masked” masks out the region where the person was

located. This mask was generated based on the target skele-

ton, Si, using morphological functions (erode, etc.).

Our final objective is as follows:

L(G,D) = LGAN (G,D) + λLL1(G) + βLR(G)

where λ and β are weights of L1 and R regional losses (in

our experiments β > λ). and the goal is to solve the follow-

ing optimization problem.

G∗ = arg min
G

max
D

L(G,D) (1)

Multi-person Video Generation In a nutshell, our al-

gorithm merges transformed images of a person on an arbi-

trary pose with an arbitrary background in a natural photo-

realistic way. We managed to go beyond simple one per-
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son human action videos and extended our method to multi-

person interaction videos as well. For this purpose, we

trained our model on a two person interaction dataset [69].

The only difference with single frame generation process

is that in the pre-processing phase, for each person in the

input reference image, we needed to know the correspond-

ing skeleton in the target frame, we then transformed each

person’s body parts to his/her own body parts in the target

skeleton. There are some challenges in this task such as oc-

clusions in certain interactions (e.g. passing by, hugging,

etc.). The dataset that we used contains these occlusions

to some extent. Our method is able to handle relatively

well some simple occlusions that occur in such interactions.

We acknowledge that there is room for improvement in this

area, but that would not fit in the scope of this work. Fig. 4b

illustrates some of the generated videos.

3.2. Skeleton Trajectory Generation

In the previous section, we explained how we designed

a method that enables us to generate videos of an arbitrary

person in any background based on any given sequence of

skeletons. Although number of backgrounds and persons

are unlimited, the number of labeled skeleton sequences are

limited to the ones in the existing datasets. We propose a

novel solution to this problem; using a generative model

to learn the distribution of skeleton sequences conditioned

on the action labels. This allows us to generate as many

skeleton sequences as needed for the actions in the dataset.

Fig. 6 shows a few sample generated skeleton sequences.

We used small datasets for training our model. However,

due to the nature of the problem and the limited amount of

data, generating long sequences of natural looking skele-

tons proved challenging. Thus we aimed at generating rela-

tively short fixed-length sequences. Having said that, train-

ing GAN in such way is still prone to problems such as

mode collapse, divergence, etc. In designing the genera-

tor and discriminator networks, we have taken into account

these problems (e.g. introduced batch diversity in the dis-

criminator, created multiple discriminators, etc.).

Skeleton Trajectory Representation. Each skeleton

consists of 18 joints. We represented each skeleton with a

1× 36 vector (a flattened version of 18× 2 matrix of joints

coordinates). We normalized the coordinates by dividing

them by ”height” and ”width” of the original image.

Generator Network. We used a conditional GAN

model to generate sequences of skeletal positions corre-

sponding to different actions. Our generator has a ”U”

shape architecture where input consists of action label and

noise, and output is a 8×1×36 tensor representing a human

skeleton trajectory with 8 time-steps.

Based on our results, providing a vector of random noise

for each time step helps the generator to learn and gener-

alize better. So the input noise, z, is a tensor with size

(a) Generator Network.

(b) Trajectory Discriminator Network. The discriminator is the

sum of three discriminators illustrated in this figure: D = Df +

Dt +Df .

Figure 5: Trajectory GAN network architecture.

8×1×128; drawn from a uniform distribution. The one-hot

encoding of action label, l, is replicated and concatenated to

the 3rd dimension of the z. The rest is a ”U” shaped network

with skip connections that maps the input (z, l) to a skeleton

sequence S. Fig. 5a illustrates the network architecture. We

also used Dense-net [13] blocks in our network.

Discriminator Network. Architecture of discrimina-

tor is three-fold. The base for discriminator is 1D convo-

lutional neural net along the time dimension. In order to

allow discriminator to distinguish ”human”-looking skele-

tons, we used sigmoid layer on top of fully-convolutional

net. To discriminate ”trajectory”, we used set of convolu-

tions along the time with stride 2, shrinking output to one

1×1×C containing features of the whole sequence. To pre-

vent mode collapse, first we grouped fully convolutional net

outputs across batch dimension.We then used min, max and

mean operations across batch, and provided these statistical

information to the discriminator. This method seems to pro-

vide enough information about distribution of values across

batch and allows to change batch size during training. For

detailed discriminator architecture see Fig. 5b.

Our objective function is:

LT (G,D) = El,s∼Pdata(l,s)[logD (l, s)]

+ El∼Pdata(l),z∼Pz(z)[1− logD
(

l, G (l, z)
)

]

where l and s are action label and skeleton trajectories,

respectively. We aim to solve the following:

G∗ = arg min
G

max
D

LT (G,D)

In this work, we have shown that generative models can

be adopted to learn human skeleton trajectories. We trained

1565



Figure 6: Samples of generated skeleton sequences, conditioned

on action label (e.g. throwing, hand waving, sitting).

a Conditional GAN on a very small dataset (200 sequences)

and managed to generate natural looking skeleton trajecto-

ries conditioned on action labels. This can be used to gen-

erate a variety of human action sequences that don’t exist in

the dataset. However, our work is limited to a fixed number

of frames. Thus for future work, we’ll work to improve our

method so that it’ll accommodate longer sequences varying

in length. We also explained that in addition to the gen-

erated skeletons, we can also use real skeleton sequences

from other sources (other datasets, current dataset but dif-

ferent subjects) to largly expand existing datasets.

4. Datasets and Action Recognition Methods

4.1. datasets

In this paper, we’ve claimed to expand small amount of

action videos by addition of new generated videos. We

targeted smaller action recognition datasets and expanded

them to meet the large data load requirements of recent ac-

tion recognition algorithms such as UCF 101 [51], the ki-

netics [21] or NTU RGB+D [48]. This eliminates the need

for time and cost inefficient data acquisition processes.

UT Kinects [65]: One of the datasets wildly used in our

experiments is UT Kinects which includes 10 action labels:

Walk, Sit-down, Stand-up, Trow, Push, Pull, Wave-hand,

Carry and Clap-hand. There are 10 subjects that perform

each of these action twice in front of a rig of RGB camera

and Kinect. Therefore in total they are 200 action clips of

RGB and depth though depth is ignored. All videos are

taken in office environment with similar lighting condition

and the position of the camera is fixed.

For the training setup, 2 random subjects were left out

(20%, used for testing) and the experiments were carried

out using 80% of the subjects. The reported results are the

average of six individual runs. The 6 train/test runs are con-

stant throughout our experiment.

SUB Interact [69]: Since our methods work with mul-

tiple human subjects in a scene, we picked SUB Interact. It

is a kinect captured human activity recognition dataset de-

picting two person interaction. It contains 294 sequences of

8 classes (Kicking, Punching, Hugging, Shaking-hand, Ap-

proaching, departing and Exchanging objects) with subject

independent 5-fold cross validation. The original data in-

cludes RGB, depth and skeleton but we only use RGB for

our purpose. We used a 5-fold cross validation throughout

our experiments and reported the average accuracy.

KTH [46]: KTH action recognition dataset was com-

monly used at the early stage of action recognition. It in-

cludes 600 low resolution clips of 6 actions: Walk, Wave-

hand, Clap-hand, Jogging, running and boxing which are

divided in train, test and validation. The first three action

labels are shared with UT dataset while the last three are

new. We used this dataset to add new action to UT dataset

and for cross dataset evaluation.

4.2. Action Recognition Methods

We used the following deep learning networks which

have previously shown decent performance on recent action

recognition datasets.

Convolutional 3D (C3D) [54]: is a simple and efficient

3-dimensional ConvNet for spatiotemporal feature which

shows decent performance on video processing benchmarks

such as action recognition in conjunction with large amount

of training data. We used their proposed network with 8

convolutional layers, 5 pooling layers and 2 fully connected

layers with 16-frames of 112 × 112 RGB input. They re-

leased a network pre-trained on UCF Sport [51] which we

used for our experiments aimed at training from scratch, de-

noted as C3D(p) vs. C3D(s). Unfortunately we can not

couldn’t converge the C3D when we trained from scratch

on UT dataset but it converged successfully on SUB.

Inflated 3D ConvNets (I3D) [4] : is a more complex

model which has recently been proposed as the state-of-

the-art for action recognition task. It builds upon Inception-

v1 [14], but inates their filters and pooling kernels into 3D.

It is a two-steam network which uses both RGB and opti-

cal flow input with 224 × 224 inputs. We only used RGB

for simplicity. They released a network pre-trained on Im-

geNet [6] followed by the Kinetics [21]. We used this for

our experiments aimed at training from scratch, denoted as

I3D(p) vs. I3D(s).

We use data augmentation by translation and clipping as

mentioned in [4] for all experiments. For training, we only

used the original clips as test, making sure there was no gen-

erated clips with skeletons or subjects (subject pair) from

test data in each run.

5. Experiments

So far, we have introduced our video generation method

which enable us to generate new action clips for the action
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recognition training process. In this section, we show dif-

ferent scenarios for generating new data and running ex-

periments for each to see if adding the generated data to a

training process can improve the accuracy of the action rec-

ognizer. We applied our proposed video generation models

to all the experiments using skeletons. The skeletons were

trained using data from UT and SBU datasets as well as 41

un-annotated clips (between 10 to 30 seconds) that we cap-

tured from our colleagues. For future works, we will train

our model again using a large amount of data from web.

But the time being, we are satisfied with the current model

as higher resolution for action recognition is currently un-

necessary. Our technique for generating new action video

clips has the capacity of running experiments with numer-

ous varying settings. Here, we show five experiments which

may be quantitatively evaluated.

5.1. Generated Trajectory

The first experiments is a combination of our proposed

video generation technique and skeleton trajectory gener-

ation. We generated around 200 random skeleton trajec-

tories from action labels in UT dataset using the method

mentioned in §3.2. Each of these skeleton trajectories gen-

erated a video by proposed video generation applied to a

person in UT dataset, meaning our new dataset is doubled

with half of it being the generated data. We then trained our

model by I3D and C3D using training setting mentioned

in §4.1. Table 1 shows about 3% improvement for I3D with

and without training data as well as significant improvement

(by 15%) for C3D network which is less complex.

Method Org. Org. + Gen.

I3D(s) 64.58% 67.50%

I3D(p) 86.25% 89.17%

C3D(p) 55.83% 70.83%

Table 1: Action recognition on UT dataset using original data

compared to generated from scratch data with proposed method

in §3.1 and §3.2

5.2. New Subjects

One common way to extend a video dataset is to invite

new people to do a series of actions in front of a camera. Di-

versity [2] in body shape, cloths and behaviour will clearly

help with the generalization of the ML methods. In this

experiment, we aimed to virtually add new subject to the

dataset. Thus, we collected a small unannotated clips from

10 distinct persons and fed them as new subjects into our

proposed video generation method. For UT, each subject

was replaced by a new one for all of his/her action which

is similar to adding 10 new subjects to UT. The same was

done with SUB to double the dataset, the only difference be-

ing the replacement each pair with a new subject pair. Fig-

ure 4b shows a few new subjects with their generated action

videos from SBU dataset. The results have been presented

in Table 2.

UT SBU

Org. Exp. Org Exp.

I3D(s) 64.58% 67.08% 86.48% 91.23%

I3D(p) 86.25% 89.17% 97.30% 98.65%

C3D(s) - - 83.52% 87.00%

C3D(p) 55.83% 70.43% 92.02% 96.25%

Table 2: Performance comparison of multiple algorithms, trained

on original data and additional subjects.

Figure 7: The screen shot of a video generated by UTK expansion.

The first row shows skeleton clips extracted from an arbitrary ac-

tion. Second to fourth rows show the generated video for subjects

from different clip carrying out that specific action.

5.3. New Actions

In real computer vision problems, one might decide to

add a new label class after the data collection process has

been done. Adding a new label action to a valid dataset

could cost the same as gathering a dataset from scratch as all

the subjects are needed for re-acting that single action. As

mentioned in §4.1, UT consists 10 action labels. In this ex-

periment, we try to introduce new actions (i.e. running, jog-

ging, and boxing) to UT dataset, which do not already exist.

We used the skeleton data, which are extracted by Open-

Pose [3], from the training set of a third dataset, KTH [46].

We randomly picked 5 clips from each of these 3 actions

and used all the subjects of UT to generate 150 new video

clips. We then trained a new model using a pre-trained I3D

network on the union of the original training data of UT

and the newly generated data (150 clips). Since the KTH

data is grey scaled images, we randomly grey scaled both

the original and the generated training clips in the training

phase. For each run, we found per class accuracy for UT

test set (refer to §4.1 for explaining UT train/test) as well as

KTH test sets. Table 3 shows average of the per class accu-

racy for both test sets. We may consider KTH test results
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as a measure of cross dataset accuracy for walk, wave-hand

and clap-hand. Our trained network on new action labels

boxing, running and jogging achieved 72.14%, 44.44% and

63.20%, respectively. This indicates that the new actions in

the dataset performed as good as the data captured by cam-

era.

Action UTK Test Label KTH Test

Walk 91.67% Walk 67.18%

Wave-hand 100.0% Wave-hand 58.59%

Clap-hand 91.67% Clap-hand 28.90%

Push 33.33% Boxing 72.14%

Pull 58.33% Running 44.44%

Pick-up 100.0% Jogging 63.20%

Sit-down 87.50%

Stand-up 95.83%

Threw 54.17%

Carry 79.17%

Table 3: Per class average accuracy for model trained by i3d using

original training data from UT plus new action clip generated by

our method using skeleton extracted from KTH training set.

5.4. dataset Expansion

So far, we’ve shown that using our proposed method we

can generate video clips with any number of arbitrary ac-

tion videos and subjects. In an action dataset with N sub-

jects carrying out M distinct actions, there will be M ×N

video actions. when applied to our proposed method of ac-

tion video generation, the N subjects and the M ×N video

actions will result in generation of M × N2 video actions

comprising of M×N original videos while the rest is gener-

ated videos. This approach enabled us to expand UT Kinect

dataset from 200 clips to 4000 clips and SUB Interact from

283 clips to 5943 using only the original dataset. We trained

I3D and C3D using our expanded dataset as described in

§4.1. Table 4 shows the result of this experiment.

UTK SBU

Org. Exp. Org Exp.

i3d(s) 64.58% 69.58% 86.48% 93.54%

i3d(p) 86.25% 90.42% 97.30% 99.13%

c3d(s) - - 83.52% 86.03%

c3d(p) 55.83% 71.25% 92.02% 97.41%

Table 4: The comparison of dataset expansion by original data for

UTK and SUB dataset.

Figures 7 shows an screen shot of the clips from UTK

and SUB datasets. The first row shows skeleton clips ex-

tracted from an arbitrary action while rows 2-4 show the

generated video for subjects from different clip performing

that specific action.

5.5. Real World

In this section, we carried out 4 different experiments on

2 datasets for bench-marking. Although in all experiments,

the generated data improved the network performance, we

believe none of the experiments show the actual strength

and convenience of our proposed methods in real world sce-

narios. In both datasets, as well as other commonly used

small datasets, the environmental setup for data acquisition

such as distance from camera view [17] and light condi-

tion were kept as uniformly as possible for both test and

train video clips. This would be unattainable in real life

data acquisitions. A way of overcoming this obstacle would

be to collect diverse sets of data for strong neural network

models. We’ve previously shown that by partitioning the

video to action, subject and context allows us to easily ma-

nipulate the background or change the camera view. In

this experiment, We applied perspective transform on skele-

ton while using diverse backgrounds. Although the model

trained with these data did not outperform our previous ex-

periments, a live demo showed it to be better for unseen

cases, qualitatively. Figure 8 illustrates an input skeleton

and its perspective transform as well as the generated clip.

Figure 8: Perspective transform example.

6. Conclusion and Future Works

In this paper, we’ve introduced a novel way to partition

an action video clip into action, subject and context. We

showed that we can manipulate each part separately, re-

assemble them with our proposed video generation model

into new clips and use as an input for action recognition

models which require large data. We can change an ac-

tion by extracting it from an arbitrary video clip, generate

it through our proposed skeleton trajectory model or by ap-

plying perspective transform on existing skeleton. Addi-

tionally, we can change the subject and the context using

arbitrary video clips.

For the future work, we will replace our 2d skeleton with

3d skeleton to achieve a 3d transformation and handle oc-

clusions. Additionally, while our video generation tech-

nique demonstrated acceptable results for 255×255 images,

we believe it can be extended even further to achieve higher

resolution by feeding more unannotated data.
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